HANDBOOK OF Respiration

National Academy of Sciences

National Research Council

W. B. Saunders Company

HANDBOOK of RESPIRATION

Analysis and Compilation by

PHILIP L. ALTMAN

JOHN F. GIBSON JR., M.D. CHARLES C. WANG

Edited by

DOROTHY S. DITTMER

RUDOLPH M. GREBE

Prepared under the direction of the Committee on the Handbook of Biological Data

DIVISION OF BIOLOGY AND AGRICULTURE THE NATIONAL ACADEMY OF SCIENCES THE NATIONAL RESEARCH COUNCIL

W. B. SAUNDERS COMPANY

Philadelphia and London

155

© 1958, BY W. B. SAUNDERS COMPANY

COPYRIGHT UNDER THE INTERNATIONAL COPYRIGHT UNION

All rights reserved. This book is protected by copyright. No part of it may be reproduced in any manner without written permission from the publisher, except for any purpose of the United States Government.

Made in the United States of America

LIBRARY OF CONGRESS CATALOG CARD NUMBER: 58-13138

Foreword

The Handbook of Respiration is the sixth in a series of publications*, each containing information, chiefly tabular, in one or more fields of the biological sciences. These handbooks have been prepared under the general direction of the Committee on the Handbook of Biological Data, Division of Biology and Agriculture, National Academy of Sciences--National Research Council.

The information for the present Handbook was prepared and contributed by leading authorities in the field of respiration. The data were assembled, tabulated, and edited by the Handbook staff, then critically reviewed and authenticated by experts in the areas covered in this volume.

On behalf of the Committee, acknowledgment is made to the numerous scientists who have been so liberal with their time and advice; to Wright Air Development Center United States Air Force, the National Institutes of Health of the Public Health Service, the Division of Biology and Medicine of the Atomic Energy Commission, the Office of Naval Research, the Office of the Surgeon General of the Army, and the Army Chemical Center, for generous support and cooperation, which have made possible the production of this book. The Air Force participation in this undertaking was carried out under Contract No. AF 33(616)-3972 with the National Academy of Sciences. Dr. J. W. Heim, Aero Medical Laboratory, Wright Air Development Center, served as contract monitor.

THE COMMITTEE ON THE HANDBOOK

OF BIOLOGICAL DATA

Theodore C. Byerly, Chairman

W. H. Larrimer, Executive Secretary

EDITORIAL

David B. Dill Charles M. Goss Frank G. Hall J. W. Heim Paul E. Howe Paul J. Kramer Milton O. Lee L. A. Maynard** Royal Shanks Oswald Tippo Lionel A. Walford Paul Weiss Raymund L. Zwemer icit.

** ex officio

HANDBOOK STAFF

W. H. Larrimer, Director

Dorothy S. Dittmer, Associate Editor

Rudolph M. Grebe, Associate Editor

RESEARCH

Philip L. Altman
Everett F. Davis
Judith P. Bloomer
John F. Gibson, Jr.
Lucy C. Lee
Barbara L. Tuma
Charles C. Wang
Boris R. Folen
S. W. Lipsman

Florence M. Lochrie Frances S. Merrill Mary J. Noe Carol A. Packett Francys E. Richardson Laura B. Sheridan Olga G. Stanczak

*Handbooks published 1949-1958

Standard Values in Blood	1951
Standard Values in Nutrition and Metabolism	1953
Handbook of Toxicology, Vol. I, Acute Toxicities	1955
Handbook of Biological Data	1956
Handbook of Toxicology, Vol. 11, Antibiotics	1957
Handbook of Respiration	1958

Contents

CONTRIBUTOR	RS AND REVIEWERS:	
NTRODUCTIO	N	
IANDBOOK OF	RESPIRATION	
	OOK OF RESPIRATION	
1.		
2		
	Part I: In Water at Various Temperatures 6	
13.		
	•	
14.		
	II. BASIC RESPIRATORY ANATOMY	
15.	Development of the Respiratory System: Man	
16.	The Respiratory System: Man (Schematic Drawings)	
	Diameter of Respiratory Alveoli: Man	
	Length of Bronchi: Man	
24.	Diameter of Trachea and Bronchi: Man	
	Dimensions of Trachea: Man	
	Diameter of Sinuses: Man	
21.	Lung Weight Relationships: Laboratory Mammals	
	Part II: Body Weight vs Lung Weight	
	Part III: Lung Lobe Weight Relationships	
28.	Lung Weight: Vertebrates	
	Part I: Mammals	
	Part II: Birds 25	
	Part III: Reptiles	
	Part IV: Amphibians	
	III. LUNG VOLUMES AND PULMONARY FUNCTION	
29.	Subdivisions of Lung Volume: Man	
-/-	Part I: Diagram	
	Part II: Standardized Terms vs Some Previous Terms	
30.	Prediction Formulas and Some Normal Values in Pulmonary Physiology: Man 28	
	Part I: Lung Volumes	
	Part II: Basal Respiratory Functions	
	Part III: Exercise and Maximal Ventilation; Intrapulmonary Mixing 29	

75458

31.	Vital Capacity vs Age: Children and Adolescents	30
32.	Vital Capacity vs Standing Height: Children and Adolescents	31
33.	Vital Capacity vs Weight: Children and Adolescents	32
34.	Vital Capacity vs Surface Area: Children and Adolescents	33
35.	Vital Capacity vs Standing Height: Children and Adolescents (Graphs)	34
	Part I: Males	34
	Part II: Females	35
36.	Vital Capacity vs Age and Standing Height: Children and Adolescents	36
	Vital Capacity vs Age and Sitting Height: Children and Adolescents	37
	Lung Volumes: Man	38
39.	Effect of Postural Change on Lung Volumes: Man	40
40.		40
	Respiratory Rate, Tidal and Minute Volumes: Vertebrates	41
42.	Respiratory Rate, Tidal and Minute Volumes: Infants	42
43.		43
44.	Basal Respiratory Functions: Man	44
45.	Oz and COz Pressures in Alveolar Air and Subcutaneous Tissue: Man	44
	Ventilation and O ₂ Uptake, Right vs Left Lung: Man	45
47.		46
	Part I: At Rest	46
	Part II: During Activity	47
	Part Ill: During CO ₂ Hyperpnea	47
48.	Respiratory Dead Space and Change in Functional Residual Capacity: Dog (Graph) .	48
49.	Some Factors Affecting Respiratory Dead Space: Man	48
	Part I: Effect of Breathholding	48
	Part II: Effect of Breathing Level	49
	Part III: Dead Space for O ₂ , CO ₂ , He, and N ₂	49
50.	Respiratory Dead Space and Tidal Volume: Man	50
51.	Respiratory Dead Space and Tidal Volume: Dog (Graph)	50
	Respiratory Dead Space in Pathological Conditions: Man	51
	Diffusion Capacity of the Lungs: Man	52
	Part 1: At Rest and during Activity	52
	Part II: Effect of Acclimatization to Altitude	52
54	Alveolar-Capillary Diffusion: Man (Graphs)	53
· · ·		
		5 1
	Part II: Pulmonary Capillary O ₂ Pressure	53 53
55	Part II: End- and Mean Capillary O ₂ Pressures	53
55.	Part II: End- and Mean Capillary O ₂ Pressures	
55.	Part II: End- and Mean Capillary O ₂ Pressures	53
55.	Part II: End- and Mean Capillary O ₂ Pressures	53
	Part II: End- and Mean Capillary O ₂ Pressures	53 54
56.	Part II: End- and Mean Capillary O ₂ Pressures	53 54 56
56. 57.	Part II: End- and Mean Capillary O ₂ Pressures	53 54 56 57
56. 57. 58.	Part II: End- and Mean Capillary O ₂ Pressures	53 54 56 57 58
56. 57. 58.	Part II: End- and Mean Capillary O ₂ Pressures	53 54 56 57 58 59
56. 57. 58. 59.	Part II: End- and Mean Capillary O ₂ Pressures	53 54 56 57 58
56. 57. 58. 59.	Part II: End- and Mean Capillary O ₂ Pressures	53 54 56 57 58 59
56. 57. 58. 59. 60.	Part II: End- and Mean Capillary O ₂ Pressures	53 54 56 57 58 59
56. 57. 58. 59. 60.	Part II: End- and Mean Capillary O ₂ Pressures	53 54 56 57 58 59 59
56. 57. 58. 59. 60. 61.	Part II: End- and Mean Capillary O ₂ Pressures	53 54 56 57 58 59
56. 57. 58. 59. 60. 61.	Part II: End- and Mean Capillary O ₂ Pressures	53 54 56 57 58 59 59 60 60
56. 57. 58. 59. 60. 61.	Part II: End- and Mean Capillary O ₂ Pressures	53 54 56 57 58 59 59
56. 57. 58. 59. 60. 61.	Part II: End- and Mean Capillary O ₂ Pressures	53 54 56 57 58 59 59 60 60
56. 57. 58. 59. 60. 61.	Part II: End- and Mean Capillary O ₂ Pressures	53 54 56 57 58 59 60 60 61
56. 57. 58. 59. 60. 61. 62. 63.	Part II: End- and Mean Capillary O ₂ Pressures	53 54 56 57 58 59 59 60 60
56. 57. 58. 59. 60. 61. 62. 63.	Part II: End- and Mean Capillary O ₂ Pressures	53 54 56 57 58 59 60 60 61
56. 57. 58. 59. 60. 61. 62. 63.	Part II: End- and Mean Capillary O ₂ Pressures	53 54 56 57 58 59 60 60 61 62 63
56. 57. 58. 59. 60. 61. 62. 63. 64. 65. 66. 67.	Part II: End- and Mean Capillary O ₂ Pressures	53 54 56 57 58 59 59 60 61 62 63 63
56. 57. 58. 59. 60. 61. 62. 63. 64. 65. 66. 67. 68.	Part II: End- and Mean Capillary O ₂ Pressures. Dynamics of Pulmonary Circulation: Man, Dog. IV. BLOOD RESPIRATORY CHARACTERISTICS Blood Gases, Variables, Factors, and Constants: Man Arterial and Venous Blood Gas Comparisons: Man, Adult and Newborn Arterio-Venous O ₂ and CO ₂ Differences: Man, Dog, Monkey Arterio-Venous Lactate and Pyruvate Differences in Various Structures: Man Arterio-Venous Postabsorptive Glucose Differences: Man Blood Lactate Venous Levels in Conditions of Rest, Exercise, and Hyperventilation: Man Arterio-Venous Lactate Differences in Conditions of Rest, Exercise, and Hyperventilation: Man Arterio-Venous Glucose Differences as Influenced by Alimentary Hyperglycemia: Man Effect of Temperature Change on Blood CO ₂ and O ₂ Pressures: Man, Dog (Line Charts) Temperature and pH vs Serum pK': Man, Dog (Nomogram) H ₂ CO ₃ Dissociation Constants: Man, Dog, Ox Blood CO ₂ Absorption as Function of CO ₂ Pressure: Man Blood CO ₂ Absorption as Function of CO ₂ Pressure: Animals	53 54 56 57 58 59 59 60 61 62 63 63 64
56. 57. 58. 59. 60. 61. 62. 63. 64. 65. 66. 67. 68.	Part II: End- and Mean Capillary O ₂ Pressures	53 54 56 57 58 59 59 60 61 62 63 64 65
56. 57. 58. 59. 60. 61. 62. 63. 64. 65. 66. 67. 68.	Part II: End- and Mean Capillary O2 Pressures. Dynamics of Pulmonary Circulation: Man, Dog. IV. BLOOD RESPIRATORY CHARACTERISTICS Blood Gases, Variables, Factors, and Constants: Man	53 54 56 57 58 59 60 61 62 63 64 65 66
56. 57. 58. 59. 60. 61. 62. 63. 64. 65. 66. 67. 68.	Part II: End- and Mean Capillary O2 Pressures. Dynamics of Pulmonary Circulation: Man, Dog. IV. BLOOD RESPIRATORY CHARACTERISTICS Blood Gases, Variables, Factors, and Constants: Man Arterial and Venous Blood Gas Comparisons: Man, Adult and Newborn Arterio-Venous O2 and CO2 Differences: Man, Dog, Monkey Arterio-Venous Lactate and Pyruvate Differences in Various Structures: Man Arterio-Venous Postabsorptive Glucose Differences: Man Blood Lactate Venous LeveIs in Conditions of Rest, Exercise, and Hyperventilation: Man Arterio-Venous Lactate Differences in Conditions of Rest, Exercise, and Hyperventilation: Man Arterio-Venous Glucose Differences as Influenced by Alimentary Hyperglycemia: Man Effect of Temperature Change on Blood CO2 and O2 Pressures: Man, Dog (Line Charts) Temperature and pH vs Serum pK': Man, Dog (Nomogram) H2CO3 Dissociation Constants: Man, Dog, Ox Blood CO2 Absorption as Function of CO2 Pressure: Man Blood CO2 Absorption as Function of CO2 Pressure: Animals Data for Constructing Blood O2 Dissociation Curves Part I: Man	53 54 56 57 58 59 60 61 62 63 63 64 65 66 66
56. 57. 58. 59. 60. 61. 62. 63. 64. 65. 66. 67. 68.	Part II: End- and Mean Capillary O2 Pressures. Dynamics of Pulmonary Circulation: Man, Dog. IV. BLOOD RESPIRATORY CHARACTERISTICS Blood Gases, Variables, Factors, and Constants: Man Arterial and Venous Blood Gas Comparisons: Man, Adult and Newborn Arterio-Venous O2 and CO2 Differences: Man, Dog, Monkey Arterio-Venous Lactate and Pyruvate Differences in Various Structures: Man Arterio-Venous Postabsorptive Glucose Differences: Man Blood Lactate Venous LeveIs in Conditions of Rest, Exercise, and Hyperventilation: Man Arterio-Venous Lactate Differences in Conditions of Rest, Exercise, and Hyperventilation: Man Arterio-Venous Glucose Differences as Influenced by Alimentary Hyperglycemia: Man Effect of Temperature Change on Blood CO2 and O2 Pressures: Man, Dog (Line Charts) Temperature and pH vs Serum pK': Man, Dog (Nomogram) H2CO3 Dissociation Constants: Man, Dog, Ox Blood CO2 Absorption as Function of CO2 Pressure: Man Blood CO2 Absorption as Function of CO2 Pressure: Animals Data for Constructing Blood O2 Dissociation Curves Part I: Man Part II: Mammals Part III: Birds	53 54 56 57 58 59 59 60 61 62 63 64 65 66 66 66
56. 57. 58. 59. 60. 61. 62. 63. 64. 65. 66. 67. 68.	Part II: End- and Mean Capillary O2 Pressures Dynamics of Pulmonary Circulation: Man, Dog. IV. BLOOD RESPIRATORY CHARACTERISTICS Blood Gases, Variables, Factors, and Constants: Man Arterial and Venous Blood Gas Comparisons: Man, Adult and Newborn Arterio-Venous O2 and CO2 Differences: Man, Dog, Monkey Arterio-Venous Lactate and Pyruvate Differences in Various Structures: Man Arterio-Venous Postabsorptive Glucose Differences: Man Blood Lactate Venous Levels in Conditions of Rest, Exercise, and Hyperventilation: Man Arterio-Venous Lactate Differences in Conditions of Rest, Exercise, and Hyperventilation: Man Arterio-Venous Glucose Differences as Influenced by Alimentary Hyperglycemia: Man Effect of Temperature Change on Blood CO2 and O2 Pressures: Man, Dog (Line Charts) Temperature and pH vs Serum pK': Man, Dog (Nomogram) H2CO3 Dissociation Constants: Man, Dog, Ox Blood CO2 Absorption as Function of CO2 Pressure: Man Blood CO2 Absorption as Function of CO2 Pressure: Animals Data for Constructing Blood O2 Dissociation Curves Part I: Man Part II: Mammals Part III: Birds Part III: Birds Part IV: Reptiles	53 54 56 57 58 59 59 60 61 62 63 64 65 66 66 66 66 66 66 66
56. 57. 58. 59. 60. 61. 62. 63. 64. 65. 66. 67. 68.	Part II: End- and Mean Capillary O2 Pressures Dynamics of Pulmonary Circulation: Man, Dog. IV. BLOOD RESPIRATORY CHARACTERISTICS Blood Gases, Variables, Factors, and Constants: Man Arterial and Venous Blood Gas Comparisons: Man, Adult and Newborn Arterio-Venous O2 and CO2 Differences: Man, Dog, Monkey Arterio-Venous Lactate and Pyruvate Differences in Various Structures: Man Arterio-Venous Postabsorptive Glucose Differences: Man Blood Lactate Venous Levels in Conditions of Rest, Exercise, and Hyperventilation: Man Arterio-Venous Lactate Differences in Conditions of Rest, Exercise, and Hyperventilation: Man Arterio-Venous Glucose Differences as Influenced by Alimentary Hyperglycemia: Man Effect of Temperature Change on Blood CO2 and O2 Pressures: Man, Dog (Line Charts) Temperature and pH vs Serum pK': Man, Dog (Nomogram) H2CO3 Dissociation Constants: Man, Dog, Ox Blood CO2 Absorption as Function of CO2 Pressure: Man Blood CO2 Absorption as Function of CO2 Pressure: Animals Data for Constructing Blood O2 Dissociation Curves Part I: Man Part II: Man Part III: Birds Part III: Birds Part IV: Reptiles Part V: Amphibians	533 544 566 577 588 599 599 600 611 622 633 644 655 666 668 668 699
56. 57. 58. 59. 60. 61. 62. 63. 64. 65. 66. 67. 68.	Part II: End- and Mean Capillary O2 Pressures Dynamics of Pulmonary Circulation: Man, Dog. IV. BLOOD RESPIRATORY CHARACTERISTICS Blood Gases, Variables, Factors, and Constants: Man Arterial and Venous Blood Gas Comparisons: Man, Adult and Newborn Arterio-Venous O2 and CO2 Differences: Man, Dog, Monkey Arterio-Venous Lactate and Pyruvate Differences in Various Structures: Man Arterio-Venous Postabsorptive Glucose Differences: Man Blood Lactate Venous Levels in Conditions of Rest, Exercise, and Hyperventilation: Man Arterio-Venous Lactate Differences in Conditions of Rest, Exercise, and Hyperventilation: Man Arterio-Venous Glucose Differences as Influenced by Alimentary Hyperglycemia: Man Effect of Temperature Change on Blood CO2 and O2 Pressures: Man, Dog (Line Charts) Temperature and pH vs Serum pK': Man, Dog (Nomogram) H2CO3 Dissociation Constants: Man, Dog, Ox Blood CO2 Absorption as Function of CO2 Pressure: Man Blood CO2 Absorption as Function of CO2 Pressure: Animals Data for Constructing Blood O2 Dissociation Curves Part II: Man Part II: Mammals Part III: Birds Part IV: Reptiles Part VV: Amphibians Part VV: Fish	533 544 556 577 588 599 599 600 611 622 633 644 655 666 666 666 668 696 696 69
56. 57. 58. 59. 60. 61. 62. 63. 64. 65. 66. 67. 68. 69.	Part II: End- and Mean Capillary O2 Pressures Dynamics of Pulmonary Circulation: Man, Dog. IV. BLOOD RESPIRATORY CHARACTERISTICS Blood Gases, Variables, Factors, and Constants: Man Arterial and Venous Blood Gas Comparisons: Man, Adult and Newborn Arterio-Venous O2 and CO2 Differences: Man, Dog, Monkey Arterio-Venous Lactate and Pyruvate Differences in Various Structures: Man Arterio-Venous Postabsorptive Glucose Differences: Man Blood Lactate Venous Levels in Conditions of Rest, Exercise, and Hyperventilation: Man Arterio-Venous Lactate Differences in Conditions of Rest, Exercise, and Hyperventilation: Man Arterio-Venous Glucose Differences as Influenced by Alimentary Hyperglycemia: Man Effect of Temperature Change on Blood CO2 and O2 Pressures: Man, Dog (Line Charts) Temperature and pH vs Serum pK': Man, Dog (Nomogram) H2CO3 Dissociation Constants: Man, Dog, Ox Blood CO2 Absorption as Function of CO2 Pressure: Man Blood CO2 Absorption as Function of CO2 Pressure: Animals Data for Constructing Blood O2 Dissociation Curves Part I: Man Part II: Mammals Part III: Birds Part IV: Reptiles Part V: Amphibians Part VI: Fish Part VII: Invertebrates	53 54 56 57 58 59 59 60 61 62 63 63 64 65 66 66 66 66 68 68 69 70
56. 57. 58. 59. 60. 61. 62. 63. 64. 65. 66. 67. 68. 69.	Part II: End- and Mean Capillary O2 Pressures. Dynamics of Pulmonary Circulation: Man, Dog. IV. BLOOD RESPIRATORY CHARACTERISTICS Blood Gases, Variables, Factors, and Constants: Man Arterial and Venous Blood Gas Comparisons: Man, Adult and Newborn. Arterio-Venous O2 and CO2 Differences: Man, Dog, Monkey Arterio-Venous Lactate and Pyruvate Differences in Various Structures: Man . Arterio-Venous Postabsorptive Glucose Differences: Man Blood Lactate Venous Levels in Conditions of Rest, Exercise, and Hyperventilation: Man Arterio-Venous Lactate Differences in Conditions of Rest, Exercise, and Hyperventilation: Man Arterio-Venous Glucose Differences as Influenced by Alimentary Hyperglycemia: Man Effect of Temperature Change on Blood CO2 and O2 Pressures: Man, Dog (Line Charts) Temperature and pH vs Serum pK': Man, Dog (Nomogram) H2CO3 Dissociation Constants: Man, Dog, Ox Blood CO2 Absorption as Function of CO2 Pressure: Man Blood CO2 Absorption as Function of CO2 Pressure: Animals Data for Constructing Blood O2 Dissociation Curves Part II: Man Part III: Mammals Part III: Birds Part IV: Reptiles Part V: Amphibians Part V: Fish Part VI: Fish Part VII: Invertebrates Blood O2 Dissociation Line Charts: Man	53 54 56 57 58 59 59 60 61 62 63 64 65 66 66 66 66 68 69 70 72
56. 57. 58. 59. 60. 61. 62. 63. 64. 65. 66. 67. 68. 69.	Part II: End- and Mean Capillary O2 Pressures. Dynamics of Pulmonary Circulation: Man, Dog. IV. BLOOD RESPIRATORY CHARACTERISTICS Blood Gases, Variables, Factors, and Constants: Man Arterial and Venous Blood Gas Comparisons: Man, Adult and Newborn. Arterio-Venous O2 and CO2 Differences: Man, Dog, Monkey Arterio-Venous Lactate and Pyruvate Differences in Various Structures: Man Arterio-Venous Postabsorptive Glucose Differences: Man Blood Lactate Venous LeveIs in Conditions of Rest, Exercise, and Hyperventilation: Man Arterio-Venous Lactate Differences in Conditions of Rest, Exercise, and Hyperventilation: Man Arterio-Venous Glucose Differences as Influenced by Alimentary Hyperglycemia: Man Effect of Temperature Change on Blood CO2 and O2 Pressures: Man, Dog (Line Charts) Temperature and pH vs Serum pK': Man, Dog (Nomogram) H2CO3 Dissociation Constants: Man, Dog, Ox Blood CO2 Absorption as Function of CO2 Pressure: Man Blood CO2 Absorption as Function of CO2 Pressure: Animals Data for Constructing Blood O2 Dissociation Curves Part II: Man Part III: Birds Part VI: Man Part IV: Reptiles Part V: Amphibians Part V: Amphibians Part V: Fish Part VII: Invertebrates Blood O2 Dissociation Curves: Man Blood O2 Dissociation Curves: Man Blood O2 Dissociation Curves: Man	53 54 56 57 58 59 59 60 61 62 63 63 64 65 66 66 66 66 68 69 70 72 74
56. 57. 58. 59. 60. 61. 62. 63. 64. 65. 66. 67. 68. 69.	Part II: End- and Mean Capillary O2 Pressures. Dynamics of Pulmonary Circulation: Man, Dog. IV. BLOOD RESPIRATORY CHARACTERISTICS Blood Gases, Variables, Factors, and Constants: Man Arterial and Venous Blood Gas Comparisons: Man, Adult and Newborn. Arterio-Venous O2 and CO2 Differences: Man, Dog, Monkey Arterio-Venous Lactate and Pyruvate Differences in Various Structures: Man . Arterio-Venous Postabsorptive Glucose Differences: Man Blood Lactate Venous Levels in Conditions of Rest, Exercise, and Hyperventilation: Man Arterio-Venous Lactate Differences in Conditions of Rest, Exercise, and Hyperventilation: Man Arterio-Venous Glucose Differences as Influenced by Alimentary Hyperglycemia: Man Effect of Temperature Change on Blood CO2 and O2 Pressures: Man, Dog (Line Charts) Temperature and pH vs Serum pK': Man, Dog (Nomogram) H2CO3 Dissociation Constants: Man, Dog, Ox Blood CO2 Absorption as Function of CO2 Pressure: Man Blood CO2 Absorption as Function of CO2 Pressure: Animals Data for Constructing Blood O2 Dissociation Curves Part II: Man Part III: Mammals Part III: Birds Part IV: Reptiles Part V: Amphibians Part V: Fish Part VI: Fish Part VII: Invertebrates Blood O2 Dissociation Line Charts: Man	53 54 56 57 58 59 59 60 61 62 63 64 65 66 66 66 66 68 69 70 72

72.	Blood O ₂ Dissociation Curves: Mammals
	Part I: Methods of Observation
	Part II: Man
	Part III: Carnivores
	Part IV: Rodents
	Part V: Ungulates
	Part VI: Cetacean
	O2 Capacity of Umbilical Vein Blood at Various Stages of Pregnancy: Man 82
	Oz Saturation in Blood of Umbilical Vessels, Normal and Difficult Labor: Man 82
75.	O ₂ Pressure Gradient between Fetal and Maternal Blood: Man 83
	O ₂ Dissociation Relationships of Fetal and Maternal Blood: Man, Cow, Sheep 83
77.	O ₂ Dissociation Curves for Fetal Blood: Mammals
	Part I: Methods of Observation
	Part II: Man 85
	Part III: Cow, Goat, Rabbit, Sheep
78.	Acid-Base Balance of Blood: Man 86
	Part I: Constants, Factors, and Formulas
	Part II: Arterial Blood
	Part III: Venous Blood
	Part IV: Cutaneous Blood
	Part V: Summary: Blood, Adults 90
	Part VI: Physiological Variability
79.	Acid-Base Balance of Blood: Vertebrates
80.	Acid-Base Imbalance of Blood: Man 95
	Part I: Definitions
	Part II: Normal Ionic Patterns, Arterial Blood (Diagram)
	Part III: Classification
	Part IV: Pathways (Diagram)
	V. ERYTHROCYTES AND RESPIRATORY PIGMENTS
81.	Erythrocyte and Hemoglobin Values: Man
82.	Erythrocyte and Hemoglobin Values in Pregnancy and Postpartum: Man 100
83.	Erythrocyte and Hemoglobin Values in Fetus, Newborn, and Adult Female:
	Mammals
84.	Erythrocyte and Hemoglobin Values from Birth to Maturity: Man 102
85.	Erythrocyte O ₂ Consumption: Vertebrates
86.	Erythrocyte and Hemoglobin Values: Vertebrates
87.	Erythrocyte and Hemoglobin Values at Sea Level and Altitude: Vertebrates 106
88.	Erythrocyte and Hemoglobin Values at Sea Level and Altitude: Man 107
89.	Physical, Chemical, and Biological Properties: Pyrrole Pigments and Related
	Compounds
	Part 1: Porphyrins
	Part II: Iron Porphyrins
	Part III: Bilirubinoids and Related Dipyrryl Compounds
90.	Physical, Chemical, and Biological Properties: Cytochromes of Animals and
	Higher Plants
91.	Cytochrome System of Mitochondria (Schematic Diagram)
92.	Physical, Chemical, and Biological Properties: Bacterial Cytochromes 128
	Part 1: Absorption Spectra of Cytochromes in Intact Bacteria
	Part II: Properties of Soluble Bacterial Cytochromes
	VI. MECHANICS OF BREATHING
0.3	Made at Parish Co. 14 (CIVI)
93.	Maximal Breathing Capacity: Children and Adolescents
	Part I: Vs Age
	Part II: Vs Standing Height
	Part III: Vs Weight
	Part IV: Vs Surface Area
	Maximal Breathing Capacity: Man
95.	Mechanics of Breathing
	Part 1: Slow Pressure-Volume Curves: Cat
	Part II: Intrapulmonary Pressures at Various Lung Volumes: Man 134
	Part III: Pressure-Volume Diagram of Chest and Lungs: Man
	Part IV: Intrapleural Pressures: Man
	Part V: Compliance of Lung-Thorax System: Mammals
	Part VI: Relaxation Pressure Curve: Man
	Part VII: Pulmonary Compliance: Man
	Part VIII: Pulmonary Compliance vs Vital Capacity: Man
	Part IX: Pulmonary Compliance: Vertebrates
	Part X: Clinical Range of Pulmonary Compliance: Man

96.	Mean Respiratory Air Flow Characteristics: Man
97.	Respiratory Reflexes: Man
	VII. ARTIFICIAL RESPIRATION
	VII. ARTIFICIAL RESPIRATION
98.	Required Tidal Volume vs Body Weight and Breathing Frequency: Man (Nomogram). 140
99.	Mean Tidal Volume for Various Techniques of Artificial Respiration: Man 141
	Part I: Apneic Infants
	Part II: Apneic Adults
100.	Ventilatory Characteristics of Various Respirators and Techniques of Artificial
	Respiration: Man
	VIII. EFFECTS OF EXERCISE
	VIII. EFFECTS OF EXERCISE
101.	Ventilation and Gas Exchange vs Exercise and Recovery: Man
102.	Effects of Exercise on Pulmonary Function and Heart Rate: Man 144
	Part I: Males, 4-33 Years
	Part II: Males, 20-66 Years
	Part III: Females, 4-25 Years
103.	Effect of Various Work Loads on Pulmonary Function and Heart Rate: Man 145
104.	Summary, Effects of Exercise on Pulmonary Function and Heart Rate: Men at
	Various Ages (Graphs)
105	
	Energy Cost of Progression: Man
106.	O2 Requirement at Various Running and Walking Speeds: Men (Graph) 150
	IX. EFFECTS OF VARIOUS CONCENTRATIONS OF INHALED GASES
	M. Eli Leib di Villioob Concentinitions di Ministra
	Effect of Breathing N2 on Respiratory Rate, Tidal and Minute Volumes: Man 151
108.	Effect of Breathing N2 on Respiratory Rate and Minute Volume: Dog 151
	Pulmonary Function: Residents and Newcomers at High Altitudes 151
	Blood Gases: Residents and Newcomers at High Altitudes
111.	Effect of Reduced Barometric Pressures on Pulmonary Function and Heart
	Rate: Man
112.	Effect of Reduced Barometric Pressures and CO2 Inhalation on Pulmonary
	Function and Heart Rate: Man
113	Effect of Reduced Barometric Pressures and Exercise on Pulmonary Function
115.	
	and Heart Rate: Man
114.	Effect of Acclimatization to Reduced Barometric Pressures on Pulmonary
	Function: Man
115	Effect of Reduced Barometric Pressures and Exercise on Ventilation: Man 156
	Effect of Acute Exposure to 2.43% O ₂ on Pulmonary Function: Dog 157
	Effect of Progressive Anoxia on Pulmonary Function: Dog 157
118.	Effect of Hyperventilation on Blood CO2 Carriage: Man
119.	Effect of Combined Anoxia and Hypercapnia on Alveolar CO2 and O2: Man 158
	Part I: Tabular
	Part II: Graphic
120.	Effects of Breathing CO ₂
	Part I: On Ventilation: Mammals
	Part II: On Blood Gases and Alveolar CO2 Threshold: Man 163
	Part III: On Other Respiratory Variables: Mammals
121	
121.	Effects of Breathing O ₂
	Part I: On Ventilation: Mammals
	Part II: On Other Respiratory Variables: Man
122.	Pulmonary N2 Washout: Man
	Part I: Tabular
	Part II: Graphic
123.	Effect of Breathing O2 at 3-4 Atmospheres on Blood Gases: Man
124.	Effect of Breathing Air at One Atmosphere and O2 at 3-3.92 Atmospheres on
	Blood Gases: Dog
125	Effect of Breathing O ₂ at 3-4 Atmospheres on Respiratory Rate, Pulse Rate,
165.	
	and Blood Pressure: Man
126.	Effect of Breathing Air, 6% O ₂ in N ₂ , and 100% O ₂ at 3.5 Atmospheres on
	Respiratory Exchange: Man
127	Effect of Rapid Decompression from a High Pressure Atmosphere on Blood
101.	
	Gases: Dog
128.	Effect of Decompression in 5 Seconds from High Pressure Atmospheres on
	Respiratory Rate and Blood Pressure: Dog
129.	Effect of Decompression and Recompression on Blood Pressure, Respiratory
	Rate, and Pulse Rate: Dog (Graphs)
1.20	
130.	Effect of Decompression on Internal Pressures: Dog 177

X. EFFECTS OF DRUGS

131.	Effect of Drugs on Pulmonary Function: Man and Laboratory Animais	. 178
132.	Respiratory Action of Drugs Influencing Afferent End-Organs: Cat, Dog, Rabbit	. 200
133.	Direct Action of Drugs on the Bronchi	. 202
134.	Sympathomimetic Amines and Related Drugs Acting on the Bronchi	. 215
135.	Antagonists and Potentiators of Drugs Acting on the Bronchi	. 226
	Part I: Parasympatholytics and Local Anesthetics	. 226
	Part II: Anticholinesterases	. 230
	Part III: Antihistamines	. 231
	Part IV: Ergot Derivatives	. 239
	Part V: 2-Haloethylamines	. 240
	Part VI: Triazines	. 242
	Part VII: Esters	. 244
	Part VIII: Miscellaneous Compounds	
136.	pA _X Values for Antagonists of Drugs Acting on the Bronchi	. 249
137.	Aerosols, Gases, and Vapors Acting on the Bronchi	. 250
	Part I: Direct Action	. 250
	Part II: Sympathomimetic Amines	. 251
	Part III: Antagonists	. 252
	XI. OTHER FACTORS AFFECTING RESPIRATION	
	M. OTHER PROPERTY AND ALL ESTIMATION	
138.	Effects of External Ionizing Radiation on the Respiratory System: Mammals	. 253
139.	Effects of Internal Radiation Emitters on the Respiratory System: Mammals	. 259
140.	Summary, Factors Affecting Composition of Respired Air: Man	. 263
	Part I: Voluntary Control	. 263
	Part II: Exercise	. 263
	Part III: Heat	
	Part IV: CO2 Inhalation	. 265
	Part V: O _Z Inhalation	. 265
	Part VI: Added Resistance	
	Part VII: Added Dead Space	
	Part VIII: Acidosis	
	Part IX: Alkalosis	. 267
	Part X: Inhaled Phosgene Retention	. 267
141.	Effects of Pulmonary Fibrosis on Pulmonary Function: Man	. 268
142.	Comparative Pathology of the Pneumoconioses	. 270
143.	Physiologic Classification of Hypoxias	. 272
144.	Physiology of Dyspnea	
	Part I: General Causes	. 274
	Part II: Mechanisms Involved	. 274
	XII. O2 CONSUMPTION: ANIMAL ORGANISMS	
145.	O ₂ Consumption: Protozoa	275
146.	O ₂ Consumption: Helminths	276
147.	O ₂ Consumption: Invertebrates	278
148.	O2 Consumption: Vertebrates Other than Mammals	
		281
149.	O ₂ Consumption: Mammals	. 283
149.		. 283
149. 150.	O2 Consumption: Mammals	. 283 . 285
149. 150.	O2 Consumption: Mammals	. 283 . 285
149. 150.	O2 Consumption: Mammals	. 283 . 285
149. 150.	O2 Consumption: Mammals	. 283 . 285 . 286
149. 150.	O2 Consumption: Mammals	. 283 . 285 . 286 . 286 . 287
149. 150.	O2 Consumption: Mammals	. 283 . 285 . 286 . 286 . 287 . 288
149. 150.	O2 Consumption: Mammals	. 283 . 285 . 286 . 286 . 287 . 288 . 290
149. 150.	O2 Consumption: Mammals	. 283 . 285 . 286 . 286 . 287 . 288 . 290 . 291
149. 150.	O2 Consumption: Mammals Respiratory Exchange Characteristics: Vertebrates XIII. RESPIRATION: ANIMAL TISSUES O2 Consumption: Animal Tissues Part I: Blood-Formed Elements, Blood Vessels, Lymph Nodes, Marrow, Spleen, Thymus Part II: Epithelium and Associated Tissues Part III: Gland Tissues Part IV: Liver Part V: Lung Part VI: Muscle Tissues	. 283 . 285 . 286 . 286 . 287 . 288 . 290 . 291 . 291
149. 150.	O2 Consumption: Mammals Respiratory Exchange Characteristics: Vertebrates. XIII. RESPIRATION: ANIMAL TISSUES O2 Consumption: Animal Tissues. Part I: Blood-Formed Elements, Blood Vessels, Lymph Nodes, Marrow, Spleen, Thymus Part II: Epithelium and Associated Tissues Part III: Gland Tissues. Part IV: Liver Part V: Liver Part V: Lung Part VI: Muscle Tissues Part VII: Neoplasms	. 283 . 285 . 286 . 286 . 287 . 288 . 290 . 291 . 291 . 293
149. 150.	O2 Consumption: Mammals Respiratory Exchange Characteristics: Vertebrates. XIII. RESPIRATION: ANIMAL TISSUES O2 Consumption: Animal Tissues. Part I: Blood-Formed Elements, Blood Vessels, Lymph Nodes, Marrow, Spleen, Thymus Part II: Epithelium and Associated Tissues Part III: Gland Tissues. Part IV: Liver Part V: Liver Part V: Lung Part VI: Muscle Tissues Part VII: Neoplasms Part VIII: Nerve Tissues.	. 283 . 285 . 286 . 286 . 287 . 288 . 290 . 291 . 291 . 293 . 294
149. 150.	O2 Consumption: Mammals Respiratory Exchange Characteristics: Vertebrates. XIII. RESPIRATION: ANIMAL TISSUES O2 Consumption: Animal Tissues. Part I: Blood-Formed Elements, Blood Vessels, Lymph Nodes, Marrow, Spleen, Thymus Part II: Epithelium and Associated Tissues Part III: Gland Tissues. Part IV: Liver Part V: Liver Part V: Lung Part VI: Muscle Tissues Part VII: Neoplasms	. 283 . 285 . 286 . 286 . 287 . 288 . 290 . 291 . 291 . 293 . 294 . 297

152.	O ₂ Consumption: Fetal Tissues
	Part I: Sheep
	Part II: Rat
	Part III: Guinea Pig
	Part IV: Chick
	Part V: Black Snake (Coluber constrictor)
	Part VI: Frog (Rana fusca)
	Part VII: Frog (Rana temporaria)
	Part VIII: Grass or Leopard Frog (Rana pipiens)
	Part IX: Pacific Coast Newt, or "Water Dog" (Triturus torosus) 305
	Part X: Spotted and Tiger Salamanders (Amblystoma punctatum, A. tigrinum) . 305
	Part XI: Spotted Salamander (Amblystoma maculatum) 306
	· · · · · · · · · · · · · · · · · · ·
	Part XII: Mexican Salamander (Amblystoma mexicanum)
	Part XIII: Atlantic Salmon (Salmo salar)
	Part XIV: Common Killifish (Fundulus heteroclitus)
153.	Effect of Potassium Ion Concentration on O ₂ Consumption: Animal Tissues 308
	Part I: Guinea Pig Liver and Rabbit Kidney Cortex
	Part II: Rabbit Kidney Cortex, Various Temperatures 308
	Part III: Rat Diaphragm, Various pH Levels
	Part IV: Rat Brain, Various Substrates
	Part V: Rat Cerebral Cortex, Various Substrates
	Part VI: Guinea Pig Cerebral Cortex, Various Relative Concentrations of
	Potassium and Sodium
	Part VII: Rat and Rabbit, Various Tissues
	Part VIII: Frog Sciatic Nerve
	Part IX: Crab Limb Nerve
154.	Survival and Revival under Conditions of Anoxia or Arrested Circulation: Animal
	Tissues
1.55	
155.	Cerebral Blood Flow, O ₂ Consumption, and Vascular Resistance: Man, Cat,
	Monkey
156.	Cerebral Respiration: Dog
	Part I: Cerebral vs Blood Glucose
	Part II: Cerebral Constituents vs Blood Gases
	Part III: Cerebral Metabolism in Anoxia
	XIV. RESPIRATION: PLANTS
157	Respiration Rates: Bacteria
151.	Description Rates. Alrea
	Respiration Rates: Algae
	Respiration Rates: Lichens
160.	Respiration Rates: Fungi
	Respiration Rates: Liverworts and Mosses
	Respiration Rates: Horsetails and Ferns
	Respiration Rates: Higher Plants, Seeds
	Respiration Rates: Higher Plants, Roots
165.	Respiration Rates: Higher Plants, Stems
	Respiration Rates: Higher Plants, Leaves
	Respiration Rates: Higher Plants, Flowers
	Respiration Rates: Higher Plants, Fruits
169.	Respiration Rates: Higher Plants, Whole Organisms
APPENDIXES	
*	Constants for Hea in Dady Surface Area Formula: Mammals
	Constants for Use in Body Surface Area Formula: Mammals
II.	Body Surface Area: Infants and Young Children (Nomogram)
II. III.	Body Surface Area: Infants and Young Children (Nomogram)
II. III.	Body Surface Area: Infants and Young Children (Nomogram)
II. III. IV.	Body Surface Area: Infants and Young Children (Nomogram)
II. III. IV. V.	Body Surface Area: Infants and Young Children (Nomogram)
II. III. IV. V.	Body Surface Area: Infants and Young Children (Nomogram)
II. III. IV. V.	Body Surface Area: Infants and Young Children (Nomogram)
II. III. IV. V. V1.	Body Surface Area: Infants and Young Children (Nomogram)
II. III. IV. V. V1.	Body Surface Area: Infants and Young Children (Nomogram)

Contributors and Reviewers

Abajian, John, Jr. Abramson, David 1. Adler, Harry F. Aebi, H. E. Alexander, James K. Allen, Paul J. Altland, Paul D. Altschule, Mark D. Alvis, Harry J. Armstrong, Bruce W. Armstrong, J. McD. Asmussen, Erling Assali, N. S. Åstrand, P.-O. Attinger, Ernst O. Aviado, Domingo M., Jr.

Babers, Frank H. Baldwin, Eleanor deF. Barach, Alvan L. Barker, S. B. Barron, Donald H. Bartels, H. Barth, L. G. Bateman, J. B. Bates, D. V. Beerstecher, Ernest, Jr. Beevers, Harry Behnke, A. R. Benedict, H. M. Berry, L. J. Bethell, Frank H. Bing, Richard J. Bishop, Jack G. Black, Edgar C. Black, Virginia S. Blakemore, William S. Blinks, Lawrence R. Bliss, Dorothy E. Boving, Bent G. Boyd, Edith Boyden, Edward A. Boyle, Frank P. Brecher, George Brink, Frank *Brody, Samuel Brown, Ethan Allan Bruce, Robert A.

Cantino, Edward C.
Carlsen, Elizabeth
Carter, Earl T.
Carton, Robert W.
Cassin, S. C.
Cecchini, L. P.
Chance, Britton
Chang, Shih Lu
Chapin, John L.
Chapman, H. W.
*Charr, Robert
Cherry, R. B.
Chesley, Leon C.
Chu, Florence C. H.

Clark, Hugh
Clements, John A.
Cohn, Jerome E.
Collier, H. B.
Comroe, Julius H., Jr.
Conner, Eugene H.
Cournand, Andre
Craig, F. N.
Cronkite, Eugene P.
Cullumbine, H.
Currens, James H.

Dacie, J. V. Dale, W. Andrew Darby, Richard T. Darling, Louise Darrow, Daniel C. Davies, Dean F. Dawber, Thomas R. Dawes, G. S. Dayman, Howard G. Deavers, Stephanie DeMarsh, Q. B. Denstedt, Orville F. Diggs, Lemuel W. Dill, D. B. Dische, Zacharias Dole, Vincent P. Douglas, C. G. Drabkin, David L. Dripps, Robert D. DuBois, Arthur B. Dudley, Horace C. Duffner, G. J. Dukes, H. H. Dwyer, J. V.

Ebaugh, Franklin G., Jr. Ebert, Richard V. Eckenhoff, James E. Edwards, J. Elam, James O. Elisberg, Edward l. Elliott, K. A. C.

Fabian, F. W. Farhi, Leon E. Fenn, Wallace O. Ferguson, J. K. W. Ferguson, John H. Ferris, Benjamin G., Jr. Fidler, J. C. Filley, Giles F. Finch, Clement A. Fishman, Alfred P. Fitzgerald, Laurence R. Flemister, Launce J. Flemister, Sarah C. Florkin, Marcel Foldes, Francis F. Forbes, William Hathaway Foreman, Charles W.

Forster, Robert E.
Forward, D. F.
Fox, R. T.
Frank, N. R.
Frenkel, Albert W.
Fritts, Harry W., Jr.
Fry, Donald L.

Gaensler, Edward A. Gaffron, H. Galston, Morton Gemmill, Chalmers L. Glaser, Kurt Glicksman, Arvin S. Goldstein, Merrill M. Gordon, Alvin Gordon, Archer S. Gordon, Helmut A. Gorlin, Richard Graham, R. C. B. Gram, H. C. Granick, S. Grayson, J. Greig, Margaret E. Griffin, E. Harrison Grob, David Gross, Paul Guest, George M. Guest, M. Mason Gurdjian, E. S. Gutman, Alexander B.

Haber, Fritz Handley, Carroll A. Harden, K. Albert Hart, J. Sanford Hastings, A. Baird Hawkins, D. F. Hegnauer, A. H. Heinle, Robert W. Helm, Robert A. Hemingway, Allan Henderson, James H. M. Henderson, Lavaniel L. Henry, Franklin M. Hernandez, Thomas Heukelekian, H. Hickam, John B. Hickman, Cleve, Jr. Himwich, Harold E. Hirschboeck, John S. Hoffman, William S. Holaday, Duncan A. Horecker, Bernard L. Howard, C. C. Huber, John Franklin Huckabee, William E. Huggins, Russell A. Hunter, F. R.

lngram, Marylou

^{*}Deceased.

Irvin, J. Logan Isaacs, Raphael Ivey, Mack Ivy, A. C.

Jackson, Chevalier L. Jandorf, Bernard J. Jensen, R. Joffe, Milton H. Jones, Galen E.

Kaiser, Irwin H. Kaltreider, Nolan L. Kelly, Sally Kety, Seymour S. Keynes, R. D. Kibler, H. H. King, E. J. Kirk, John Esben Kisch, Bruno Kleiber, Max Klein, Richard M. Knowles, John H. Koelle, George B. Kollros, Jerry J. Kough, Robert H. Krebs, H. A. Krogman, Wilton M.

Lambertsen, Christian J.
Lanphier, E. H.
Larks, S.
Latimer, Homer B.
Lees, William M.
Lehninger, A. L.
Lemberg, Rudolf
Levitt, Marvin
Lewis, Robert
Loew, Earl R.
Lu, F. C.
Lucas, Miriam Scott
Luft, Ulrich C.
Lynn, R. B.
Lyon, Charles J.

McCutcheon, F. Harold McGuire, Johnson Machlis, Leonard Mcllroy, Malcolm B. Mandels, Gabriel R. Marbarger, John P. Martin, C. J. *Mason, Edward C. Mayerson, H. S. Meister, Alton Mendlowitz, Milton Meyer, Marion P. Michaels, Rhoda M. Michaelson, S. Michel, Burlyn E. Mitchell, Roger S. Moog, Florence Morales, Daniel R.

Morehouse, Laurence E.
Morrison, Peter
Morrow, Paul E.
Morse, Minerva
Morton, R. K.
Murnaghan, M. F.
Musacchia, X. J.
Myers, Jack

Nahum, Louis H. Nesbitt, Robert E. L., Jr. Nims, Robert G.

Oberholzer, R.
*Opitz, Erich
Ordway, Nelson K.
Ornstein, George G.
Osgood, Edwin E.
Otis, Arthur B.

Paintal, A. S.
Patterson, John L., Jr.
Pearson, Oliver P.
Peel, A. A. Fitzgerald
Penrod, Kenneth E.
Petering, H. G.
Peterson, Lysle H.
Petter, Charles K.
Platner, Wesley S.
Ponder, Eric
Price, Henry L.

Quastel, J. H. Quiring, D. P.

Radford, Edward P., Jr. Rahn, Hermann Randall, Lowell O. Ransom, Vaughn R. Raper, John R. Rayford, A. A. Redfield, Alfred C. Reyniers, James A. Reynolds, A. K. Richards, Dickinson W. Richardson, Alfred W. Riley, Richard L. Riser, William H., Jr. Robertson, R. N. Robinson, Sid Root, Raymond W. Ross, B. B. Rossier, P. H. Rossi-Fanelli, A. Rossiter, R. J. Roth, Laurence W.

Sabine, Jean C. Safar, Peter Samet, Philip Sander, Oscar A. Sanghvi, L. M. Sawaya, Paulo Schaefer, Karl Ernst Scheinberg, Peritz Schmidt, Carl F. Scholander, P. F. Scholefield, P. G. Schreider, Eugène Scott, Charles C. Segal, Maurice S. Seligson, David Selzer, Arthur Sendroy, Julius, Jr. Sevag, M. G. Severinghaus, John W. Shepard, Richard H. Shephard, Roy J. Shock, Nathan W. Siebens, Arthur A. Siker, Ephraim S. Silverman, Milton Singer, Richard B. Sizer, Irwin W. Skinner, Dorothy Smith, Arthur H. Smith, Clement A. Smith, Lucile Snider, Gordon L. Sonnenschein, Ralph R. Spangler, S. Spencer, William A. Sprague, Patricia Ivy Spratt, Nelson T., Jr. Stannard, J. N. Stickney, J. Clifford Stohlman, Frederick, Jr. Stroud, Robert C. Sturkie, Paul D. Suckling, E. E. Sugioka, Kenneth Suskind, Mitzi Sussman, Alfred S. Swank, Roy L. Swann, H. G.

Talbot, Nathan B.
Tomashefski, Joseph F.
Towers, Bernard
Turino, Gerard M.
Turner, John S.

*Vallance, K. B.
Vandam, Leroy D.
Vander, J.
Van Harreveld, A.
Van Slyke, Donald D.
Vernberg, F. John
Vernberg, Winona B.
von Brand, Theodor
Vorwald, Arthur J.

Wagenknecht, Austin C. Warren, James V. Washburn, Alfred H. Wechsberg, P. H. Wechsler, Richard

^{*}Deceased

Wells, Lemen J.
Werner, Gerhard
Wesolowski, Sigmund A.
Whittenberger, James L.
Wichterman, Ralph
Widdicombe, J. G.
Williams, M. Henry, Jr.
Wilson, May G.

Wilson, Russell H.
Windle, William F.
Winterstein, Hans
Wintrobe, M. M.
Witschi, Emil
Wittich, F. W.
Wolf, Stewart
Wood, Earl H.

Woolf, Colin R. Wright, George W.

Yeoman, M. M. Young, l. Maureen

Zierler, Kenneth L. ZoBell, Claude E.

Introduction

This Handbook has been prepared for the purpose of making readily available in a single, comprehensive compilation useful data on respiration and associated phenomena. To this end, information has been organized for ready reference in the form of tables, graphs, nomograms, schematic diagrams, and line charts. Contents of the volume have been made available and authenticated by some 400 leading investigators in the fields of biology and medicine. The extended review process to which all tables have been subjected was designed to eliminate, insofar as possible, both errors and such strongly controversial or questionable material as tends naturally to inhere in a work of this scope and complexity.

Frequently, a group of tables is preceded by an explanatory headnote designed to serve as an introduction to the subject matter, or to account for inconsistencies and inclusion of controversial material. Usually, individual tables are supplied with a short headnote containing such essential information as definitions; units, methods, and conditions of measurement; conversion factors; abbreviations; and estimate of the range of variation. Following each presentation there appears a list of contributors of the material, together with bibliographic references. In the latter, abbreviations conform wherever possible to the LIST OF ABBREVIATIONS FOR SERIAL PUBLICATIONS, Fourth Series, Army Medical Library, Washington, D. C. (U. S. Government Printing Office, 1948), and the 1955 SUPPLEMENT thereto.

Technical and mechanical problems in the preparation of copy made impossible the use of standard symbols and abbreviations in respiratory physiology as recommended in FEDERATION PROCEEDINGS 9:602, 1950; the same limitations precluded the use of italics. The symbols <u>d</u> and <u>l</u> indicate, in terms of optical rotation, respectively dextro- and levorotatory; <u>p</u> and <u>l</u> are used for dextro and levo in the configurational sense for amino acids and carbohydrates or for the stereoisomeric forms of an organic substance.

The number of subjects and observations has been given whenever such information was available, provided only that space permitted. There may on occasion appear between two tables differences in values for the same specifications, and there may be found certain inconsistencies in nomenclature and occasional overlapping of coverage. These represent not oversights, nor failure to choose between alternatives; on the contrary, they result from the deliberate intention of the research staff to respect the judgment and preferences of individual contributors. On the other hand, with only the rarest of exception, each presentation is itself internally consistent.

Values are generally presented as a mean and the upper and lower limit of the 95% range. Letter designations (a, b, c, d) identify types of ranges:

- (a) By the method of greatest accuracy, the 95% range is obtained by fitting a recognized type of frequency curve to a group of measured values and excluding the extreme 2.5% of area under the curve at each end (see sketch). Estimate is made by this procedure only when the group of values is relatively large.
- (b) By a less accurate method, the 95% range is estimated by a simple statistical calculation, assuming a normal distribution and using the standard deviation. This estimate is used when the group of values is too small for curve fitting, as is usually the case.
- (c) A third and still less accurate procedure for estimate of the 95% range is simply to take as range limits the highest value and lowest value of the reported sample group of measurements. It underestimates the 95% range for small samples (3 or 4 values) and overestimates for larger sample sizes, but may be used in preference to the preceding method when the sample shows convincing evidence that the variable is asymmetrical in distribution.

(d) The upper and lower limits of the range of variation, as commonly encountered by an investigator experienced in measuring the quantity in question, constitute still another estimate of the 95% range. The trustworthiness of limits so placed should not be underestimated.

Although the data in each table are the best available at the time the table was prepared, it is recognized that all data are subject to revision as investigators improve techniques and make more measurements. The reader is invited to submit any values or ranges that he feels should be given consideration, and is particularly invited to add to the coverage of animal forms.

HANDBOOK of RESPIRATION

1. ABSOLUTE LUNG VOLUMES, DEFINITIONS AND CONVERSIONS: ATPS, BTPS, AND STPD CONDITIONS

Gas volume in the lung exists at Body Temperature and atmospheric Pressure and is completely Saturated with water vapor at body temperature--hence the designation BTPS.

However, once the gas has been blown into a measuring device such as a spirometer, the temperature will have dropped to the spirometer or Ambient Temperature; although the gas volume is still Saturated with water vapor at the lower ambient temperature the water vapor volume is reduced. The Pressure of the atmosphere is the same. This condition is designated ATPS.

Under average laboratory conditions (ATPS), the "true" lung volume (BTPS) will shrink, in response to the ambient temperature and barometric pressure, to perhaps 93%, as shown in the figure below. If this lung volume is then converted to conditions of Standard Temperature and Pressure with all water vapor removed (or Dry), this STPD value will be approximately 83% of the BTPS lung volume--sometimes even less in accordance with the barometric pressure (also as shown in the figure below).

It must also be borne in mind that lung volume measurements are often made on closed breathing circuits which contain a CO₂ absorber. Any volume expired into such a system will, of course, be automatically reduced by the percentage of CO₂ in the expired air; for a Vital Capacity obtained after full inspiration and before maximal expiration, this reduction may well be of the order of 2-3%. This discrepancy must be considered in making reference to "absolute volumes."

All lung volumes are normally recorded at ATPS conditions. Conversion to BTPS conditions which represent true or anatomical lung volume requires knowledge of room or spirometer temperature and approximate barometric pressure.

metric pressure.

True lung volume (BTPS) = lung volume at ATPS x $\frac{310}{273+t}$ x $\frac{P_B - pH_2O}{P_B - 47}$, where t = spirometer temperature in degrees C; P_B = barometric pressure in mm Hg; and pH₂O = vapor pressure of water at spirometer temperature t. 310 is absolute body temperature of 37°C, and 47 mm Hg is the vapor pressure of water at 37°C.

Contributor: Rahn, H.

2. FACTORS FOR CONVERSION OF GAS VOLUMES FROM ATPS TO BTPS CONDITIONS

ATPS = At Ambient Temperature and atmospheric Pressure, completely Saturated with water vapor. BTPS = At Body Temperature (37°C) and atmospheric Pressure, completely Saturated with water vapor. Atmospheric pressure is assumed to be standard (760 mm Hg). It is unnecessary to correct for small deviations from standard barometric pressure. For additional information on these concepts see Page 1.

	Factor to Convert When Gas With Water Vapor								
	Volume to 37°C	Temperature	Pressure						
	Saturated	(OC) is	(mm Hg) of						
	(A)	(B)	(C)						
1	1.102	20	17.5						
2	1.096	21	18.7						
3	1.091	22	19.8						
4	1.085	23	21.1						
5	1.080	24	22.4						
6	1.075	25	23.8						
7	1.068	26	25.2						
8	1.063	27	26.7						
9	1.057	28	28.3						
10	1.051	29	30.0						
11	1.045	30	31.8						
12	1.039	31	33.7						
13	1.032	32	35.7						
14	1.026	,33	37.7						
15	1.020	34	39.9						
16	1.014	35	42.2						
17	1.007	36	44.6						
18	1.000	37	47.0						

Reference: Comroe, J. H., Jr., "Methods in Medical Research," vol 2, pp 74-244, Chicago: The Year Book Publishers, Inc., 1950.

3. TEMPERATURE AT VARIOUS ALTITUDES

U. S. standard atmosphere.

	Alti	tude	Temperature				
	ft	km	°C	oF	οK		
	(A)	(B)	(C)	(D)	(E)		
1	0	0	15.0	59	288.0		
2	5,000	1.524	5.1	41.2	278.1		
3	10,000	3.049	-4.8	23.3	268.2		
4	15,000	4.573	~14.7	5.5	258.3		
5	20,000	6.098	-24.6	-12.3	248.4		
6	25,000	7.622	-34.5	-30.2	238.5		
7	30,000	9.147	-44.4 -48.0		228.6		
8	35,000	10,671	-54.3	-65.8	218.7		
9	40,000	12.196	-55.0	-67.0	218.0		
10	50,000	15.245	-55.0	-67.0	218.0		
11	60,000	18.294	-55.0	-67.0	218.0		
12	70,000	21.483	-55.0	-67.0	218.0		
13	80,000	24.392	-55.0	-67.0	218.0		
14	90,000	27.441	-55.0	-67.0	218.0		
15	100,000	30.490	-55.0	-67.0	218.0		
16	200,000	60.980	33.8	93.0	306.8		
17	300,000	91.470	-2.2	28.0	270.0		

Contributor: Haber, F.

References: [1] Willis, R. G., National Advisory Committee For Aeronautics, Tech. Rept. No. 147, 1922. [2] Diehl, W. S., National Advisory Committee For Aeronautics, Tech. Rept. No. 218, 1925. [3] Bromdracher, W. G., National Advisory Committee For Aeronautics, Tech. Rept. No. 538, 1935. [4] Warfield, C. N., National Advisory Committee For Aeronautics, Tech. Rept. No. 1235, Tech. Note 1200, 1947.

4. ALTITUDE VS ATMOSPHERIC PRESSURE, O2 PARTIAL PRESSURE, AND AIR DENSITY

	Altitude				Pres	Pressure			pOz	Density Weight		Density ⁴
	ft km		atm1	mm Hg	in. Hg	psi ²	millibar	Ratio ³	mm Hg	g/cu cm	lb/cu ft	Ratio
	(A)	(B)	(C)	(D)	(E)	(F)	(G)	(H)	(I)	(J)	(K)	(L)
1	0	0	1.000	760.0	29.92	14.70	1013.2	1.00	159.2	1.25×10^{-3}	0.07651	1.00
2	5,000	1.524	0.832	632.3	24.89	12.23	842.9	8.32 x 10 ⁻¹	132.5	1.08×10^{-3}		8.62×10^{-1}
3	10,000	3.049	0.688	522.9	20.59	10.11	697.1	6.88 x 10 ⁻¹	109.5	9.22×10^{-4}	0.05649	7.38 x 10 ⁻¹
4	15,000	4.573	0.564	428.6	16.87	8.288	571.4	5.64×10^{-1}	89.8	7.86×10^{-4}		6.29 x 10 ⁻¹
5	20,000	6.098	0.459	348.8	13.73	6.745	465.0	4.59×10^{-1}	73.1	6.66×10^{-4}		5.33 x 10 ⁻¹
6	25,000	7.622	0.371	282.0	11.10	5.452	375.9	3.71×10^{-1}	59.1	5.60×10^{-4}		4.48×10^{-1}
7	30,000	9.147	0.297	225.7	8.885	4.364	300.9	2.97×10^{-1}	47.3	4.67×10^{-4}		3.74×10^{-1}
8	35,000	10.671	0.235	178.6	7.031	3.453	238.1	2.35×10^{-1}	37.4	3.87×10^{-4}		3.10×10^{-1}
9	40,000	12.196	0.185	140.6	5.535	2.719	187.4	1.85×10^{-1}	29.4	3.06×10^{-4}	0.01872	2.45 x 10 ⁻¹
10	50,000	15.245	0.115	87.4	3.44	1.69	116.5	1.15 x 10 ⁻¹		1.90×10^{-4}		1.52×10^{-1}
11	60,000	18.294	0.071	54.1	2.13	1.05	72.1	7.12×10^{-2}	11.3	1.18 x 10-4	0.00720	9.41 x 10 ⁻²
12	70,000	21.483	0.044	33.6	1.32	0.65	44.8	4.42 x 10 ⁻²	7.0	7.30×10^{-5}		5.84×10^{-2}
13	80,000	24.392	0.027	20.8	0.82	0.40	27.8	2.74×10^{-2}	4.3	4.52 x 10 ⁻⁵	0.00277	3.62×10^{-2}
14	90,000	27.441	0.017	12.9	0.51	0.25	17.2	1.70×10^{-2}		2.80 x 10 ⁻⁵		2.24×10^{-2}
15	100,000	30.490	0.011	8.0	0.32	0.16	10.6	1.05×10^{-2}		1.74×10^{-5}		1.39×10^{-2}
16	200,000	60.980	3.15×10^{-4}	0.24	0.009	0.005	0.32	3.14×10^{-4}	0.05	3.28×10^{-7}		2.63 x 10 ⁻⁴
17	300,000	91.470	7.23×10^{-6}	0.0055	0.0002	0.0001	0.0073	7.23×10^{-6}	0.00011	8.57×10^{-9}		6.86 x 10 ⁻⁶

/1/ Atmospheres. /2/ Absolute pressure, lb/sq in. /3/ Pressure at given altitude vs pressure at sea level. /4/ Density at given altitude vs density at sea level.

Contributors: (a) Haber, F., (b) ZoBell, C. E.

References: [1] Willis, R. G., National Advisory Committee for Aeronautics, Tech. Rept. No. 147, 1922. [2] Diehl, W. S., National Advisory Committee for Aeronautics, Tech. Rept. No. 218, 1925. [3] Bromdracher, W. G., National Advisory Committee for Aeronautics, Tech. Rept. No. 538, 1935. [4] Warfield, C. N., National Advisory Committee for Aeronautics, Tech. Rept. No. 1235, Tech. Note 1200, 1947.

5. CHARACTERISTICS OF RESPIRATORY MEDIA

The solvents, water or nitrogen, through which exchange of O_2 and CO_2 occur, are the primary substances mechanically inspired by animals that actively ventilate the respiratory organ. Values in parentheses are relative coefficients with O_2 as unity.

			Med	ia		
	Variable	Aqua	tic (H ₂ O)	Atmos	pheric (N ₂)	
		Ocean	Fresh	Sea Level	6000 m	
	(A)	(B)	(C)	(D)	(E)	
1	Temperature, °C	-2.0 to 30.0	2.0-32.0	0.7-15.7	-28.1 to -15.1	
2	Pressure, total, mm Hg	760-760,000	760-20,000	760	347.5-360.2	
3	Density, g/L	10271, 20°C	1000 ¹ , 4 ^o C	1.223-1.290	0.649-0.659	
		Co	ncentration			
4	H ₂ O, vol %	100.00	100.00	1.002	1.002	
5	N2, vol %	1.03 ¹ , 15°C	1.33 ¹ , 15°C	78.03 (STP)	78.03 (STP)	
6	CO2, vol %	0.02 ¹ , 15°C	0.03 ¹ , 15°C	0.03 (STP)	0.03 (STP)	
7	O ₂ , vol % 0.58 ¹ , 15°C		0.72 ¹ , 15°C	20.99 (STP)	20.99 (STP)	
8	1 . 4		0.181			
9	pH 7.5-8.4		3.2-10.6			
0	Inert gases, vol %	Traces	Traces	0.95 (STP)	0.95 (STP)	
		Partial I	Pressure (Tension)			
1	H ₂ O, mm Hg	12.79, 15°C	6.10, 4°C	6.40 ³ , 15°C	0.72 ³ , -15°C	
	N2, mm Hg	593.02 (STP)	593.02 (STP)	593.02 (STP)	281.064 (STP)	
3	CO2, mm Hg	0.23 ¹ (STP)	0.23 ¹ (STP)	0.23 (STP)	0.11 ⁴ (STP)	
4	O2, mm Hg	159.52 ¹ (STP)	159.52 ¹ (STP)	159.52 (STP)	75.61 ⁴ (STP)	
5	Inert gases, mm Hg	7.46 (STP)	7.46 (STP)	7.46 (STP)	3.42 ⁴ (STP)	
6	Total pressure, mm Hg	760.00 (STP)	760.00 (STP)	760.00 (STP)	360.20 (STP)	
	Diffusi	ion Coefficient (ml/m	in/sq cm x cm at 760 m	m Hg, 20°C)		
7	N ₂		0.0000185 (0.53)			
18	CO2		0.000785 ⁵ (23.1)			
19	O ₂		0.000034(1)	11.0		

/1/ Averages of many determinations; vary widely with conditions of measurement. /2/ Varies, but never absent and always of biological significance. /3/ Calculated for 50% relative humidity. /4/ Calculated. /5/ Calculated from measured value for O_2 (20°C) and relative coefficients (18°-19°C).

Contributor: McCutcheon, F. H.

References: [1] Heilbrunn, L. V., "General Physiology," Philadelphia: W. B. Saunders Co., 1952. [2] Hodgman, C. D., "Handbook of Chemistry and Physics," Cleveland: Chemical Rubber Publishing Co., 1948. [3] Krogh, A., J. Physiol., Lond. 52:391, 1919. [4] Pearse, A. S., "Animal Ecology," New York: McGraw-Hill, 1939. [5] Sverdrup, H. U., Johnson, M. W., and Fleming, R. H., "The Oceans," New York: Prentiss-Hall, 1946.

6. CHARACTERISTICS OF RESPIRATORY MOLECULES

Values, unless otherwise indicated, are for standard conditions (STP) of temperature (0°C) and pressure (760 mm Hg).

Т	weight (O = 16)	Diameter ¹ cm x 10 ⁻⁸	Density g/L	Mean Free Path cm x 10 ⁻⁶ (750 mm Hg)	Collision Frequency (20°C)	Average Velocity cm x 100/sec	Wat STP	er Solu vol %	
(A) (B)	(C)	(D)	(E)	(F)	(G)	(H)	(I)	(J)
1 N;	28.02	3.15-3.53	1.251	8.50	5070	454	2.35	1.54	1.18
2 H		3.0-5.0	0.005-0.0302			566			
3 C		3.34-3.40	1.977	5.56	6120	362	171.3	87.8	53.0
4 0;	32.00	2.92-2.98	1.429	9.05	4430	425	4.89	3.10	2.31

/1/ Range indicates variations with method of measurement (e.g., viscosity, heat conductivity). /2/ Water vapor in saturated air, i.e., in equilibrium with water, at 0°C and 30°C.

Contributor: McCutcheon, F. H.

References: [1] Dorsey, N. E., "Properties of Ordinary Water Substances in All Its Phases," New York: Reinhold, 1940. [2] Hodgman, C. D., "Handbook of Chemistry and Physics," Cleveland: Chemical Rubber Publishing Co., 1948.

7. COMPOSITION AND PARTIAL PRESSURE OF RESPIRATORY GASES: MAN

Values in parentheses conform to estimate "d" of the 95% range (cf Introduction).

	Gas	Wate	er	Nitr	ogen	Oxygen		Carbon Diox	ide	Reference
	Gas	vol %	mm Hg	vol %	mm Hg	vol %	mm Hg	vol %	mm Hg	Reference
	(A)	(B)	(C)	(D)	(E)	(F)	(G)	(H)	(1)	(J)
					Ven	itilated Gas				
1	Inspired	01	±5.72	79.021	596 ²	20.95 ¹	158 ²	0.031	0.30 ²	B, D, F, H, 1;C, E, G,
2		01 01		80.40 ¹		14.00 ¹	100 ⁴	5.60 ¹		1, 2 2 2
,	Expired	10-	71	17.20	<u> </u>	sported Gas	110	14.50	122	-
4	In arterial blood	83(81-86)	47	0.975	573		94	48.2(44.6-50.4)	40	B, 3;C, F- H, 2;D, E, I, 4
5	In capillary blood	83(81-86)	47	0.975	573	±1 to 22.35	±1 to 94 ⁵	±44.6 to 57.7 ⁵	±40 to 50	B, 3;C, 2; D, E, 4;F-
6	In tissue fluid	83(81-86)	47	0.975	573	±0.185 ⁵	±305	±3.0465	±505	l, a B, 3;C, 2; D, E, 4;F-
7	In venous blood	83(81-86)	47	0.975	573	12.9(11.0-16.1)6	40	54.8(51.0-57.7) ⁶	46	1,5 B,3;D,E, 4;C,F-1,2

/1/ Dry air. Partial pressure in mm Hg = vol %/100 x 760 mm Hg (Dalton's law). /2/ Ambient air; slight variations exist. Vol % = 100 x (partial pressure in mm Hg)/760 mm Hg (Dalton's law). /3/ "Alveolar" air, actually last part of expired samples. /4/ Physiological air, normal temperature (37°C), and standard pressure (760 mm Hg). /5/ Variable, depending on blood flow, tissue activity and relation of sample to capillary length or field. /6/ Internal jugular.

Contributor: (a) McCutcheon, F. H.

References: [1] Krogh, A., "The Comparative Physiology of Respiratory Mechanisms," Philadelphia: Univ. of Pennsylvania Press, 1941. [2] Nims, L. F., in Fulton's "Textbook of Physiology," Philadelphia: W. B. Saunders Co., 1949. [3] Albritton, E. C., "Standard Values in Blood," Philadelphia: W. B. Saunders Co., 1952 (average from Table 67). [4] Albritton, E. C., "Standard Values in Blood," Philadelphia: W. B. Saunders Co., 1952 (average from Table 94). [5] Albritton, E. C., "Standard Values in Blood," Philadelphia: W. B. Saunders Co., 1952 (average from data for plasma, Table 94).

8. PRESSURE-DEPTH GRADIENT IN THE SEA

Hydrostatic pressure increases with depth at approximately 0.1 atmosphere per meter, the exact value being affected by salinity, temperature and latitude of the water. Salinity is expressed in parts per thousand (0/00).

D 11	0.11	m	Pressure	atm/m ¹
Depth, m	Salinity, 0/00	Temperature, °C	Latitude 300	Latitude 60°
(A)	(B)	(C)	(D)	(E)
0	32	0	0.099141	0.099403
2 0	32	20	0.098831	0.099092
3 0	35	0	0.099375	0.099638
0	35	20	0.099052	0.099314
5000	35	0	0.101757	0.102026
5000	35	5	0.101660	0.101929
10,000	35	0	0.103952	0.104225

/1/1 atmosphere = 1.01325 bars, 1.03327 kg/sq cm, 14.696 lb/sq in, 760 mm Hg. Contributor: ZoBell, C. E.

9. PRESSURE EQUIVALENTS

Atmospheres	mm Hg	Absolute	Gauge	Diving Depth
Attitospileres	mm ng	lb/sq in	lb/sq in	ft
(A)	(B)	(C)	(D)	(E)
1	760	14.7	0	0
2	1520	29.4	14.7	33
3	2280	44.1	29.4	66
4	3040	58.8	44.1	99
5	3800	73.5	58.8	132
6	4560	88.2	73.5	165
7	5320	102.9	88.2	198
8	6080	117.6	102.9	231
9	6840	132.3	117.6	264
10	7600	147.0	132.3	297

Contributor: Behnke, A. R.

10. PARTITION COEFFICIENTS OF VARIOUS GASES AT 37-38°C

Adapted from Kety, S. S., Pharm. Rev., Balt. 3:5, 1951.

Partition coefficient = the ratio at equilibrium in which a given substance (gas) distributes itself between two or more different solvents.

	Gas	Water Gas	Blood Gas	Tissue Blood	Oil_ Water	Reference
	(A)	(B)	(C)	(D)	(E)	(F)
1	Acetone		333.0			C, 1
2	Acetylene	0.850	0.795			B, 2;C, 3
3	Argon	0.0295			5.3	B-E,4
4	Chloroform	4.6	7.3	1.1 (brain) 0.9 (liver)	110.0	B-C, 5;D, 6, 7;E, 8
5	Cyclopropane	0.204	0.457		35.0	B-E, 9
6	Divinyl ether	1,32			41.3	B-E,10
7	Ethylene	0.089	0.140	1.2 (brain) 1.0 (heart)	14.4	B-C, 2;D, 11;E, 9
8	Ethyl ether	15.5	14.9	1.14 (brain)	3.2	B-C, 12;D, 13;E, 9
9	Helium	0.0097	0.0098		1.7	B, E, 4; C, 14
10	Hydrogen	0.018			3.1	B-E,4
11	Krypton	0.051			9.6	B-E,a,b
12	Neon	0.011				B,4
13	Nitrogen	0.0144	0.0147	1.1 (brain) 1.1 (liver) 5.2 (fat)	5.2	B-C, 15;D, 16, 17;E, 18
14	Nitrous oxide	0.440	0,466	1.0 (brain) 1.0 (heart)	3.2	B, 19;C-D, 20, 21;E, 9
15	Radon	0.17			125.0	B-E, 4
16	Xenon	0.097			20.0	B-E, 4

Contributors: Bartels, H., and Opitz, E.

References: [1] Widmark, E. M., Acta med. scand. 52:87, 1919. [2] Grollman, A., J. Biol. Chem. 82:317, 1929. [3] Taylor, H. L., and Chapman, C. B., Fed. Proc. 9:124, 1950. [4] Lawrence, J. H., Loomis, W. F., Tobias, C. A., and Turpin, F. H., J. Physiol. 105:197, 1946. [5] Moore, B., and Roaf, H. F., Proc. Roy. Soc., Lond. 73:382, 1904. [6] Nicloux, M., and Yovanovitch, A., C. rend. Soc. biol. 91:1285, 1924. [7] Tissot, M. J., ibid 60:195, 1906. [8] McCollum, J. L., J. Pharm. Exp. Ther. 40:305, 1930. [9] Orcutt, F. S., and Seevers, M. H., ibid 59:206, 1937. [10] Ruigh, W. L., Proc. Soc. Exp. Biol. 40:608, 1939. [11] Harmel, M. H., Pharm. Rev., Balt. 3:1, 1951. [12] Haggard, H. W., J. Biol. Chem. 55:131, 1923. [13] Haggard, H. W., ibid 59:771, 1924. [14] Hawkins, J. A., and Schilling, C. W., ibid 113:649, 1936. [15] Van Slyke, D. D., Dillon, R. T., and Margaria, R., ibid 105:571, 1934. [16] Campbell, J. A., and Hill, L., Quart. J. Exp. Physiol., Lond. 23:219, 1933. [17] Campbell, J. A., and Hill, L., J. Physiol. 71:309, 1931. [18] Tobias, C. A., Jones, H. D., Lawrence, J. H., and Hamilton, J. G., J. Clin. Invest. 28:1375, 1949. [19] Siebeck, R., Skand. Arch. Physiol., Berl. 21:368, 1909. [20] Kety, S. S., Harmel, M. H., Broomell, H. T., and Rhode, C. B., J. Biol. Chem. 173:487, 1948. [21] Eckenhoff, J. E., Hafkenschiel, J. H., Harmel, M. H., Goodale, W. T., Lubin, M., Bing, R. J., and Kety, S. S., Am. J. Physiol. 152:356, 1948.

11. DEPRESSION OF O2 AND CO2 SOLUBILITY BY VARIOUS SALTS IN WATER

Δa = solubility depression per unit M concentration of salt. Values of Δ are for salt concentrations up to 0.3 M.

	Salt	ΔαΟ2	ΔαCO2		Salt	ΔαΟ2	ΔαCO2
	(A)	(B)	(C)		(A)	(B)	(C)
1 2 3 4	Sodium chloride Potassium chloride Potassium fluoride Sodium bicarbonate Lactic acid	0.0073 0.0069 0.0078 0.0081 0.0003	0.111 0.087	7 8	Sodium biphosphate Potassium biphosphate 0.155 M NaCl 0.119 M NaCl	0.00113 ¹ 0.00087 ¹	0.218 0.185 0.0172 0.0132

/1/ Corrections for physiological substitute-solutions.

Contributors: Bartels, H., and Opitz, E.

References: [Column B] Sendroy, J., Jr., Dillon, R. T., and Van Slyke, D. D., J. Biol. Chem. 105:597, 1934. [Column C] Van Slyke, D. D., Sendroy, J., Jr., Hastings, A. B., and Neill, J. M., ibid 78:765, 1928.

12. SOLUBILITY COEFFICIENTS: GASES

See Introduction for explanation of apparent discrepancies in values given in different parts of table.

Part I: IN WATER AT VARIOUS TEMPERATURES

Solubility coefficient: a = ml liquid at 760 mm pressure

OOD	(F)	0.02051	0.02024	86610.0	0.01974	0.01950	0.01925	10610.0	0.01877	0.01857	0.01836	0.01816	0.01795	0.01775	0.01758	0.01741	0.01724	0.01707	06910.0	0,01675	0,01660	0.01645	0.01630	0.01615	0.01488	0.01440	0.01430	0.0142	0.0141	
aCO2	(E)	669.0	0.682	9,665	0.650	0.636	0.621	0.607	0.592	0.580	295.0	0.555	0.542	0.530	0.520	0.510	0.499	0.489	0.479	0.470	0.462	0.453	0.445	0.436	0.359					
aH2	(D)	0.01720	0.01709	0.01699	0.01692	98910.0	0.01679	0.01673	0.01666	0.01662	0.01657	0.01653	0.01648	0.01644	0.01640	0.01636	0.01632	0.01628	0.01624	0.01621	0.01618	0,01614	0.01611	0.01608	0,01600	0,0160	0,0160	0,0160	0,0160	
aO ₂	(C)	0.02691	0.02649	0.02608	0.02574	0.02541	0.02507	0.02474	0.02440	0.02413	0,02386	0,02360	0,02333	0.02306	0.02262	0.02218	0.02175	0.02131	0.02187	0.02168	0.02148	0.02129	0.02109	0,02090	0.01946	0.01833	0.01761	0.0172	0.0170	
aN21	(B)	0,01376	0,01358	0.01342	0.01323	0.01304	0.01284	0.01265	0.01256	0.01242	0.01227	0.01213	0.01198	0.01184	0.01173	0.01162	0.01152	0.01141	0.01130	0.01122	0,01113	0.01105	96010.0	0,01088	0.01023	0.00977	0.00958	0.0095	0.0095	
Temp	(A)	29 28	30 29	31 30	32 312	33 322	34 332	35 342	36 35	37 362	38 372	39 382	40 392	41 40	42 412	43 422	44 432	45 442	46 452	47 462	48 472	49 482	50 492	51 50	52 60	53 70	54 80	55 90	56 100	
aCO	(F)	0,03537	0.03455	0.03375	0.03297	0.03222	0.03149	0.03078	0.03009	0.02942	0.02878	0.02816	0.02757	0,02701	0.02646	0.02593	0.02543	0.02494	0.02448	0.02402	0,02360	0.02319	0.02281	0.02244	0.02208	0.02174	0.02142	0.02110	0.02080	
aCO2	(E)	1.713	1.646	1.584	1.527	1.473	1.424	1.377	1.331	1.282	1.237	1.194	1.154	1.117	1.083	1.050	1.019	0.985	0.956	0.928	0.902	0.878	0.854	0.829	0.804	0.781	0.759	0.738	0.718	
aH2	(D)	0.02148	0.02126	0.02105	0.02084	0.02064	0.02044	0.02025	0.02007	0.01989	0.01972	0.01955	0.01940	0.01925	0.01911	0.01897	0.01883	0.01869	0.01856	0.01844	0.01831	0.01819	0.01805	0.01792	0.01779	0.01766	0.01754	0.01742	0.01731	
aO2	(0)	0.04889	0.04758		0.04512	0.04397	0.04287	0.04180		0.03983				0.03637			0.03415			0.03220	0.03161	0.03102	0.03044			0.02881		0,02783	0.02736	
aNz1	(B)	0.02354	0.02297	0,02241	0,02187	0.02135	0.02086	0.02037	0,01990			0.01861	0.01823			0.01717		0.01654	0.01625	0.01597	0.01570	0.01545	0.01522	0.01498	0.01475	0.01454	0.01434	0.01413	0.01394	
Temp	(A)	0 1	2 1	2		5 4	6 5	9 2	8 7	8 6	9 01	11 10	12 11	13 12	14 13	15 14	16 15	17 16	18 17	19 18	20 19	21 20	22 21	22	24 23	25 24	25 25	27 26	28 27	1

/1/ Atmospheric nitrogen = 98.815% by vol nitrogen + 1.185% by vol air. /2/ Values for these temperatures were obtained by graphic or calculated interpola-

Contributors: Bartels, H., and Opitz, E.

Reference: Hodgman, C. D., "Handbook of Chemistry and Physics," p 1532, Cleveland: Chemical Rubber Publishing Co., 1952,

Part II: O2 AND CO2 IN PHYSIOLOGICAL FLUIDS AT VARIOUS TEMPERATURES

N = normal.

1	1		l																
aCO21	N 661.0	NaC14	(F)	0.725	0.705	0.685	699.0	0,652	0,637	0.623	809.0	0,594	0.579	795.0	0.554	0.542	0.529	0.517	
Op GC	0.155 N	NaC14	(E)	0.721	0,701	0,682	0,665	0.648	0,633	0.619	0.604	065.0	0,575	0,563	0,550	0.538	0,523	0,513	
	Whole	Blood3	(a)	0.0300	0.0293	0.0285	0.0279	0.0273	0.0267	0.0261	0.0257	0.0252	0.0247	0.0241	0.0237	0.0232	0.0228	0,0223	
aO21	0,199 N	NaCl2	(C)	0,02696	0.02649	0.02604	0.02562	0.02521	0,02487	0.02454	0.02420	0.02387	0.02353	0.02326	0.02299	0.02273	0.02246	0,02219	
	0.155 N	NaC12	(B)	0.02670	0.02623	0.02578	0.02536	0.02495	0.02461	0.02428	0.02394	0.02361	0.02327	0.02300	0.02273	0.02247	0.02220	0.02193	
	Temp	ပွ	(A)	97 21	18 27	19 28	50 29	21 30	22 31	23 32	24 33	25 34	26 35	27 36	28 37	29 38	30 39	31 40	
aCO ₂ 1	0,119 N	NaC14	(F)	1.181	1.141	1.104	1.070	1.037	1.006	0.972	0.943	516.0	0,889	0.865	0,841	0.816	0,791	0.768	0.746
aC(0.155 N	NaC14	(E)	1,177	1.137	1.100	1,066	1.033	1,002	896.0	0.939	0.911	0,885	0.861	0.837	0,812	0.787	0,764	0.742
	Whole	Blood3	(D)											0.0344	0.0337	0.0329	0.0321	0,0312	0.0306
aO ₂ 1	N 611.0	NaC12	(C)	0,03715	0,03631	0,03550	0.03472	0.03399	0.03328	0,03216	0.03196	0,03133	0.03074	0,03015	0.02957	0.02901	0.02847	0.02794	0.02744
	0.155 N	NaC12	(B)	0.03689	0.03605	0.03524	0.03446	0.03373	0.03302	0,03235	0.03170	0.03107	0.03048	0.02989	0.02931	0.02875	0.02821	0.02768	0.02718
	Temp	ပ္စ	(A)	1 10	2 11	3 12	4 13	5 14	6 15	7 16	8 17	9 18	10 19	11 20	12 21	13 22	14 23	15 24	16 25

/1/ Calculated from Reference [1]. /2/ The decrease in solubility through addition of salt was calculated according to the data of Sendroy, Dillon, and Van Slyke [2]. /3/ The values for blood were calculated through graphic interpolation from Figure 3 of Sendroy, Dillon, and Van Slyke [2]. /4/ The decrease in solubility through addition of salt was calculated according to the data of Van Slyke, Sendroy, Hastings, and Neill [3].

Contributors: Bartels, H., and Opitz, E.

References: [1] Hodgman, C. D., "Handbook of Chemistry and Physics," p 1532, Cleveland: Chemical Rubber Publishing Co., 1952. [2] Sendroy, J., Jr., Dillon, R. T., and Van Slyke, D. D. J. Biol. Chem. 105:597, 1939. [3] Van Slyke, D. D., Sendroy, J., Jr., Hastings, A. B., and Neill, J. M., ibid 78:765,

12. SOLUBILITY COEFFICIENTS: GASES (Concluded)

See Introduction for explanation of apparent discrepancies in values given in different parts of table.

Part III: IN VARIOUS FLUIDS AND TISSUES

For tissues, $\alpha = \frac{ml\ gas}{g\ tissue\ at\ 760\ mm\ pressure}$

Reference	(L)	D, 1; E, 2; F, 3; G, 4; I-J, 5	J-K, 6	D, 1; E, 7; F, 8; G, 9; H, 10	D, 1	D, 1; E, 7; F, 8; G, 9	E, 11, 12;1, 10	E, 11, 12	J-K, 6	G, a	K,6	К,6	1, 13	J-K, 6	H. 10	D, 1; E, 7; F, 8; G, 9; H, 10	D, 1; E, 7	J-K, 6	E, 11, 12;G, a	6,8	G, 8	K, 6	D, 1; E, 7; F, 8; G, 9	К, 6	D, 1; E, 7; F, 8; G, 9	G, 14	I, 15	1, 15	I, 15	I, 15	D, 16	D, 16	G, 17	G, 18	G, 17	G, 19-21				
aC ₂ H ₂	(K)	H	0.747	_					0.740							0.710		0.759	╫			0.703		3		0.690 I		0.778 F	1											
aC2H4	(L)	0.108	0.078						0.123									0.141				0.128										_								
0ZN2	(I)	0.549					0.412										0.425														0.446	0.447	0.437	0.437						
аНе	(H)			0.0085															0.00881	0,0088																				
aCO ₂	(0)	0.759		0.545		0.529				0.4943,4	0.4923,5	0.4881,3	0.4853,6	0.4823,7						0.471			0.5269	0.510	0.552		0.510		0.44	0.522							0.73	0.73	0.78	0.78
аН2	(F)	0.01754		0.01620		0.01559														0.01491							0.01533		0.01454											
aO2	(三)	0.02831		0.02323		0.02211	0.023561	0.0214+2												0.02301	0.0209+2		0.0214		-		0.0209		0.0261											
aN ₂	(a)	0.01483		0.01272	0.01409	0.01220														0.01301	0.0117+8				No.		0.0117		0.0146						0.0162	0.0162		İ		
Temp, oc	(C)	25	37.5	3.8	25	38	37		37.5	38					37.5	37.5	37	37.5	3.8	38		37.5	37	38	38	37.5	38	37.5	38	38	37	37	37	37	37	37	22	20	22	22
Source	(B)						Man								Myeloid leukemia	Polycythemia	Dog	0		XO		Rabbit	Man		Lipemia	Dog	ŏ	Dog	ŏ	Man	Man	Dog	Man	Dog	Sheep	Sheep	Dog	Frog	Dog	Frog
Medium	(A)	Water	2	3	4 0.155 N NaCl		6 Whole blood			6	10	11	12	13	4	15	16	17	. 00	19	50	21	22 Plasma	23	24	25	92	27 Erythrocytes	28	29 Urine	30 Heart	31	32 Brain	_	34	35 Liver	36 Connective tissue	37	38 Skeletal muscle	39

Cat 22 0.78 Frog 22 0.78 Frog 22 0.73 15 1.0 1.0 22 0.042 1.34 40 0.12 0.05 0.876 22 0.057 0.05 0.015 37 0.067 0.012 0.015 17 0.012 0.086 22 0.057 0.015		2 17		7, 19, 21	0,1,0	G 17	G 22		T C 23		E-C 24		D. 25:H 26	on training to	D, 27;H, 26		E, 28	96. 5	62,53		7.5
g 22 22 8 22 15 15 22 0.042 40 0.042 40 0.042 37 0.067 17 0.067												3100	6.019	3100	0.013			_			
8 22 8 22 22 22 15 15 40 40 40 22 37 37 17 17	97.0	00	070	00	0 73	00		_		0.05	50:0					0.112		0.86		0.93	
Cat Frog	77		77		77	3	 2.2	77		40	-	_		_	3.0		12		22		
40 Smooth muscle (41 Nerve 12 Skin 13 Gelatin, 20% 44 Cottonseed oil 45 Olive oil 47 Rubber 50 Rubber 14 Skin 15 Skin				2025		n. 20%	Isped oil				lio										

Van Slyke, Sendroy, Hastings, and Neill [8]. /4/16 volume % O2 capacity. /5/18 volume % O2 capacity. /6/22 volume % O2 capacity. /7/24 volume % /1/20 volume % O₂ capacity. /2/ Whole blood with different O₂ capacity + factor (0.000108) for 1.0 volume % O₂. /3/ Calculated according to the data of O2 capacity. /8/ Whole blood with different O2 capacity + factor (0.000064) for 1.0 volume % O2. /9/ Calculated according to diagram of Keys, A., Hall, F. G., and Guzman Barron, E. S., Am. J. Physiol. 115:292, 1936.

Contributors: (a) Bartels, H., and Opitz, E., (b) Behnke, A. R.

References: [1] Van Slyke, D. D., Dillon, R. T., and Margaria, R., J. Biol. Chem. 105:571, 1934. [2] Winkler, L. W., Ber. deut. chem. Ges. 24:3602, 1891. [3] Bohr, C., Wied. Ann. Physik. Chem. 68:504, 1899. [4] Winkler, L. W., Ber. deut. chem. Ges. 24:89, 1891. [5] Orcutt, F. S., and Seevers, M. H., J. Biol. Chem. 117:501, 1937. [6] Grollmann, A., ibid 82:317, 1929. [7] Sendroy, J., Jr., Dillon, R. T., and Van Slyke, D. D., ibid 105:597, 1934. 36:542, 1938. [27] Lawrence, J. H., Loomis, W. F., Tobias, C. A., and Turpin, F. H., J. Physiol. 105:197, 1946. [28] Behnke, A. R., Jr., Harvey Lect., [18] Krogh, A., J. Physiol. 52:391, 1919. [19] Fenn, W. O., Am. J. Physiol. 80:327, 1927. [20] Fenn, W. O., ibid 84:110, 1928. [21] Fenn, W. O., ibid 8] Van Slyke, D. D., Sendroy, J., Jr., Hastings, A. B., and Neill, J., ibid 78:765, 1928. [9] Van Slyke, D. D., and Sendroy, J., Jr., ibid 78:801, 1928. [10] Hawkins, J. A., and Shilling, C. W., ibid [13:649, 1936, [11] Berggren, S. M., Acta physiol. scand. 4:(suppl.) XI, 1942, [12] Fasciolo, J. C., and Chiodi, H., Am. J. Physiol. 147:54, 1946. [13] Kety, S. S., J. Biol. Chem. 173:487, 1948. [14] Sendroy, J., Jr., Selig, S., and Van Slyke, D. D., ibid H. S., ibid 20:161, 1943. [25] Vernon, H. M., Proc. Roy. Soc., Lond., B 79:366, 1907. [26] Behnke, A. R., and Yarbrough, O. D., U. S. Nav. M. Bull. 85:207, 1928. [22] Hagenbach, A., Ann. Phys. Chem. 65:673, 1898. [23] Vibrans, F. C., Oil and Soap 12:14, 1935. [24] Schaffer, P. S., and Haller, 106:463, 1934. [15] Eckenhoff, J. E., Hafkenschiel, J. H., Harmel, M. H., Goodale, W. T., Lubin, M., Bing, R. J., and Kety, S. S., Am. J. Physiol. 152:356, 1948. [16] Campbell, J. A., and Hill, L., Quart. J. Exp. Physiol., Lond. 23:219, 1933. [17] Wright, C. I., J. Gen. Physiol. 17:657, 1934. Balt. 37:198, 1941-42. [29] Daynes, H. A., Proc. Roy. Soc., Lond., A 97:268, 1920.

13. DIFFUSION COEFFICIENTS AND PERMEATION COEFFICIENTS

D = "true" diffusion coefficient in sq cm/min $(\frac{\Im c}{\Im t} = -D\frac{\Im^2 c}{\Im x^2})$; c = concentration in ml gas (STPD) dissolved per ml liquid; t = time in min; x = distance in cm. D' = permeation coefficient in sq cm/min/atm: volume of gas (ml, STPD) diffusing per unit time (min), area (sq cm), and thickness (cm), if the difference in partial pressure of the diffusing gas is 1 atm in the direction of the gas flow. D = $\frac{D'}{a}$, where a is the Bunsen solubility coefficient, ml gas (STPD) dissolved per ml liquid at a partial pressure of 1 atm. The temperature coefficient of D in the range 15-40°C is in most cases nearly 2% °C [1,2], and temperature coefficient of D' nearly 1% per °C in the same range. [3]

Part 1: O2 AND CO2 IN VARIOUS FLUIDS AND TISSUES

Unless otherwise stated, values of D and D' were recalculated from data in the references, with the aid of solubility coefficients given in these tables.

	Substance	Temp, °C	D x 10 ⁻⁴	a	D' x 10 ⁻⁵	Reference
	(A)	(B)	(C)	(D)	(E)	(F)
			Oxyge			
1	Water	25	15.1	0.0283	4.3	B-E, 2
2	Water	37	19.3	0.0239	4.6	B-E, 2
3	Seruml	25	11.9	0.025	3.0	B-C, 2;D, 4, 5;E, a, b
4	Serum	37	15.25	0.021	3.2	B-C, 2;D, 4, 5;E, a, b
5	Serum protein solution, 8%2	25	11.1	0.025	2.8	B-C, 6,7;D,calc, by a,b from 4,5;E,a,
6	Methemoglobin solution, 8% ²	25	11.2	0.025	2.8	B-C, 8; D, calc. by a, b from 4,5; E,a,t
7	Serum protein, 30%	25	4.6	i		B-C, 6, 7
8	Methemoglobin, 30% ³	25 -	5.5	0.032	1.8	B-C, 8; D, calc. by a, b from 4,5; E, a, i
9	Muscle, frog	20	4.5	0.0314	1.4	B-C, E, 3;D, 4, 5, 9
10	Muscle, frog	37	7.0	0.02354	1.655	B-C, a, b; D, 4, 5; E, 3
11	Connective tissue, frog	20	3.7	0.0314	1.15	B-C, E, 3;D, 4, 5
12	Connective tissue, dog	37	5.75	0.02354	1.356	B-C, a, b; D, 4, 5; E, 3
13	Chitin	20		1	0.13	B, E, 3
14	Gelatin, 15%	20		1	2.8	B, E, 3
15	Rubber	17	0.57	1		B-C, 10
16	Rubber	20			0.77	B, E, 3
				n Dioxide		
17	Water	20	10.657	0.878	93.5	B-E, 11, 12
18	Water	37	15.38		j	B-C, calc. by a, b from 11, 12
19	Muscle, frog	22	11.77	0.78	91.0	B-C, 13;D, 14;E, a, b
20	Muscle, frog	22	6.8	0.787	53.07	B-C, a, b; D-E, 14
21	Muscle, dog	22	6.0	0.787	47.07	B-C, a, b; D-E, 14
22	Muscle, smooth, cat	22	6.4	0.78	50.07	B-C, a, b; D-E, 14
23	Connective tissue, frog	20	5.3	0.777	41.07	B-C, a, b; D, 14; E, 3
24	Diaphragm, dog	22	3.6	0.737	26.5	B-C, a, b; D-E, 14
25	Nerve	22	0.717	0.78	5.5	B-C, 13;D, 14;E, a, b
26	Skin, frog	22	4.2	0.737	30.57	B-C, a, b; D-E, 14
27	Skin, acidified	22	5.7	0.787	44.77	B-C, a, b; D-E, 14
28	Rubber	17	0.517	0.93	4.8	B-C, 10; D-E, a, b
29	Rubber	22	0,51	0.937	4.87	B-C, E, a, b; D, calc. by 14 from 15

/1/ Solubility of O₂ at 25°C was calculated from the value for whole blood [5] and the ratio $\frac{\text{a serum}}{\text{a whole blood}} \approx 0.908$ [4].
/2/ For the solubility coefficient of O₂ in 8% serum protein solution and in 8% methemoglobin solution, the value for serum was taken [4]. /3/ For the solubility coefficient of O₂ in 30% methemoglobin, the value for erythrocytes [4] was taken. /4/ Solubility of whole blood was used [4,5] as the partition coefficient ($\frac{\text{a tissue}}{\text{a blood}}$) for most gases is too close to 1.0 [9]. /5/ Value for D' is calculated from 9 E, assuming a temperature coefficient for D' of 1% per °C [3]. /6/ Value for D' is calculated from 11 E, assuming a temperature coefficient for D' of 1% per °C [3]. /7/ Value directly determined. /8/ Value for D is calculated from 17 C by assuming a rise of D by 2% per °C [2,11].

Contributors: (a) Bartels, H., (b) Opitz, E.

References: [1] Carlson, T., J. Am. Chem. Soc. 33:102, 1911. [2] Gertz, K. H., and Loeschcke, H. H., unpublished. [3] Krogh, A., J. Physiol., Lond. 52:391, 1919. [4] Sendroy, J., Jr., Dillon, R. T., and Van Slyke, D. D., J. Biol. Chem. 105:597, 1934. [5] Dill, D. B., and Forbes, W. H., Am. J. Physiol. 132:685, 1941. [6] Kreuzer, F., Helvet, physiol. pharm. acta 8:505, 1950. [7] Kreuzer, F., ibid 9:388, 1951. [8] Pircher, L., ibid 10:110, 1952. [9] Kety, S. S., Pharm. Rev., Balt. 3:1, 1951. [10] Daynes, H. A., Proc. Roy. Soc., Lond., A 97:286, 1920. [11] Carlson, T., J. Am. Chem. Soc. 33:1027, 1911. [12] Ilüfner, G., Wied, Ann. Physik. 60:134, 1897. [13] Fenn, W. O., Am. J. Physiol. 85:207, 1928. [14] Wright, C., J. Gen. Physiol. 17:652, 1934. [15] Glazebrook, R. T., "Dictionary of Applied Physics," vol V. London: Macmillan Co., 1923.

DIFFUSION COEFFICIENTS AND PERMEATION COEFFICIENTS (Concluded) Part II: VARIOUS GASES RELATIVE TO O₂ AS UNITY

 $\frac{D \text{ gas}}{D \Omega_0}$ or $\frac{D' \text{ gas}}{D \Omega_0}$. Absolute values for Ω_2 obtained from Part 1 of this table.

		ע	O_2 D , O_2				_							
	Substance	Temp	Absolute Value	I	I2	Н	le	1	٧Z	C	0	CC) ₂	Reference
	Substance	°C	Oz	D	D'	D	D١	D	D'	D	D'	D	D'	Reference
	(A)	(B)	(C)	(D)	(E)	(F)	(G)	(H)	(I)	(J)	(K)	(L)	(M)	(N)
1	Water	20	$D = 13.7 \times 10^{-4}$	1.62				0.91		0.94				D,H,1;J,2
2			a = 0.0239											
3			$D' = 3.3 \times 10^{-5}$								0.89		31.8	K,2;M,1
4		37	$D = 19.3 \times 10^{-4}$	1.57		1.97		0.93				0.62		D,F,H,1;L,3
5			$\alpha = 0.02386$									1.33		L,1
6			$D' = 4.6 \times 10^{-5}$		1.09		0.69		0.483				14.5	E,G,I,M,a,b
7	Serum	37	$D = 15.24 \times 10^{-4}$	1.54				0.85						D,H,1
8			a = 0.021											
9			$D' = 3.2 \times 10^{-5}$		1.118				0.479					E,I,4
10	Muscle	16-20	$D = 4.5 \times 10^{-4}$									1.37		L,5
11			a = 0.031											
12			$D' = 1.4 \times 10^{-5}$						0.60		0.70		35.0	I,K,M,2
13	Connective	16-20	$D = 3.7 \times 10^{-4}$									0.97		L,5
14	tissue		$\alpha = 0.031$											
15			$D' = 1.15 \times 10^{-5}$						0.46		0.75		36.0	I,K,M,2
16													23.0	M,2
17	Rubber	16-17	$D' = 0.77 \times 10^{-5}$						0.52		0.56		5.0	I,K,M,2
18					2.15				0.39		0.44		5.3	E,1,K,M,6

Contributors: (a) Bartels, H., (b) Opitz, E.

References: [1] Gertz, K. H., and Loeschcke, II. H., Zschr. Naturforsch. 9b:1, 1954. [2] Krogh, A., J. Physiol., Lond. 52:391, 1919. [3] Gertz, K. H., and Loeschcke, H. H., Zschr. Naturforsch. 11b:61, 1956. [4] Tammann, G., and Jessen, V., Zschr. anorg. u. allgem. Chem. 179:125, 1929. [5] Wright, C. J., J. Gen. Physiol. 17:657, 1934. [6] Graham, T., Ann. Physik Chem. 129:548, 1866.

14. DIFFUSION COEFFICIENTS: GASES IN WATER AT VARIOUS TEMPERATURES

Methods: U = unspecified; A = measurement of the volume of gas diffusing per unit time into a gel of 1-2% agar in water, in temperature range 0-30°C; B = measurement of the volume of gas diffusing from a gas bubble into the surrounding water in the temperature range 21-37°C (the relative values of the coefficients for various gases obtained by this method were converted to absolute values by means of D_{H2} as measured directly [1]); C = colorimetric measurement of the diffusion velocity of O_2 by addition of 0.03-1% hemaglobin as indicator; D = measurement of the volume of gas diffusing per unit time into a tube filled with gas-free water; P = polarographic measurement with the dropping-mercury electrode; T = measurement of the velocity of diffusion within a tube of 1 cm diameter filled with water or a 2% solution of agar in water.

Gas	Method		D x 1	0-4, sq cm pe	r min		Defenses
Gas	Method	10°C	20°C	25°C	30°C	37°C	Reference
(A)	(B)	(C)	(D)	(E)	(F)	(G)	(H)
1 H ₂	A	16.65	21.75	24.3	26.85	30.4	1
2	В		22.2	24.3	26.8	30.3	2
3 He	В					37.2	2
4 C ₂ H ₂	A	8.75	10.95	12.08	13.2	14.77	1
5 N2	A	8.2	10.05	11.0	11.93	13.2	1
6	T		11_6				3, 4
7	U		11.9				3, 4
8	В		_12.5	14.2	15.5	18.0	2
CO	U		6.1				5
)			13.1				6
1 02	U		10.9				3, 4
2			12.35				3, 4
3	В		13.7	15.1	16.8	19.3	2
4	P			15.6			7
5	C, P			13.5			8-10
6 CO ₂	A	7.48	9.14	9.98	10.82	12.03	1
7	В			14.8	16.3	18.9	11
В	U	8.76	10.6				3, 4, 12
7	D		9.5				5
N ₂ O	T	9.23	10.0				3
1	B, D		9.2				5

Contributors: Bartels, H., and Opitz, E.

References: [1] Tammann, G., and Jessen, V., Zschr. anorgan. u. allgem. Chem. 179:125, 1929. [2] Gertz, K. H., and Loeschcke, H. H., Zschr. Naturforsch. 9b:1, 1954. [3] Hüfner, G., Wied. Ann. Physik. 60:134, 1897. [4] Bruins, H. R., International Critical Tables, vol V, p63, New York: McGraw-Hill, 1929. [5] Longmuir, J. S., and Roughton, F. J., J. Physiol., Lond. 118:264, 1952. [6] Krogh, A., ibid 52:391, 1919. [7] Kolthoff, J. M., and Miller, C. S., J. Am. Chem. Soc. 63:101, 1941. [8] Kreuzer, F., Helvet. physiol. pharm. acta 8:505, 1950. [9] Kreuzer, F., ibid 9:388, 1951. [10] Pircher, L., ibid 10:110, 1952. [11] Gertz, K. H., and Loeschcke, H. H., Zschr. Naturforsch. 11b:61, 1956. [12] Carlson, T., J. Am. Chem. Soc. 33:1027, 1911.

15. DEVELOPMENT OF THE RESPIRATORY SYSTEM: MAN

tions are consequently arbitrary, they are not necessarily standardized, for many have units which are unmeasurable, unreliable, estimated, omitted, quali-This table must be used with discretion because of certain discrepancies between embryological terminology and fact. The changes which constitute developessential features and reveal the quite regular sequence of events. Differences in width of columns do not indicate time or age relationships, but are merely tion, perforation, opening. F = fusion, closure, joining, anastomosis. I = ingrowth, invasion, intrusion or depression below free surface, groove, regional space accommodations for the numerical headings. Capital letters show pattern of general development, small letters the development of specific anatomic ingly characteristic or distinct; differentiation. C = completion of basic plan. D = degeneration, dwindling, decrease, atrophy, regression, lag. E = erupment are continuous but must be described in discontinuous units of time, anatomical or functional characteristics, stages or events. Although the descripgrowth difference. L = lengthwise subdivision, lobulation, lamination, splitting, branching. o = ossification; c = appearance of cilia; ch = chondrification; fied or used in different senses by different authors. These defects have been obscured by conversion of descriptions into symbols in order to emphasize features. Letters with connecting dashes are ranges. A = anlage, primordium, condensation, appearance; first becomes distinct. B = becomes increase = appearance of elastic tissues; g = appearance of glands; j = formation of joint-cavities; m = appearance of muscle fibers; n = innervation established;

w = excavation of bone.

After Birth	mo yr	10 12 14 16 18 20 24 28 32 36 38 1 2 2 4 6 8						EE		0		0 + 0		***	x +x	×-×			. A	+ A	i de la companya de l												
West, a franchis	weeks alter reru	6 8		2000						chch		chch	==	AA	AA	AA			i	A+	C c-+c g-+g	gg chch		900 C	900	pa0		ch	- 		40 40 10 10 10 10 10 10 10 10 10 10 10 10 10	1	40 40 40 40 40 40 40 40 40 40 40 40 40 4
Comment of the state of the sta	SULFELET'S HOLIZORS	XI]XII[XIII XIA XV XVII]XVII XVIII XIX XXI XXIIIX	A I EE ³ chch	B		A D-				A-+A ch		A	<u>F</u>								B FF L	AA		K-+K mm chch	K-+K mm chch	A m chch		AA mm	A m-	1	1	1	A
Germ Layer1	Ecto- Meso- Ento-		*	*		*		*		*		*	*	*	#	*			*	*	*	*	*	*	*	*		*	*	*	*	*	* *
	Structure	O	Nose	Nasal epithelium	Vomero-nasal	organ	Nasal-lacrimal	duct	Maxillo-turbi-	nal	Ethmo-turbinals	(in order)	External nares	Sinus, maxillary	Sphenoidal	Ethmoidal	Frontal	Horizontal	part	Vertical part	Larynx	Epiglottis	Lung	Trachea	Primary bronchi	Lobar bronchi		Segmental	Segmental	Segmental bronchi	Segmental bronchi Subsegmental	Segmental bronchi Subsegmental	Subsegmental
			-	7	~		44		5		9		7	00	6	10		-		12	13	7	1.5	91	17	1 8	61			6	20	20	20

	Ą
	Ą
40.	
7	
4.0	
	_
	_
	\dashv
*	*
*	*
	reoli
ucts acs,	alv
D S	nal
la)	rmir
lveo	ter
44	
21 22	-
21	

/1/ All germ layers of parenchyma become distinct at Stage IV, Streeter's horizons. /2/ Use of Streeter's horizons as units for the first seven weeks, is an attempt to minimize discrepancies arising from uncertain age determination and individual rate of development, /3/ Choanae.

Contributors: (a) Böving, B. G., (b) Towers, E

General References: NOSE AND ACCESSORY SINUSES. Coffin, L., Am. J. M. Sc. 129:297, 1905. Hochstetter, F., Verh. Anat. Ges. 2:181, 1892. Peter, K., Anat. Abt., Jahrg. 1919, p 1. His, W., ibid, Jahrg. 1887, p 89. Keibel, F., and Elze, C., "Normentafein zur Entwicklungsgeschichte des Menschen," p 314, Jenna: Gustav Fischer, 1908. Lenzi, L., Monit. 2001. ital. 9:213, 1898. Linser, P., Anat. Hefte 13:307, 1900. Lopez, A., Arch. españ. morf. 2:123, 1954. Congres federatif international d'anatomic, Résumés, p 185, 1955. Streeter, G. L., series on "Developmental Horizons," Carnegie Institution, Washington, "Atlas det Entwicklung der Nase und des Gaumens beim Menschen, mit Einschluss der Entwicklungsstorungen," Jena: Gustav Fischer, 1913. Schaeffer, LUNG. Amprino, R., Arch. ital. anat. 38:447, 1937. Boyden, E. A., "Segmental Anatomy of the Lungs," p 276, New York: McGraw-Hill Co., 1955. De Leonardis, L., Arch. ital. anat. 55:383, 1950. De Leonardis, L., ibid 58:127, 1953. Dubreuil, G., Lacoste, A., and Raymond, R., Bull. histo. appl., J. P., Am. J. Anat. 10:313, 1910. Schaeffer, J. P., J. Morph. 21:613, 1910. Schaeffer, J. P., "The Embryology, Development and Anatomy of the Nose, Paranasel Sinuses, Nasolacrimal Passageways and Olfactory Organ in Man," Philadelphia: Blakiston, 1920. Streeter, G. L., series on "Developmental Lyon 13:235, 1936. Grosser, O., "Keibel and Mall's Manual of Human Embryology," Philadelphia: Lippincott, 1912. Heiss, R., Arch. Anat. u. Physiol. Potter, E. L., and Loosli, C. G., Am. J. Dis. Child. 82:226, 1951. Puiggros-Sala, J., Zschr. Anat. Entw. 106:209, 1936. Quénu, L., and Quéreux, P., Towers, B., unpublished. Horizons," Carnegie Institution, Washington, D. C. Towers, B., unpublished. LARYNX. Frazer, J. E., J. Anat., Lond. 44:156, 1910. Grosser, O., "Keibel and Mall's Manual of Human Embryology," Philadelphia: Lippincott, 1912. Kallius, E., Anat. Hefte Bd. 9:301, 1897. Nicolas, A., Bibliogr. Anatomique 2:176, 1894. Streeter, G. L., series on "Developmental Horizons," Carnegie Institution, Washington, D. C. D. C. Towers, B., unpublished. Wells, L. J., and Boyden, E. A., Am. J. Anat. 95:163, 1954.

Reference: "Dorland's Illustrated Medical Dictionary," 23rd ed., p 1355, Philadelphia: W. B. Saunders Co., 1957.

17. BRONCHOPULMONARY SEGMENTS: MAN

For practical purposes, the lungs may be divided into lobes which are fairly constant and well recognized, and each lobe into segments. These segments are supplied by the principal subdivisions of the bronchus entering that lobe. There is a fair degree of constancy in these bronchial subdivisions, both with respect to their point of origin in the tracheobronchial tree and to the part of lung which they supply. Terminology used is that suggested by Jackson and Huber.

Contributors: Jackson, C. L. and Huber, J. F. Reference: Jackson, C. L., and Huber, J. F., Dis. Chest 9:319, 1943.

18. LUNG WEIGHT: MAN

Age is given in years, unless otherwise specified. Values are mean weight for both lungs. Data collated by Scammon, R. E.

		M	lale	Fe	male	Both	Both Sexes		
	Age	Specimens	Lung Weight	Specimens	Lung Weight	Specimens	Lung Weight		
		no.	g	no.	g	no.	g		
	(A)	(B)	(C)	(D)	(E)	(F)	(G)		
1	Birth	92	51.7	71	50.9	232	50.0		
2	Birth-3 mo	46	68.8	47	63.6	93	66.2		
3	3-6 mo	53	94.1	52	93.3	113	94.2		
4	6-9 mo	72	128.5	55	114.7	127	122.6		
5	9-12 mo	49	142.4	63	142.1	115	142.7		
6	1-2	78	170.3	84	175.3	166	173.7		
7	2-3	76	245.9	62	244.3	145	243.8		
8	3-4	51	304.7	34	265.5	88	286.5		
9	4-5	32	314.2	21	311.7	56	310.8		
10	5-6	18	260.6	27	319.9	51	301.9		
11	6-7	8	399.5	17	357.5	29	377.6		
12	7-8	15	365.4	10	404.4	25	381.0		
13	8-9	5	405.0	7	382.1	14	400.7		
14	9-10	5	376.4	5	358.4	11	342.2		
15	10-11	15	474.5	4	571.2	20	495.7		
16	11-12	8	465.6	4	535.0	12	488.7		
17	12-13	4	458.8	3	681.7	7	554.3		
18	13-14	6	504.5	4	602.3	12	521.8		
19	14-15	12	692.8	6	517.0	19	632.1		
20	15-16	12	691.7	13	708.8	28	702.4		
21	16-17	9	747.3	6	626.5	15	699.0		
22	17-18	12	776.9	13	694.5	25	734.0		
23	18-19	20	874.7	15	654.9	35	780.5		
24	19-20	19	1035.6	12	785.2	31	938.7		
25	20-21	13	935.0	28	792.8	42	848.8		
26	20-40	259	1169.3	150	885.5	410	1065.4		

Contributor: Boyd, E.

Reference: Boyd, E., "Outline of Physical Growth and Development," Table 17, Minneapolis: Burgess, 1941.

19. LUNG WEIGHT INCREMENTS DURING FIRST YEAR: MAN

Data represent mean value at birth and for each trimester of first year, as determined from 600 observations collated from the literature and the author's own investigations. B = birth.

Reference: Krogman, W. M., Tabulae Biologicae 20:669, 1941 (adapted from Scammon, R. E., Radiology 9:93, 1927).

20. LUNG WEIGHT AND VOLUME INCREMENTS DURING FIRST YEAR: MAN

Figures in parentheses are total number of observations.

Reference: Krogman, W. M., Tabulae Biologicae 20:669, 1941 (adapted from Scammon, R. E., Radiology 9:101, 1927).

21. DIMENSIONS OF TRACHEOBRONCHIAL TREE: MAN, ADULT

Values tabulated below represent average dimensions of the adult tracheobronchial tree, computed by Findeisen and Landahl, according to a functional concept of structure rather than a strictly anatomical description. Here, the major bronchi are listed according to their order of generation rather than to lobar or segmental distribution. This table serves two purposes: First, it permits listing bronchi of similar size in the same category, and second, it serves as a tool for the functional description of airflow characteristics at various points of the tracheobronchial tree. However, the user of these values must recognize that there is considerable overlapping of the various orders of branching.

Segment	Branches no.			ngth m	Diameter mm		
	Findeisen	Landahl	Findeisen	Landahl	Findeisen	Landahl	
(A)	(B)	(C)	(D)	(E)	(F)	(G)	
I Trachea Bronchi	1	1	11.0	12.0	13.0	16.0	
2 Primary (main)	2	2	6.5	6.0	7.5	10.0	
3 Secondary	12	12	3.0	3.0	4.0	4.0	
4 Tertiary	100	100	1.5	1.5	2.0	2.0	
5 Quartenary	770	770	0.5	0.5	1.5	1.5	
Bronchioles							
6 Terminal	5.4×10^4	6 x 104	0.3	0.3	0.6	0.6	
Respiratory Alveolar ducts	1.1 x 10 ⁵	1.5 x 10 ⁵	0.15	0.15	0.5	0.4	
8 1st order	2.6 x 10 ⁷	3 x 107	0.02	0.05	0.2	0.3	
9 2nd order		4 x 10 ⁷		0.03		0.25	
0 Alveolar sacs	5.2 x 10 ⁷	108	0.03	0.033	0.3	0.33	

Contributor: Ross, B. B.

References: [1] Findeisen, W., Pflügers Arch. 236:367, 1935. [2] Landahl, H. D., Bull. Math. Biophys. 12:43, 1950.

22. DIAMETER OF RESPIRATORY ALVEOLI: MAN

Values are in millimeters.

Age	Diameter	Age	Diameter
(A)	(B)	(A)	(B)
1 Few hr	0.05	6 18-20 yr	0.20
2 1-1 1/2 yr	0.10	7 25-40 yr	0.22
3 3-4 yr	0.12	8 50-60 yr	0.30
4 5-6 yr	0.14	9 70-80 yr	0.34
5 10-15 yr	0.17		

Contributor: Boyd, E.

Reference: Scammon, R. E., in "Pediatrics," (Abt, I. A., ed.), vol I, p 257, Philadelphia: W. B. Saunders Co., 1923.

23. LENGTH OF BRONCHI: MAN

Values are in millimeters.

		Main	Right	Portion between	Left	
Age		Age Right Upper I		Upper and Middle	Main	
		Bronchus	Bronchus	Lobe Bronchi	Bronchus	
	(A)	(B)	(C)	(D)	(E)	
-1	1 mo	9	4	8	21	
2	3 mo	10	5	10	24	
3	5 mo	8	4.5	10	21	
4	6 mo	10	6	11	25	
5	l yr	11	5	12	29	
6	2 yr	13	6	11	29	
7	3 yr	1 3	6	12	31	
8	4 yr	12	7	12	32	
9	5 yr	13.5	7	14	34	
10	7 yr	11	10	17	33	
11	10 yr	14	10	13	35	
12	13 yr	22	10	19	42	
13	40 yr	20	13	22	52	

Contributor: Boyd, E.

Reference: Engel, S., Arch. Kinderh. 60:267, 1913.

24. DIAMETER OF TRACHEA AND BRONCHI: MAN

Values are in millimeters.

Age	No.	Tra	chea	Right B	ronchus	Left Bronchus		
Age	No.	Sagittal	Frontal	Sagittal	Frontal	Sagittal	Frontal	
(A)	(B)	(C)	(D)	(E)	(F)	(G)	(H)	
l l mo	2	5.65	6.45	4.6	5.0	3.9	4.15	
2 3 mo	1	6.5	6.8	5.0	4.7	4.0	4.1	
5 mo	1	7.0	7.2	6.1	5.9	4.9	4.3	
l l yr	2	7.0	7.9	5.9	6.25	4.4	5.1	
$1\frac{1}{2}$ yr	1	8.0	10.4	7.7	7.8	4.7	7.3	
2 yr	1	9.4	8.8	7.5	7.3	4.9	5.2	
$2\frac{1}{2}$ yr	1	8.6	8.9	6.6	6.5	5.5	5.0	
3 yr	1	10.8	9.4	7.4	7.3	7.0	5.5	
$3\frac{1}{2} \text{ yr}$	1	9.0	10.7	7.0	8.2	5.0	7.6	
) 4 yr	1	9.1	11.2	8.4	9.1	6.0	6.8	
5 yr	2	10.25	9.7	8.55	7.5	6.3	6.95	
7 yr	1	10.4	11.0	9.0	9.3	6.9	8.2	
7½ yr	1	11.4	11.6	10.4	9.3	7.2	7.8	
10 yr	1	9.3	12.4	8.6	9.2	7.3	8.4	
13 yr	1	10.7	13.5	9.6	10.9	8.5	8.5	
40 yr	1	16.7	14.4	14.0	12.7	11.5	11.1	

Contributor: Boyd, E.

Reference: Engel, S., Arch. Kinderh. 60:267, 1913.

25. DIMENSIONS OF TRACHEA: MAN

Based on data of Engel, Gegovd, Koike, Mettenheimer, Oppikofer, Passavant, and Scammon.

	Leng	gth		Lumen Diameter		
Age	Age Specimens cm		Specimens	Sagittal	Frontal mm	
			no	mm		
(A)	(B)	(C)	(D)	(E)	(F)	
1 0-1 mo	20	4.0	11	3.6	5.0	
2 1-3 mo	30	3.8	35	4.6	6.1	
3 3-6 mo	35	4.2	37	5.0	5.8	
4 6-12 mo	23	4.3	25	5.6	6.2	
5 1-2 yr	17	4.5	18	6.5	7.6	
6 2-3 yr	19	5.0	22	7.0	8.8	
7 3-4 yr	12	5.3	12	8.3	9.4	
8 4-6 yr	22	5.4	25	8.0	9.2	
9 6-8 yr	14	5.7	16	9.2	10.0	
0 8-10 yr	14	6.3	16	9.0	10.1	
1 10-12 yr	8	6.3	10	9.8	11.3	
2 12-14 yr	5	6.4	6	10.3	11.1	
3 14-16 yr	9	7.2	10	12.7	14.0	
4 Adult		12(9-15)		17.2(13-23)	14.7(12-18)	

Contributor: Boyd, E. Reference: Scammon, R. E., in "Pediatrics" (Abt, I. A., ed.), vol 1, p 257, Philadelphia: W. B. Saunders Co., 1923.

26. DIAMETER OF SINUSES: MAN

Values are in millimeters.

		T	Dia	meter	
Age	No.	Ostium	Vertical	Lateral	AntPost.
(A)	(B)	(C)	(D)	(E)	(F)
		Left	Frontal		
1 8 da-1 yr	10	2.5 x 0.75	2.7	1.6	3.3
2 1-2 yr	10	2.3 x 0.75	4.0	2.5	3.8
3 2-3 yr	8	2.0 x 0.87	6.5	3.1	5.4
5-6 yr	3	3.5 x 1.8	9.0	5.1	7.0
9-10 yr	2	3.5 x 2.0	8.5	6.2	7.5
13-14 yr	3	4.1 x 1.7	11.3	11.8	12.3
17-18 yr	4	2.8 x 1.4	26.2	26.5	10,6
3 20-21 yr	2	5.0 x 3.1	26.6	19.0	18.2
		Left Sp	henoidal		
8 da-1 yr	10	0.7 x 0.7	2.8	2.0	1.6
1-2 yr	10	0.9 x 0.7	4.5	3.4	2.2
2-3 yr	8	1.0 x 0.7	5.4	4.1	2.8
5-6 yr	3	1.6 x 1.3	7.0	5.4	5.0
9-10 yr	2	3.2 x 2.0	11.0	12.2	7.3
13-14 yr	3	3.0 x 1.3	10.8	11.1	11.7
17~18 yr	4	3.0 x 1.0	21.0	15.3	20.2
20-21 yr	2	2.5 x 0.9	22.0	15.3	18.0
		Left M	axillary		
8 da-1 yr	10	1.5 x 0.6	5.7	4.6	13.3
1-2 yr	10	2.1 x 0.8	8.3	6.7	17.9
2-3 yr	8	2.0 x 0.8	9.2	7.9	20.2
5-6 yr	3	3.3 x 1.1	12.3	14.0	26.2
9-10 yr	2	4.0 x 2.5	18.5	19.0	30.5
2 13-14 yr	3	3.7 x 1.1	23.6	18.0	31.1
3 17-18 yr	4	3.3 x 1.5	32.2	24.5	36.0
20-21 yr	2	3.5 x 1.0	26.5	20.0	32.0

Contributor: Boyd, E.

Reference: Davis, W. B., "Development and Anatomy of the Nasal Accessory Sinuses in Man," Philadelphia: W. B. Saunders Co., 1914.

27. LUNG WEIGHT RELATIONSHIPS: LABORATORY MAMMALS

Part I: LUNG LOBES

Lobes arbitrarily numbered as referred to in Part III.

1 = Apical (superior)

2 = Diaphragmatic (inferior)

Right

I

3

Right

1 = Apical (superior)

Dog

2 = Middle

3 = Diaphragmatic (inferior)

4 = Azygos (mediastinal)

Left Right Rabbit

Contributors: (a) Joffe, M. II., (b) Ross, B. B.

References: [1] U. S. Army Chemical Warfare Laboratories, Army Chemical Center, Maryland. [2] Rahn, H., and Ross, B. B., J. Appl. Physiol. 10:154, 1957.

27. LUNG WEIGHT RELATIONSHIPS: LABORATORY MAMMALS (Concluded)

Part II: BODY WEIGHT VS LUNG WEIGHT

Values in parentheses are ranges, estimate "c" of the 95% range (cf Introduction).

			Body Weight	Wet Weight		Dry			
	Animal	No.		Whole Lung	% Body	Whole Lung	% Body	% Wet	Reference
			kg	g	Weight	g	Weight	Weight	
	(A)	(B)	(C)	(D)	(E)	(F)	(G)	(H)	(1)
1	Cat	5	3.08(2.1-4.0)	23.19(16.3-28.0)	0.75	5.57(3.6-6.8)	0.18	24.43	1
2	Dog	11	18.3(11.5-25.0)			42.6(25.2-68.9)	0.23		2
3	Guinea pig	16	0.50(0.29-0.76)	4.11(2.3-7.0)	0.82	0.86	0.17	20.86	1
4	Monkey	6	3.12(2.1-4.1)	25.46(20.0-33.0)	0.82	5.52(3.9-8.1)	0.18	21.66	1
5	Rabbit	4	2.33(2.0-2.5)	10.5(9.8-13.0)	0.45	2.23(2.0-2.6)	0.10	21.55	1

Contributors: (a) Joffe, M. H., (b) Ross, B. B.

References: [1] U. S. Army Chemical Warfare Laboratories, Army Chemical Center, Maryland. [2] Ross, B. B., unpublished.

Part III: LUNG LOBE WEIGHT RELATIONSHIPS

Specification: A-W = actual weight in grams; % T-D-W = % total dry weight.

				_	Lung	g Lobe					
Animal		Specification	(Left	(Left	(Right	(Right	(Right	(Azvane)	Tracheal	Reference	
		Specification	Apical)	Diaphragmatic)	Apical)	Middle)	Diaphragmatic)	R4	i rachea-	Reference	
			Ll	L2	RI	R2	R3	17.4			
	(A)	(B)	(C)	(D)	(E)	(F)	(G)	(H)	(1)	(J)	
1	Cat	A-W	0.77	1.2	0.70	0.38	1.23	0.37	0.96	1	
2		% T-D-W	13.38	21.55	12.6	6.66	22.0	6.68	17.2		
3	Dog	A-W	5.3	9.2	5.7	3.1	8.8	2.8	7.7	2	
4	_	% T-D-W	12.4	21.6	13.4	7.3	20.7	6.6	18.1		
5	Monkey	A-W	1.07	1.31	0.70	0.43	1.44	0.24	0.38	1	
6		% T-D-W	19.3	23.73	12.7	7.8	26.08	4.36	6.86		
7	Rabbit	A-W	0.21	0.61	0.20	0.20	0.63	0.11	0.29	1	
8		% T-D-W	9.14	26.74	8.72	8.85	27.84	4.89	12.6		

/1/ Tracheal length weighed included structure between thyroid cartilage and bifurcation.

Contributors: (a) Joffe, M. H., (b) Ross, B. B.

References: [1] U. S. Army Chemical Warfare Laboratories, Army Chemical Center, Maryland. [2] Ross, B. B., unpublished.

28. LUNG WEIGHT: VERTEBRATES

Part I: MAMMALS

Values, unless otherwise indicated, are for adult weights, on a fresh basis, and are g/100g body weight determined immediately after death of animal.

	Species	No. and Sex	Body Weight kg	Lung	g/100g	Habitat
	(A)	(B)	(C)	(D)	(E)	(F)
	(4-7)		Primates	(-)	(-/	\-\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
1	Man, Maya Quiche Indian, 25 yr	10	42	1315	3.13	Guatemala
2	35 yr	10	43.4	755	1.74	Guatemala
3	American, white	10	63.5	360	0.57	New York
4		10	70.3	620	0.88	New York
5	Baboon (Papio cynocephalus)	10	19.51	175	0.89	Moto Umba, Africa
6	Chimpanzee (Troglodytes niger)	10	52.16	600	1.15	Budonga Forest, Uganda, Afric
7	Monkey, gray (Cercopithecus mitis	19	1.22	9.98	0.82	Maji Moto, Africa
	kibonotensis)					
8		20	3.73	28.51	0.75	Maji Moto, Africa
9	Howler, black (Alouatta palliata	10, ৫০	0.671	9.881	1.471	Panama
	inconsonons)					
0		3, ♂♀	2.682	22.72	0.852	Panama
1		28, ♂♀	6.17	38.68	0.627	Panama
2	Howler, brown (A. palliata palliata)	5, ♂♀	1.212	11.52	0.952	Panama
3		6,00	3.12	28.3	0.91	Panama
4	Humboldt (Lagothrix humboldti)	19	5.26	63.5	1.21	South America
5	Lemur (Galago senegalensis)	19	0.20	1.44	0.72	Maji Moto, Africa
6	Ring-tailed (Lemur catta)	19	1.73	24.7	1.43	Z00
7	Macaque, rhesus (Macaca rhesus)	19	1.392	6.22	0.452	Ohio
8		79	3.63	68.5	1.89	Laboratory
9	Night (Aotus zonalis)	18, 00	1.932	17.32	0.902	Рапата
0	Spider, red (Ateles geoffroyi)	19, 02	1.032	11.982	1.162	Panama
1		63, ♂♀	7.63	51.38	0.67	Panama
2	Spider, black (A. dariensis)	18, ♂♀	1.932	17.302	0.892	Panama
3	Squirrel (Leontocebus geoffroyi)	133, ರಾ	0.191	3.131	1.641	Panama
4		19,00	0.4752	3.912	0.872	Panama
5		8, 00	0.793	8.48	1.07	Рапата
6	Sykes (Cercopithecus sp)	20	4.94	21.36	0.43	Maji Moto, Africa
7	Vervet (C. aethiops centralis)	20	4.19	17.01	0.406	Maji Moto, Africa
8		19	1.232	9.982	0.812	Maji Moto, Africa
9	Whiteface (Cebus capucinus linnaeus)	27, 00	0.591	7.931	1.341	Panama
0		6, 00	1.322	20.442	1.552	Panama
1		14, 02	3.10	34.07	1.1	Panama
2	Yellow titi (Saimiriorstedii orstedii	60, ৫০	0.607	7.20	1.19	Panama
	reinhardt)					
			arnivores			
3	Bear, polar (Thalarctos maritimus)	2, &9	258.5	2140	0.83	Z00
4	Cat, domestic (Felis domesticus)	2, ರ೦	1.54	15	0.97	Panama
5	Genet (Genetta tigrina suahelica)	20,19	1.38	17.77	1.28	Maji Moto, Africa
6	Wildcat (Felis ocreata)	10	2,70	9.0	0.33	Maji Moto, Africa
7	Cheetah (Acinonyx jubatus)	10	40.8	360	0.88	Zoo
8		10	6.25	43	0.69	Guatemala
9	Coyote (Canis latrans)	19	8.51	61.28	0.72	Kansas
0	Dog (Canis familiaris)	30,29	13.70	315	2.3	Maji Moto, Africa
1	Greyhound	10	24.49	363.5	1.48	Tennessee
2	Husky	20	31.75	431	1.36	Churchill, Canada
3	Mongrel	20,29	13	123.2	0.94	Florida and Ohio
4	Collie-police	49	23.71	192.7	0.81	Ohio
5	Fox, bat-eared (Otocyon megalotis)	19	3.34	35.05	1.05	Maji Moto, Africa
6	Gray (Urocyon cineroargenteus scotti)	10	3.76	19.12	0.51	Florida
7	Jakal (Thos mesomelas)	20	2.85	30.08	1.05	Lake Manyara, Africa
8	Jaguar (Felis onca)	19	34.47	576.0	1.67	Z00
9	Kinkajou (Potos flavus aztecus)	15	2.62	78.5	2.99	Guatemala
^	Leopard (Felis pardus)	10	48	500	1.04	Z00
	Lion (Felis leo)	30,19	128.2	2090	1.63	Zoo
1	Lifon (Fells 160)			1	1 20	1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
1		20	190.9	2300	1.20	Maji Moto, Africa
0 1 2 3	Mountain (F. oregonensis)	2d 1d	190.9	326	1.13	New Mexico
1	Mountain (F. oregonensis) Mongoose (lchneumia albicauda)			1		

/1/ Infant. /2/ Juvenile.

28. LUNG WEIGHT: VERTEBRATES (Continued)

Part I: MAMMALS (Continued)

Values, unless otherwise indicated, are for adult weights, on a fresh basis, and are g/100g body weight determined immediately after death of animal.

_	Species		Body Weight	<u> </u>		Habitat
	·	Sex	kg	g	g/100g	
	(A)	(B)	(C)	(D)	(E)	(F)
- 5 /			res (conclude		1 41	C 1-
56	Seal, bearded (Erignathus barbatus)	10	281	4536	1.61	Canada
57	(Phoca richardi geronimensis)	10	107.3	1880	1.75	California
58	Ringed (P. hispida)	30,29	39.73	734	1.85	Canada
59	Serval (Felis capensis)	10,29	7.88	87.8	1.11	Maji Moto, Africa
60	Skunk (Mephitis mephitis)	10	1.7	27.1	1.59	New York
61	Tiger (Felis tigris)	2, 00	184	1454	0.79	Z00
62	Weasel, arctic (Mustela arctica)	30,19	0.182	3.72	2.04	Canada, and zoo
63	Wolf, Russian (Canis lupus lupus)	1 of	22.68	807	3.56	Zoo
64	Timber (C. lubilus)	1ď	29.94	379	1.26	Minnesota
			Rodents			
65	Agouti, brown (Dasyprocta punctata dariensis)	2, 00	3.17	16	0.50	Panama
66	Spotted (Cuniculus paca virgatus)	3, ♂♀	3.63	23.5	0.65	Panama
67	Beaver (Castor canadensis)	2, 00	5.01	48.9	0.97	Michigan
68	Capybara (Hydrochoerus isthimius)	2,00	27.67	227	0.82	Panama
69	Chipmunk (Tamlas striatus fisheri)	20	0.075	0.719	0.96	Cleveland, Ohio
70	Guinea pig (Cavia cutleri)	560,669		3.56	0.97	Cleveland, Ohio
71	Hamster, golden (Cricetus cricetus)	20,29	0,118	0.54	0.46	Cleveland, Ohio
72	Hare, African (Lepus capencis)	19	2.93	17.91	0.61	Maji Moto, Africa
73	Arctic (L. arcticus arcticus)	20,29	2.27	43.9	1.93	Tavane, Canada
74	Lemming, brown (Lemmus	40,19	0.039	0.77	1.97	Churchill, Canada
1.3	trinucronatus)	10,11	0.037		**/*	Churchin, Canada
75	Rock (Dicrostonyn rubricatus richardsoni)	4 of	0.052	0.83	1.59	Churchill, Canada
76		10	0.022	0.24	1.10	Maji Moto, Africa
10		10	0.022	0.24	1.10	Maji Moto, Africa
20	microdon)	1.4	0.010	0.27	1 50	Induit Backs A Series
77	Dormouse (Claviglis saturatus)	10	0.018		1.50	Maji Moto, Africa
78	Jumping (Zapus hudsonicus) ³	10,39	0.017	0.243	1.42	Ohio
79	Meadow (Microtus drummondi) ³	670,429		0.39	1.70	Churchill, Canada
80	(M. pennsylvanicus pennsylvanicus)	530,429		0.394	1.51	Ohio
81	(Peromyscus sp) ³	140,29	0.015	0.26	1.71	Guatemala
82	Muskrat (Ondatra zibethica alba)	10	0.9	4.35	0.98	Churchill, Canada
83	Porcupine (Erethizon dorsatus)	2, 00	2.91	29	0.98	Maji Moto, Africa, and New Yor
84	Rabbit, Flemish giant (Lepus sp)	229	2.59	13.72	0.53	Ohio
85	Rat, Norway (Rattus norvegicus)	20,19	0.251	1.98	0.79	Ohio
86	Squirrel, ground (Citellus paryii paryii)	50,39	0.908	10.23	1.11	Churchill, Canada
87	Red (Sciurus hudsonicus)	50,49	0.21	2.91	1.38	Churchill, Canada
88	(S. hudsonicus loquax)	20,29	0.17	2.29	1.35	Cleveland, Ohio
		Art	iodactyles			
89	Bison, American (Bison bison)	10	54.9	1190	2.17	California
90	Buffalo (Syncerus caffer caffer)	20	759	8110	1.07	Maji Moto, Africa
91	Bushbuck (Tragelaphus scriptus	2, ರ೦	44.2	727	1.64	Maji Moto; Lake Manyara, Africa
92	massaicus) Caribou, Barren ground (Rangifer	20,19	112.0	1862	1.66	Canada
	arcticus arcticus)					
93	Cattle, calf (Bos taurus)	10	10.891	3021		Kentucky
94		19	98.4	1411		Kentucky
95	Cow, Aberdeen Angus ⁴	19	719	2654	0.37	Kentucky
96	Ayrshire ⁴	449	491	3311	0.67	Kentucky
97	Guernsey ⁴	629	450	3143	0.698	Kentucky
98	Holstein ⁴	2009	574	4336	0.75	Kentucky
99	Jersey ⁴	2189	413	3057	0.74	Kentucky
100	Deer (Odocoileus chiriquensis)	19	13.9	520	3.73	Panama
101	Indian axis (Cervas axis)	10	88.5	1726	1.95	Z00
102	White-tailed (Odocoileus virginianus)	10	65.2	1318	2.02	Zoo
	Dik-dik (Rhynchotragus kirki)	10	4.97	44.4	0.97	Maji Moto, Africa
104	Elk (Cervus canadensis)	10	13.61	319	2.34	Zoo
105		20	24.37	280	1.15	Maji Moto, Africa
106		10	1220	12,060	0.99	Maji Moto, Africa
	tippelskischi)	1	1220	12,000	0.77	11000, 1111404
	**PPCIDITIONIA)					

^{/1/} Infant. /3/ Preserved weight. /4/ Data furnished by the Bureau of Animal Industry, U.S. Dept. of Agriculture.

28. LUNG WEIGHT: VERTEBRATES (Continued)

Part 1: MAMMALS (Concluded)

Values, unless otherwise indicated, are for adult weights, on a fresh basis, and are g/100g body weight determined immediately after death of animal.

	Species		Body Weight			Habitat
	•	Sex	kg	g	g/100g	
	(A)	(B)	(C)	(D)	(E)	(F)
			les (conclude			
07	Hartebeest, Coke's (Bublis cokei cokei)	10	134	1850	1.38	Maji Moto, Africa
80	Hippopotamus (Hippopotamus amphibius)		5433	49103	0.903	Maji Moto, Africa
09		19	1351	11,340	0.84	Maji Moto, Africa
10	Impala (Acpyceros melampus)	4 of	47.73	650	1.36	Maji Moto, Africa
11	Lamb (Ovis aries)	40,79	33.9	624.1	1.84	Kentucky
12	Peccary, collared (Pecari angulatus bangsi)	10	29	279	0.96	Zoo
13	Reedbuck (Redunca redunca tohi)	20	31.7	462	1.47	Lake Manyara, Africa
4	Steinbok (Raphicerus campestris neumanni)	20	8.62	150	1.74	Maji Moto, Africa
15	Swine (Sus scrofax)	20,19	8.98	255.2	2.84	Kentucky
6		19	113.2	609.7	0.538	Kentucky
17	Warthog (Phacochoerus aethiopicus)	10	65,3	550	0.84	Maji Moto, Africa
8	Wildbeast (Gnutaurinus albojubatus)	20	212	2850	1.34	Maji Moto, Africa
		Peri	ssodactyles			
9	Burro (Equus asinus)	19	150.7	1260	0.83	Guatamala
	Horse (Equus caballus)					
20	Arabian stallion, 28 yr ⁵	20	412	5777	1.40	Ohio
21	Percheron, 18 yr ⁵	2, 09	703	5510	0.78	Ohio
22	Polo pony, 25 yr ⁵	10	380	8616	1.50	Ohio
3	Saddle-bred gelding	20	3352	31892	0.952	Kentucky
4	Shetland pony	10	272	1871	0.69	Ohio
25	Thoroughbred, 2-3 yr ⁵	30,79	421.2	4123	0.98	Kentucky
:6	Colt, yearling	90,19	319	3043	0.95	Kentucky
	Foal, 4.3 da ⁵	180,199	53.38	1390	2.60	Kentucky
7						
8	Fetus, 15.3 da premature ⁵	150,119	43.29	1352	3.12	Kentucky
29	50.4 da premature ⁵	50,50	26.88	1135	4.22	Kentucky
30	Stallion, 15.1 yr ⁵	60	508	5977	1.17	Kentucky
31	Mule, Panama (Equus asinus)	4,00	279.2	4026	1.44	Panama
32		10	42.642	6282	1.472	Panama
33		19	444.5	5678	1.28	Kentucky
34	Rhinoceros (Rhinoceros bicornis)	10	764	7350	0.96	Maji Moto, Africa
35	Tapir (Tapirella bairdii)	19	58.1	2068	3.55	Panama Canal Zone
36	Zebra (Equus quagga granti), embryo	1 0	7.9	300	3.79	Maji Moto, Africa
37	Fetus	10	29.5	655	2.22	Z00
38	Infant	19	43.1	740	1.72	Z00
39	6 w k	19	56.6	1025	1.81	Maji Moto, Africa
10	Adult	20	255	2025	0.79	Maji Moto, Africa
	Proboscio	leans, Hy	racoideans,	and Sire	nians	
41	Elephant (Loxodonta africana knochenhaueri)	10	6654	138,790	2.08	Maji Moto, Africa
42	Hyrax (Heterohyrax brucci)	10	0.75	5.53	0.74	Lake Manyara, Africa
13	Manatee (Trichechus manatus)	2, 00	496	3395	0.68	Florida
		(Cetaceans			
44	Porpoise (Phocaena phocaena)	10	142.4	5250	3.69	Florida
45	Whale, white (Delphinapterus leucas)	40,20	375.1	10,014	2.67	Churchill, Canada
		Ins	sectivores			
46	Mole (Scalopus aquaticus)	10	0.04	0.74	1.86	Ohio
47	Shrew (Blarina breuicauda)	290,399		0.39	2.16	Ohio
	, and an extra day		Edentates			
48	Anteater (Tamanduas tetractyla chiriquensis)	2, 00	3.69	27	0.73	Panama
49	Armadillo (Dasypusnovemeinetus fenestratus)	10, 00	3.4	24	0.70	Panama
50	Sloth, three-toed (Bradypus griseus griseus)	4, 02	2.02	27.42	1.372	Panama
		N	larsupials	-		
51	Opossum (Didelphis marsupialis etensis)		1.15	9.5	0.83	Panama

^{/2/} Juvenile. /3/ Preserved weight. /5/ Average.
Contributor: Quiring, D. P.
Reference: Quiring, D. P., "Functional Anatomy of the Vertebrates," New York: McGraw Hill, 1950.

28. LUNG WEIGHT: VERTEBRATES (Continued)

Part II: BIRDS

Values, unless otherwise indicated, are for adult weight, on a fresh basis, and are g/100g body weight determined immediately after death of animal.

		N1	10 - d - 11/-2 - b 4	T	W/ - i -l- t	
	Species	No. and	Body Weight		Weight	Habitat
		Sex	kg	g	g/100g	(12)
	(A)	(B)	(C)	(D)	(E)	(F)
1	Blackbird (Quiscalus quiscula aeneus)	10	0.082	0.172	0.21	Ohio
2	Bustard, greater (Choriotis kori, struthiunculus)	2, 00	7.77	85.24	1.09	Athi Plain, Africa
3	Lesser, (Haliaoetus bociter bociter)	19	1.10	14.4	1.30	Maji Moto, Africa
4	Buzzard, steppe (Buteo vulpinus vulpinus)	10	0.56	4.64	0.83	Maji Moto, Africa
5	Turkey (Cathartes aura septentrionalis)	10	0.5	14.7	2.94	Florida
6	Cathird (Dumetella carolinensis)	19	0.033	0.607	1.84	Ohio
7	Canary (Serinus canarius)	10	0.017	0.25	1.47	Ohio
8	Crane, crested (Balearica pavonina)	2,09	4.45	44.13	0.99	Ohio
9	Gray (Grus canadensis)	10	1.65	15.33	0.93	Florida
10	Crow (Corvus brachyrhynchos)	10	0.34	9.97	2.93	Ohio
11	Dovekie (Alle alle)	2,00	0.103	1.65	1.61	Florida
		10	1.041	17.6	1.69	Ohio
12	Duck (Nyroca affinis)	10	0.67	17.1	2.56	Churchill, Canada
13	Pintail (Dafila acuta tzitzihoa)		3.5	47.33	1.35	Maji Moto, Africa
14	Eagle, fish (Haliaetus vocifer vocifer)	19				
15	Tawney (Aquila rapax rapax)	3 <i>d</i>	2.05	25.1	1.22	Maji Moto, Africa
16	Egret, great white (Casmerodius albus	15	1.03	33.10	3.21	Maji Moto, Africa
	melanorhynechos)					
17	Yellow-bill (Mesophyox intermedia	10	0.525	5.4	1.02	Maji Moto, Africa
	brachyrhyneha)					
18	Flamingo (Phoeniconaias minor)	20,39	1.504	22.33	1.48	Maji Moto, Africa
19	Fowl, leghorn (Gallus gallus domesticus)	49	1.263	10.5	0.87	Ohio
20	108 da old	100,109	0.49	4.13	0.84	Ohio
21	136 da old	80,169	0.674	4.1	0.6	Ohio
22	White Orpington	10	2.2	13.17	0.59	Ohio
23	White Wyandotte bantam, conventional	20,59	0.72	3.09	0.43	Ohio
24		30,29	0.83	2.49	0.30	Ohio
	Germfree ¹	19	1.94	35,2	1.80	Lake Manyara,
25	Goose, Egyptian (Alopochen aegypticus)	1 4 4	1.74	35,6	1.00	Africa
_ ,			1 (2	20.0	1.70	
26	Guinea fowl (Numida meleagris)	10	1.62	29.0	1.79	Maji Moto, Africa
27	Gull, Bonaparte's (Larus philadelphia)	10	0.2	7.12	3,56	Churchill, Canada
28	Ring-billed (L. delawarensis)	19	0.72	9.13	1.27	Florida
29	Shearwater (Puffinus griseus)	19	0.27	2.45	0.91	Florida
30	Hawk, red-tailed (Buteo borealis)2	19	1.03	9.3	0.9	Ohio
31	Sharp-shinned (Accipiter velox velox)	19	0.52	7.7	1.48	Ohio
32	Sparrow (Falce sparverius sparverius)	10	0.112	1.5	1.36	Florida
33	Hornbill, ground (Bucorvus cafer)	10	3.3	52.3	1.61	Maji Moto, Africa
	Hummingbird (Amazilia tzacatl tzacatl)	19	0.005	0.095	1.9	Guatemala
35		20,19	1.56	22.5	1.44	Tavane, Canada
	Merganser, red-breasted (Mergus serrator)	19	0.8	18.2	2.27	Tavane, Canada
37	Ostrich, Masai (Struthio camelus massaicus)	10	123	2900	2.36	Maji Moto, Africa
38		10	1.18	10.7	0.91	Ohio
39		20	3.3	29.8	0.91	Florida
		T	0.26	4.58	1.76	Ohio
40	8	30,19		1		
41	Ptarmigan, willow (Lagopus lagopus)	30,19	0.54	10.17	1.88	Churchill, Canada
42		20	0.07	1.68	2.24	Ohio
43	The state of the s	19	0.79	18	2.29	Churchill, Canada
44	Sparrow (Passer domesticus)	750,119		0.3837	1.64	Ohio
45	Starling (Sturnus vulgaris)	150,109		1.08	1.87	Ohio
46		10	0.95	10.63	1.11	Maji Moto, Africa
47	European (Ciconia ciconia ciconia)	10	3.35	27.2	0.81	Maji Moto, Africa
48		29	3.35	42.3	1.26	Maji Moto, Africa
49	Hammerhead (Scops umbretta)	10	0.32	8.2	2.57	Maji Moto, Africa
50	Marabou (Leptopilos crumeniferous)	20	7.13	72.2	1.01	Maji Moto, Africa
51	Teal, green-winged (Nettion carolinensis)	19	0,3	9.2	3,07	Churchill, Canada
	Tear, green winged (Nettion ear officials)			12 / 3		
1 .		14 D 6	[-1			

^{/1/} For a discussion of the meaning of "germ-free," consult Reference [2]. /2/ Juvenile.

Contributors: (a) Quiring, D. P., (b) Reyniers, J. A., and Gordon, H. A.

References: [1] Quiring, D. P., "Functional Anatomy of the Vertebrates," New York: McGraw Hill, 1950. [2] Reyniers, J. A., and Gordon, H. A., Lobund Report No. 3, University of Notre Dame.

28. LUNG WEIGHT: VERTEBRATES (Concluded)

Part III: REPTILES

Values, unless otherwise indicated, are for adult weights, on a fresh basis, and are g/100g body weight determined immediately after death of animal.

	Species	No. and	Body Weight	Lung	Weight	Unhitat
	Species	Sex	kg	kg g		Habitat
	(A)	(B)	(C)	(D)	(E)	(F)
1	Alligator (Alligator mississippiensis)	19	52.4	393	0.75	Zoo
2		2ರೆ	189	1014	0.54	Florida
3	Crocodile (Crocodilus americanus)	10	134	1.125	0.85	Florida
4	Gila monster (Heloderma suspectum)	19	0.514	6.45	1.25	Arizona
5	Lizard, iguana (Iguana iguana)	19	1.34	3.70	0.276	Guatemala
6	(Amblyrhynchus cristatus)	19	4.191	64.41	1.5361	Galapagos Islands
7	Snake, black (Coluber constrictor)	2, 0 9	0.401	3.79	0.88	Ohio
8	Boa, imperator (Boa imperator)	19	1.829	14.0	0.76	Guatemala
9	Water moccasin (Agkistrodon piscivorus)	19	0.728	22.62	3.12	Florida
10	Turtle (Aromochelys tristycha)	l₫	0.116	0.863	0.741	
1.1		29	0.088	0.954	1.08	
12	(Clemmys guttata)	1ರ್	2.163	31.95	1.48	Ohio
13	(Chelydra serpentina)	19	5.125	85.07	1.66	Maji Moto, Africa
14	(Malacoclymmys lesueri)	1ರ	0.254	1.14	0.449	
15	Green (Chelonia mydra)	10	111.30	2.650	2.38	Florida
16	Cumberland (Chrysemys elegans)	210,19	0.852	0.956	0.112	
17	Snapping (Macrochelys lacertina)	1ರ	1.848	34.9	1.89	Ohio

/1/ Preserved weight.

Contributors: (a) Quiring, D. P., (b) Latimer, H. B.

References: [1] Quiring, D. P., "Functional Anatomy of the Vertebrates," New York: McGraw Hill, 1950. [2] Latimer, H. B., Anat. Record 18:35, 1920. [3] Latimer, H. B., ibid 19:347, 1920.

Part IV: AMPHIBIANS

Values, unless otherwise indicated, are for adult weights, on a fresh basis, and are g/100g body weight determined immediately after death of animal.

Species	No. and	Body Weight	Lung Weight		- Habitat	
	Sex	kg	g g/100g			
(A)	(B)	(C)	(D)	(E)	(F)	
Frog, bullfrog (Rana catesbiana)	70	0.429	2.27	0.53	La., N. Carolina	
Leopard (R. pipiens)	100,199	0.037	0.81	2.19		
	200,109	0.02751	0.861	3.1281		
Toad, horned (Phrynosoma cornutum)	2♂,3♀	0.025	0.594	2.48	Arizona	

/1/ Preserved weight.

Contributors: (a) Quiring, D. P., (b) Latimer, H. B.

References: [1] Quiring, D. P., "Functional Anatomy of the Vertebrates," New York: McGraw Hill, 1950. [2] Latimer, H. B., Anat. Record 18:35, 1920. [3] Latimer, H. B., ibid 19:347, 1920.

29. SUBDIVISIONS OF LUNG VOLUME: MAN

Part I: DIAGRAM

Volumes corrected to BTPS conditions (cf Page 1).

Reference: Comroe, J. H., Jr., et al, Fed. Proc. 9:602, 1950.

Part II: STANDARDIZED TERMS VS SOME PREVIOUS TERMS

	Standardized Term	Definition	Previous Term
1	Inspiratory reserve volume	Maximal volume that can be inspired from end-tidal inspiration.	Complemental air. Complementary air. Complemental air minus tidal air. Inspiratory capacity minus tidal volume.
2	Tidal volume	Volume of gas inspired or expired during each respiratory cycle.	Tidal air.
3	Expiratory reserve volume	Maximal volume that can be expired from resting expiratory level.	Supplemental air. Reserve air.
4	Residual volume	Volume of gas in lungs at end of maximal expiration,	Residual air. Residual capacity.
5	Inspiratory capacity	Maximal volume that can be inspired from resting expiratory level.	Complemental air. Complementary air.
6	Functional residual capacity	Volume of gas in lungs at resting expiratory level.	Functional residual air. Equilibrium capacity. Mid-capacity. Normal capacity.
7	Vital capacity	Maximal volume that can be expired after maximal inspiration.	Vital capacity.
8	Total lung capacity	Volume of gas in lungs at end of maximal inspiration.	Total lung volume.

Reference: Comroe, J. H., Jr., "The Lung," Chicago: The Year Book Publishers, 1956.

Part I: LUNG VOLUMES

A = adults; C = children; BSA = body surface area. Age is in years.

	Measurement	Subject	Formula	Value	Reference
	(A)	(B)	(C)	(D)	(E)
1	Vital capacity, L	Cd		(0.79-3.78)1,2,3	1
2		C 9		(0.66-2.94)1,2,3	1
3		Ad	$[27.63-(0.112 \times age)] \times ht in cm \times 10^{-3}$	(2.18-5.43)4,5	2
4		ΑŞ	$[21.78-(0.101 \times age)] \times ht in cm \times 10^{-3}$	$(1.57-4.15)^4,5$	2
5	L/sq m BSA	Ad		2.56	3
6		A 9		2.06	3
7	Residual volume, ml	Cd	(11.1 x ht in cm) - 1,055		4
8	L	Cd		$(0.60-1.13)^2, 5, 7, 8$	4
9		Cd		(0.26-1.75)2, 5, 9, 10	5
10	% total lung capacity	A of Q		(20-30.8)2,8	6
11	Total lung capacity, L	16-34 yr dQ	Vital capacity x 100		2
12		35-49 yr 🕫	Vital capacity x 100		2
13		50-69 yr d9	Vital capacity x 100		2
14		Ad		(3.62-7.68)4, 5, 8	6
15		Αç		$(3.20-6.18)^4, 5, 8$	6
16		Ad		5.49(2.31-7.24)4,5,11	7
17		ΑŞ		4.32(3.20-5.31)4, 5, 11	7
18	Physiologic dead space, cc	Ad		156(106-219)	8
19		ΑŞ		104	8
	Timed vital capacity,				
	% total vital capacity				
20	First sec	A of Q		83(72-98)	9,10
21	First 2 sec	A & \$		94(88-100)	9,10
22	First 3 sec	Aσρ		97(92-100)	9,10

/1/ Age range 4-17 yr. /2/ Increases with age. /3/ Volume uncorrected (cf Page 1); body position not stated. /4/ Decreases with age. /5/ Volume corrected to BTPS (cf Page 1); body position supine. /6/ Assuming normal weight range. /7/ Age range 10-17 yr. /8/ Closed-circuit oxygen rebreathing technique. /9/ Age range 6-17 yr. /10/ Closed-circuit hydrogen rebreathing technique. /11/ Closed-circuit helium rebreathing technique.

Contributor: Gaensler, E. A.

References: [1] Stewart, C. A., Am. J. Dis. Child. 24:451, 1922. [2] Baldwin, E. deF., Cournand, A., and Richards, D. W., Jr., Medicine 27:243, 1948. [3] West, H. F., Arch. Int. M. 25:306, 1920. [4] Morse, M., Schlutz, F. W., and Cassels, D. E., J. Clin. Invest. 30:380, 1952. [5] Robinson, S., Arbeitsphysiologie 10:251, 1938. [6] Kaltreider, N. L., Fray, W. W., and Hyde, H. V., Am. Rev. Tuberc. 37:662, 1938. [7] Whitfield, A. G., Waterhouse, J. A., and Arnott, W. M., Brit. J. Social M. 4:1, 1950. [8] Fowler, W. S., Am. J. Physiol. 154:405, 1948. [9] Gaensler, E. A., Am. Rev. Tuberc. 64:256, 1951. [10] Gaensler, E. A., Science 114:444, 1951.

Part II: BASAL RESPIRATORY FUNCTIONS
A = adults; C = children; BSA = body surface area; MBC = maximal breathing capacity.

	Measurement	Subject	Formula Value		Reference
	(A)	(B)	(C) (D)		(E)
1	Pulmonary ventilation,	Aď	3.5(2,6-4.9	9)1	1,2
2	L/min/sq m BSA	Αç	3.3(2.5-4.3	3)l	1,2
3	Oz consumption,	Ad	138(107-18	36)2	1,2
4	cc/min/sq m BSA	Αç	127(105-19	50)2	1,2
5	Basal heat production,	AC og	Oz consumption x 0.2895 ³		3
6	Cal/hr/sq m BSA	Cað	(40-52)2, 4		3
7		Ao	(37-41)2,4		3
8		ΑŞ	(34-38)2, 4	ł	3
9	Ventilatory equivalent,	AC of 9	Pulmonary ventilation, L oxygen uptake, cc x 100		2,4,5
10	L/100 cc	Ασ̈́♀	(2.2-2.6)5,	6	2, 4, 5

/1/ Usually expressed at BTPS (cf Page 1). /2/ Usually expressed at STPD (cf Page 1). /3/ Assuming a non-protein respiratory quotient of 0.82, or 4.825 Cal/L of O2 consumed. /4/ Decreases with age. /5/ Increases with age. /6/ Decreases during exercise.

30. PREDICTION FORMULAS AND SOME NORMAL VALUES IN PULMONARY PHYSIOLOGY: MAN (Concluded)

Part II: BASAL RESPIRATORY FUNCTIONS (Concluded)

A = adults; C = children; BSA = body surface area; MBC = maximal breathing capacity.

	Measurement	Subject	Formula	Value	Reference
	(A)	(B)	(C)	(D)	(E)
11	O2 removal, cc/L	AC of	Oxygen uptake, cc/min Pulmonary ventilation, L/min		1,6
12		Aď		43(34-54)4,7	1,6
13		ΑQ		45(37-62)4,7	1,6
14	Breathing reserve, %	A & ?	MBC(L/min) - Pulmonary ventilation(L/min) x 100	(88-95)4	1,7
15	Right lung, % total8	AσQ		(51-63)	8
16	Left lung, % total8	A & ?		(38-49)	8

^{/4/} Decreases with age. /7/ Increases during exercise. /8/ Percentages of total function apply to oxygen uptake and ventilation at rest and during exercise, to vital capacity and residual volume.

Contributor: Gaensler, E. A.

References: [1] Baldwin, E. deF., Cournand, A., and Richards, D. W., Jr., Medicine 27:243, 1948. [2] Matheson, H. W., and Gray, J. S., J. Clin. Invest. 29:688, 1950. [3] Aub, J. C., and DuBois, E. F., Arch. Int. M. 19:823, 1917. [4] Anthony, A. J., Deut. Arch. klin. Med. 167:129, 1930. [5] Knipping, H. W., and Moncrieff, A., Quart. J. M. 1:17, 1932. [6] Robinson, S., Arbeitsphysiologie 10:3, 1938. [7] Knipping, H. W., Beitr. Klin. Tuberk. 82:133, 1933. [8] Gaensler, E. A., et al, J. Laborat. Clin. M. 39:417; 40:223, 558, 1952.

Part III: EXERCISE AND MAXIMAL VENTILATION; INTRAPULMONARY MIXING

A = adults; BSA = body surface area. Age is in years.

	Measurement	Subject	Formula	Value	Refer- ence
	(A)	(B)	(C)	(D)	(E)
I Maximal I	breathing capacity, L/min1	Ad	[228 -(1.82 x age)] ± 17.6%	147(121-173)2,3	1
2		Aď	[86.5 -(0.522 x age)] x BSA in sq m	$(58-169)^3, 4$	1
3		Αç	[71.3 -(0.474 x age)] x BSA in sq m	$(47-118)^{3}$, 4	2
	walking ventilation, sq m BSA ¹	A & ?		(9-11) ⁵	3
5 Walking d	yspnea index, %	AσΩ	Actual walking ventilation, L/min Maximal breathing capacity, L/min x 100	(8-20)5,6	3,4
6 Air veloci	ity index	A of Q	% of predicted maximal breathing capacity % of predicted vital capacity	1.0(0.8-1.2) ³	5
7 Capacity	ratio	Ασφ	Maximal breathing capacity, L/min Vital capacity, L	(28-35) ³	6,7
8 Intrapulm	onary mixing,	A og		<2.57	8
	alveolar air	A & 2		(0.3-1.5)7	9

^{/1/} Usually expressed at BTPS (cf Page 1). /2/ Obtained by open-circuit technique. /3/ Decreases with age. /4/ Obtained by closed-circuit technique. /5/ Standard walk on level at 180 ft/min, expired air collected from second to fourth minute. /6/ Increases with age. /7/ After O₂ breathing, at rest for 7 minutes.

Contributor: Gaensler, E. A.

References: [1] Wright, G. W., "Methods in Medical Research," 2:212, Chicago: The Year Book Publishers, Inc., 1950. [2] Baldwin, E. def., Cournand, A., and Richards, D. W., Jr., Medicine 27:243, 1948. [3] Patton, W. E., Watson, T. R., Jr., and Gaensler, E. A., Surg. Gyn. Obst. 95:477, 1952. [4] Warring, F. C., Jr., Am. Rev. Tuberc. 51:432, 1945. [5] Gaensler, E. A., ibid 62:17, 1950. [6] Gaubatz, E., Beitr. Klin. Tuberk. 91:201, 1938. [7] Matheson, H. W., Spies, S. N., Gray, J. S., and Barnum, D. R., J. Clin. Invest. 29:682, 1950. [8] Cournand, A., Baldwin, E. def., Darling, R. C., and Richards, D. W., Jr., J. Clin. Invest. 20:681, 1941. [9] Gaensler, E. A., Frank, N. R., Patton, W. E., Devney, R. E., and Smith, S. S., unpublished.

31. VITAL CAPACITY VS AGE: CHILDREN AND ADOLESCENTS

Ventilatory values have been corrected to BTPS conditions (cf Page 1). Values in parentheses are ranges. Age ranges conform to estimate "c" of the 95% range (cf Introduction). Vital capacity ranges of Ferris and Shock conform to estimate "b" of the 95% range; those of Morse conform to estimate "c."

Age		Vital Capacity, L ¹	
yr	Ferris ²	Morse ³	Shock
(A)	(B)	(C)	(D)
	1	Males	
1 5.0-5.9	1.29(0.83-1.75)	0.544	
2 6.0-6.9	1.65(1.27-2.03)	0.924	
3 7.0-7.9	1.93(1.45-2.41)	1.58(1.17-2.00)	
4 8.0-8.9	2.16(1.34-2.98)	1.384	
5 9.0-9.9	2.17(1.69-2.65)	2.13(1.83-2.22)	
6 10.0-10.9	2.30)1.75-2.71)	2.28(1.86-2.53)	
7 11.0-11.9	2.54(1.80-3.28)	2.30(1.86-2.70)	
8 12.0-12.9	3.75(3.21-4.29)	2.65(1.81-3.40)	2.69(1.70-3.48)
9 13.0-13.9	3.81(2.53-5.09)	2.73(1.66-4.33)	3.03(2.13-4.15)
10 14.0-14.9	4.29(2.77-5.81)	3.45(2.06-5.09)	3.43(2.11-4.82)
11 15.0-15.9	4.47(3.23-5.71)	3.84(2.36-5.42)	3.89(2.38-5.33)
12 16.0-16.9	4.51(3.67-5.35)	4,23(3.10-5.55)	4.37(2.93-5.67)
3 17.0-17.9	4.49(3.67-5.31)	3,81(3,55-4.07)	4.61(3.28-6.10)
14 18.0-18.5			4.63(2.92-6.34)
	F	emales	
15 5.0-5.9	1.08(0.74-1.42)	0.904	
6 6.0-6.9	1.45(1.07-1.83)	1.38(1.13-1.56)	
7 7.0-7.9	1.51(1.19-1.83)	1.56(1.31-1.81)	
8 8.0-8.9	1.87(1.23-2.51)	1.51(1.17-1.90)	
19 9.0-9.9	2.04(1.38-2.70)	1.91(1.70-2.30)	
20 10.0-10.9	2.29(1.81-2.77)	2.40(2.16-2.78)	
21 11.0-11.9	2.57(1.71-3.43)	2.13(1.63-2.67)	
22 12.0-12.9	3.03(2.17-3.89)	2.58(1.83-3.10)	2.58(1.84-3.42)
23 13.0-13.9	3.49(2.13-4.85)	3.00(2.29-4.06)	2.96(2.26-3.71)
24 14.0-14.9	3.40(2.42-4.38)	3.05(2.66-3.59)	3.10(2.42-3.72)
25 15.0-15.9	3.66(2.83-4.44)	3.02(2.50-3.26)	3.16(2.59-3.84)
26 16.0-16.9	3.63(2.91-4.35)	2.664	3.26(2.63-3.99)
27 17.0-17.9	4.00(3.16-4.84)		3.27(2.64-3.96)

/1/ Maximal volume of gas expelled from the lungs by forceful effort, following a maximal inspiration. /2/ Subjects seated; body surface area obtained from DuBois nomogram; Benedict-Roth type spirometer (Collins ventilometer). /3/ All measurements made in recumbent position; Sanborn closed-circuit wet spirometer. /4/ From single determination.

Contributors: (a) Ferris, B. G., Jr., (b) Morrow, P. E., (c) Morse, M., (d) Shock, N. W., (e) Whittenberger, J. L.

References: [1] Ferris, B. G., Jr., Whittenberger, J. L., and Gallagher, J. R., Pediatrics, Springf. 9:659, 1952. [2] Ferris, B. G., Jr., and Smith, C. W., ibid 12:341, 1953. [3] Morse, M., Schlutz, F. W., and Cassels, D. E., J. Clin. Invest. 31:380, 1952. [4] Morse, M., Univ. of Chicago, unpublished. [5] Shock, N. W., and Norris, A. H., Gerontology Branch, National Institutes of Health, unpublished.

32. VITAL CAPACITY VS STANDING HEIGHT: CHILDREN AND ADOLESCENTS

Ventilatory values of Stewart conform to ATPS conditions. All other ventilatory values are corrected to BTPS conditions (cf Page 1). Values in parentheses are ranges; in data of Morse they conform to estimate "c" of the 95% range (cf Introduction); in data of Ferris, Shock, and Stewart, they conform to estimate "b," unless otherwise indicated.

Height		Vital Capacity, L ¹					
cm	Ferris ²	Morse ³	Shock	Stewart 4			
(A)	(B)	(C)	(D)	(E)			
		Males					
1 100.0-104.9		0.545		0.79(0.50-0.90)°			
2 105.0-109.9				1.06(0.79-1.34)			
3 110.0-114.9	1.46(0.82-2.10)	0.925		1.19(0.90-1.49)			
4 115.0-119.9	1.46(0.82-2.10)			1.34(1.04-1.64)			
5 120.0-124.9	1.64(1.32-1.96)	1.27(1.17-1.38)		1.50(1.1 -1.85)			
6 125.0-129.9	1.79(1.43-2.15)	1.835		1.67(1.29-2.06)			
7 130.0-134.9	2.05(1.63-2.47)			1.85(1.49-2.22)			
8 135.0-139.9	2.27(1.37-3.17)	1.99(1.81-2.11)		2.03(1.58-2.48)			
9 140.0-144.9	2.41(1.59-3.23)	2.22(1.66-2.58)	2.32(1.92-2.72)	2.22(1.72-2.72)			
0 145.0-149.9	2.38(1.76-3.00)	2.40(1.86-3.39)	2.53(2.20-2.86)	2.42(1.88-2.97)			
1 150.0-154.9	2.69(1.79-3.59)	2.57(1.89-3.17)	2.80(2.10-3.50)	2.66(2.14-3.18)			
2 155.0-159.9	3.52(2.64-4.40)	2.82(2.15-3.40)	2.95(2.40-3.50)	2.93(2.23-3.63)			
3 160.0-164.9	3.72(2.78-4.66)	3.22(2.49-3.67)	3.22(2.53-3.91)	3.24(2.51-3.97)			
4 165.0-169.9	4.07(3.19-4.95)	3.65(3.00-4.07)	3.54(2.81-4.27)	3.55(2.74-4.36)			
5 170.0-174.9	4.47(3.39-5.55)	3.97(3.45-4.72)	3.85(3.11-4.59)	3.99(2.75-4.40)°			
6 175.0-179.9	4.82(3.74-5.90)	4.30(3.80-4.76)	4.25(3.45-5.05)	4.02			
7 180.0-184.9	5.24(4.26-6.22)	5.07(4.74-5.42)	4.72(3.62-5.82)	4.17			
8 185.0-189.9			4.99(4.19-5.79)				
9 190.0-194.9			5.77(5.57-5.96) ^C				
		Females					
0 100.0-104.9	0.95(0.40-1.45)			0.88			
1 105.0-109.9	1.00(0.80-1.20)			0.85(0.60-1.20)			
2 110.0-114.9	1.12(0.78-1.46)			1.14(0.85-1.42)			
3 115.0-119.9	1.37(0.99-1.75)	1.01(0.89-1.13)		1.28(0.98-1.58)			
4 120.0-124.9	1.70(1.00-2.40)	1.435		1.41(1.13-1.70)			
5 125.0-129.9	1.70(1.26-2.14)	1.44(1.31-1.81)		1.56(1.22-1.90)			
6 130.0-134.9	1.97(1.31-2.63)	2.01(1.95-2.06)		1.71(1.34-2.07)			
7 135.0-139.9	2.19(1.66-2.72)	1.84(1.65-2.14)	2.26(2.15-2.36)°	1.87(1.47-2.26)			
8 140.0-144.9	2.32(1.68-2.96)	1.84(1.63-2.30)	2.24(2.05-2.42) ^C	2.04(1.59-2.49)			
9 145.0-149.9	2.53(1.87-3.19)	2.37(2.16-2.78)	2.47(1.97-2.97)	2.23(1.73-2.73)			
0 150.0-154.9	2.94(2.34-3.54)	2.37(2.16-2.67)	2.77(2.15-3.39)	2.44(1.83-3.05)			
1 155.0-159.9	3.28(2.44-4.12)	2.70(2.22-3.04)	2.81(2.29-3.33)	2.65(2.00-3.29)			
2 160.0-164.9	3.57(2.75-4.39)	3.12(2.60-4.06)	2.98(2.41-3.55)	2.83(2.18-3.48)			
13 165.0-169.9	3.85(2.97-4.73)	2.99(2.66-3.59)	3.24(2.45-4.03)	2.98			
14 170.0-174.9	3.91(2.39-4.43)	3.23(2.72-3.72)	3.22(2.84-3.60)	3.10			
5 175.0-179.9		,	3.50(2.95-4.05)				

/1/ The maximal volume of gas expelled from the lungs by forceful effort, following maximal inspiration. /2/ Subjects seated; Benedict-Roth type spirometer (Collins ventilometer), with soda lime container and valves removed. /3/ All measurements made in recumbent position; Sanborn closed-circuit wet spirometer. /4/ Position not stated; wet spirometer. /5/ From single determination.

Contributors: (a) Ferris, B. G., Jr., (b) Morrow, P. E., (c) Morse, M., (d) Shock, N. W., (e) Whittenberger, J. L.

References: [1] Ferris, B. G., Jr., Whittenberger, J. L., and Gallagher, J. R., Pediatrics, Springf. 9:659, 1952. [2] Ferris, B. G., Jr., and Smith, C. W., ibid 12:341, 1953. [3] Morse, M., Schlutz, F. W., and Cassels, D. E., J. Clin. Invest. 31:380, 1952. [4] Morse, M., Univ. of Chicago, unpublished. [5] Shock, N. W., and Norris, A. H., Gerontology Branch, National Institutes of Health, unpublished. [6] Stewart, C. A., Am. J. Dis. Child. 24:451, 1922.

33. VITAL CAPACITY VS WEIGHT: CHILDREN AND ADOLESCENTS

Ventilatory values of Stewart conform to ATPS conditions. All other ventilatory values are corrected to BTPS conditions (cf Page 1). Values in parentheses are ranges; in data of Morse they conform to estimate "c" of the 95% range (cf Introduction); in data of Ferris, Shock, and Stewart, they conform to estimate "b," unless otherwise indicated

	Weight		Vital Cap	pacityl	
	kg	Ferris ²	Morse ³	Shock	Stewart4
	(A)	(B)	(C)	(D)	(E)
			Males		
1	15.0-19.9		0.73(0.54-0.92)		(0.99-1.20)
2	20.0-24.9	1.53(0.89-2.17)	1.27(1.17-1.38)		(1.32-1.46)
3	25.0-29.9	1.72(1.28-2.16)	2.05(1.83-2.45)		(1.61-1.77)
4	30.0-34.9	2.10(1.70-2.50)	2.27(1.81-2.58)	2.24(1.94-2.54)	(1.91-2.05)
5	35.0-39.9	2.31(1.45-3.17)	2.44(1.66-3.04)	2.60(2.29-2.91)	(2.18-2.31)
6	40.0-44.9	2.66(1.92-3.40)	2.70(1.89-3.40)	2.86(2.35-3.37)	(2.44-2.70)
7	45.0-49.9	3.26(2.20-4.32)	2.95(2.00-3.95)	3.08(2.39-3.77)	(2.84-2.99)
8	50.0-54.9	3.85(2.91-4.79)	3.25(2.27-3.80)	3.55(2.68-4.42)	(3.14-3.30)
9	55.0-59.9	4.14(3.08-5.20)	3.90(3.14-4.72)	3.95(3.04-4.86)	(3.44-3.57)
10	60.0-64.9	4.34(2.95-5.73)	4.15(2.66-4.15)	4.32(3.13-5.51)	(3.68-3.79)
11	65.0-69.9	4.14(2.82-5.46)	4.38(3.87-5.42)	4.50(3.20-5.50)	(3.93-4.18)
12	70.0-74.9	4.86(3.94-5.78)	4.39(4.01-4.83)	5.11(3.14-7.08)	
13	75.0-79.9	4.87(3.37-6.37)	4.67(3.39-5.55)	4.52(3.02-6.02)	
14	80.0-84.9	4.52(3.96-5.08)		3.50	
			Females		
15	15.0-19.9	1.04(0.60-1.48)	1.01(0.89-1.13)		(0.93-1.01)
16	20.0-24.9	1.40(0.91-1.89)	1.39(1.17-1.56)		(1.24-1.39)
17	25.0-29.9	1.75(1.23-2.27)	1.69(1.31-1.95)		(1.53-1.65)
18	30.0-34.9	1.98(1.35-2.61)	1.95(1.34-2.40)	2.22(1.95-2.49)	(1.80-1.92)
19	35.0-39.9	2.37(1.64-3.10)	2.33(1.69-3.26)	2.55(2.07-3.03)	(2.03-2.21)
20	40.0-44.9	2.63(1.69-3.57)	2.26(1.63-2.93)	2.73(2.18-3.28)	(2.27-2.52)
21	45.0-49.9	3.02(2.18-3.86)	2.81(2.22-3.10)	2.92(2.41-3.43)	(2.62-2.72)
22	50.0-54.9	3.24(2.24-4.24)	2.77(1.83-3.59)	3.04(2.47-3.61)	(2.63-2.80)
23	55.0-59.9	3.53(2.39-4.67)	2.98(2.29-4.06)	3.16(2.49-3.83)	(2.90-3.04)
24	60.0-64.9	3,65(2.93-4.37)	2.785	3.20(2.59-3.81)	3.05
25	65.0-69.9	3.55(1.57-5.53)		3.48(2.96-4.00)	(2.73-3.00)
26	70.0-74.9	4.13(3.41-4.85)	3.49(3.26-3.72)	3.36(2.65-4.07)	3.39
27	75.0-79.9	3.90		3.18(2.75-3.61) ^C	2.90
28	80.0-84.9				2.90
29	85.0-89.9				2,90

/1/ The maximal volume of gas expelled from the lungs by forceful effort, following maximal inspiration. /2/ Subjects seated; Benedict-Roth type spirometer (Collins ventilometer) with the soda lime container and valves removed. /3/ All measurements made in recumbent position; Sanborn closed-circuit wet spirometer. /4/ Position not stated; wet spirometer. /5/ From single determination.

Contributors: (a) Ferris, B. G., Jr., (b) Morrow, P. E., (c) Morse, M., (d) Shock, N. W., (e) Whittenberger, J. L.

References: [1] Ferris, B. G., Jr., Whittenberger, J. L., and Gallagher, J. R., Pediatrics, Springf. 9:659, 1952. [2] Ferris, B. G., Jr., and Smith, C. W., ibid 12:341, 1953. [3] Morse, M., Schlutz, F. W., and Cassels, D. E., J. Clin. Invest. 31:380, 1952. [4] Morse, M., Univ. of Chicago, unpublished. [5] Shock, N. W., and Norris, A. H., Gcrontology Branch, National Institutes of Health, unpublished. [6] Stewart, C. A., Am. J. Dis. Child. 24:451, 1922.

34. VITAL CAPACITY VS SURFACE AREA: CHILDREN AND ADOLESCENTS

Ventilatory values are corrected to BTPS conditions (cf Page 1). Values in parentheses are ranges and conform to estimate "b" of the 95% range in data of Ferris and to estimate "c" in data of Morse (cf Introduction).

Body Surface Area	Vital Capa	city, L ¹
sq m	Ferris ²	Morse ³
(A)	(B)	(C)
	Males	
1 0.70-0.89	1.52(0.84-2.20)	1.15(0.92-1.38)
2 0.90-0.99	1.63(1.33-1.93)	1.834
3 1.00-1.09	1.99(1.47-2.51)	2.12(1.86-2.45)
4 1.10-1.19	2.10(1.74-2.46)	2.22(1,66-2.58)
5 1.20-1.29	2.47(1.63-3.31)	2.41(1.86-2.97)
6 1.30-1.39	2.57(1.75-3.39)	2.57(1.89-3.38)
7 1.40-1.49	3.36(2.68-4.04)	3.01(2.15-3.95)
8 1.50-1.59	3.53(2.31-4.75)	3,33(2.88-3.75)
9 1.60-1.69	4.08(3.10-5.06)	3.71(2.66-4.72)
10 1.70-1.79	4.32(3.40-5.24)	4.12(3.32-4.76)
11 1.80-1.89	4.85(3.71-5.99)	4.48(3.87~5.29)
12 1.90-1.99	4.88(3.68-6.08)	5.11(4.83-5.42)
13 2.00-2.09	5.39(4.61-6.17)	4.78(4.01-5.55)
	Females	
14 0.60-0.79	1.12(0.72-1.52)	0.894
15 0.80-0.89	1.38(0.86-2.90)	1.38(1.13-1.56)
16 0.90-0.99	1.64(1.06-2.22)	1.31(1.17~1.45)
17 1.00-1.09	1.84(1.32-2.36)	1.80(1.73-2.06)
18 1.10-1.19	2.21(1.66-2.76)	2.00(1.70-2.25)
19 1.20-1.29	2.39(1.79-2.99)	2.11(1.63-2.56)
20 1.30-1.39	2,76(2.02-3.50)	2.25(2.16-2.34)
21 1.40-1.49	3.08(2.00-4.16)	2.65(1.83-3.26)
22 1.50-1.59	3.29(2.39-4.19)	2.87(2.29-4.06)
23 1.60-1.69	3.69(2.95-4.43)	3.18(2.72-3.59)
24 1.70-1.79	4.00(3.16-4.84)	
25 1.80-1.89	4.20(3.72-4.68)	3.49(3.26-3.72)

^{/1/} Maximal volume of gas expelled from lungs by forceful effort, following maximal inspiration. /2/ Subjects seated; body surface area obtained from DuBois nomogram; Benedict-Roth type spirometer (Collins ventilometer). /3/ All measurements made in recumbent position; Sanborn closed-circuit wet spirometer. /4/ From single determination.

Contributors: (a) Ferris, B. G., Jr., (b) Morrow, P. E., (c) Morse, M., (d) Whittenberger, J. L.

References: [1] Ferris, B. G., Jr., Whittenberger, J. L., and Gallagher, J. R., Pediatrics, Springf. 9:659, 1952. [2] Ferris, B. G., and Smith, C. W., Pediatrics, Springf. 12:341, 1953. [3] Morse, M., Schlutz, F. W., and Cassels, D. E., J. Clin. Invest. 31:380, 1952. [4] Morse, M., Univ. of Chicago, unpublished.

Contributors: (a) Morse, M., (b) Shock, N. W.

References: [1] Astrand, P.-O., "Experimental Studies of Physical Working Capacity in Relation to Sex and Age,"
Copenhagen: Ejnar Munksgaard, 1952. [2] Kelly, H. G., "Studies in Child Welfare," 7:No. 5, Univ. of lowa Press,
1933. [3] Ferris, B. G., Jr., Whittenberger, J. L., and Gallagher, J. R., Pediatrics 9:659, 1952. [4] Morse, M.,
Schlutz, F. W., and Cassels, D. E., J. Clin. Invest. 31:380, 1952. [5] Robinson, S., Arbeitsphysiologie 10:251,
1938. [6] Stewart, C. A., Am. J. Dis. Child. 24:451, 1922. [7] Abernethy, E. M., "Child Development," 1:No. 7,
Nat. Res. Council, Wash., D. C., 1936. [8] Turner, J. A., McLean, R. L., Pediatrics 7:360, 1951. [9] Wilson,
M. G., Edward, D. J., Am. J. Dis. Child. 22:443, 1921. [10] Metheny, E., "Studies in Child Welfare," 18:No. 2,
Univ. of lowa Press, 1933. [11] Shock, N. W., and Norris, A. H., Gerontology Branch, National Institutes of
Health, unpublished.

Contributors: (a) Morse, M., (b) Shock, N. W.

References: [1] Åstrand, P.-O., "Experimental Studies of Physical Working Capacity in Relation to Sex and Age," Copenhagen: Ejnar Munksgaard, 1952. [2] Kelly, H. G., "Studies in Child Welfare," 7:No. 5, Univ. of lowa Press, 1933. [3] Stewart, C. A., Am. J. Dis. Child. 24:451, 1922. [4] Morse, M., and Cassels, D. E., unpublished. [5] Shock, N. W., and Norris, A. H., Gerontology Branch, National Institutes of Health, unpublished.

36. VITAL CAPACITY VS AGE AND STANDING HEIGHT: CHILDREN AND ADOLESCENTS

Volumes, measured in a wet spirometer, are in liters and conform to ATPS conditions (cf Page 1). Standing heights are for subjects in stocking feet.

	0														4.30																	1
_	188										-	_				0			_	_			_	_	_	_	_	_				-
	183				_				_					_	4.05	4.4												_				_
	178											3.95	3.86	4.18	4.26	4.20																
	173											3.54	3.89	3.96	3.97	4.13	4.30												3,10			
-	168										3.40	3.33	3.67	3.64	3.81	3.93	4.30											3.04	3,13	3.01	2.85	3.10
-	163									3.00	3.28	3.02	3.20	3.21	2.85		4.30										5.62	2.87	2.82	2.87	2.73	3.03
-	158									2.97	2.77	2.91	2.97	3.24	2,83	2.75											2.53	2.51	2.68	2.71	2.79	
	148 153 158 163 168 173 178 183 188									2.65	2.55	2.58	2.73	2.40									_		2.15	2.05	2,35	2.38	2.47	2,50	2.73	2.25
-	148			_	-	_		1.90	2.18	2.32	2.38	2.40	2.57	2.40											2.18	2.14	2.11	2.26	5.29	5.29		
t, cm	143							_			2.24	_	_	_										1.85	1.98	1.94	2.00	2.02	2.20	2.21		
00	138				2.20			_			2.13	_			_			S						1.82	1.82	1.82	1.93	1.96	2.15			
Standing	133	Males			_	_	_			_	1.91	_						Females				1.80	1.78	1.69	1.68	1.70	1.70	1.65	_			
	128						_	1.66	_	_				_					_			1.44	1.45	1.51	1.59	1.63	1.73	1.65				
	123			_				1.66		_											1.32	1.36	1.44	1.43	1.42	1.34	1,45	_		_		
	118		0.93	_	_		-													1.10	1.28		_	_								
	113		0.97			_	_									_	_				1.08	_										
	108		_	1.12	_	_	_				_										1.03	_						_	_			
	_	1			_	_	_	_	_	_							_		35		_											
	103		0.77	0	_	_	_					_		_	_		_		-		0.81	0	0									
	86		0.84																69.0	0.85												
	9.8																		9.0													
	88																		0.61													
Age	yr		5	9	7	00	6	10	11	12	13	14	15	16	17	18	19		4	5	9	7	80	6	10	11	12	13	14	1.5	16	17
			-	2	m	4,	5	9	7	00	0	10	11	12	13	14	15		16	17	18	19	20	2.1	22	23	24	25	92	27	82	56

Contributor: Morrow, P. E.

Reference: Stewart, C. A., Am. J. Dis. Child. 24:451, 1922.

37. VITAL CAPACITY VS AGE AND SITTING HEIGHT: CHILDREN AND ADOLESCENTS

Volumes, measured in a wet spirometer, are in liters and conform to ATPS conditions (cf Page 1).

	9.6										4.25		4.30	4.30															
	93												4.30	4.06					_										
	89 91 93										3,45	3.77	4.13	4.17														3.10	
	68			_						4.00	3,85	3.85	3.91	4.00											3.23	3.09			
	87				_						3.39	3.67	3.61	3.85										2.88	2.96	3.03	3.01		
	85 87									3.33	3.22	3.29	3.37	2.90										2.97	26.2	2.85	5.89	3.02	3.10
	83								2.80	3.01	3.02	3.27	3.19	2.55									2.70	2.71	2.72	2.82	2.55	2.70	
	81								2.79	2.81	2.81	2.93	3.62										2.56	2.47	2.59	5.69	2.51	2.25	
	19							2.50	2.65	2.60	5.66	2.79	2.67								2.75	2.12	2.28	2.44	2.47	2.57	2.76		
	77						5,65	2.50	2.41	2.42	2.51	5.69	2.45								2.30	2.05	2.26	2.24	2.31	2.24			
t, cm	7.5					2.57	2.20	2.18	2.24	2.31	2.40	2.31	2.39								2.17	1.97	2.10	2.15	2.23	2.15			
Sitting Height, cm	73					2.50	2.03	2.11	2.14	2.27	2.10	2.40								2.00	2.01	1.94	1.92	1.93	2,25	2.00			
Sitting	71	Males				1.99	1.99	5.09	2.05	2.07	2.16				Females				1.75	1.85	1.88	1.86	1.87	2.00		2.00			
	69	2		2.20	1.83	1.80	1.92	1.98	1.95	2.13					Fe			1.40	1.69	1.74	1.75	1.77	1.84	1.93					
	29			1.46	1.63	1.76	1.73	1.78	1.85	1.80								1.33	1.48	1.54	1.64	1.61	1.87	1.60					
	65		1.20	1.39	1.56	1.60	1.68	1.77	1.70								1.27	1.40	1.47	1.42	1.51	1.61	1.45	1.70					
	63		1.15	1.32	1.42	1.50	1.82	1.50									1.25	1.35	1.41	1.43	1.40	1.43	1.45						
	61		1.01	1.30	1.29	1.52	1.53										1.10	1.16	1.25	1.38	1.32	1.25							
	59		1.03			_					_					1.07	1.10												
	57		0.91					_					_			98.0	1.07	60.	00.		_					_			
	55		0.80									_	_			├	0.98		_										
	53		0.95 0	1.00	_											-	1.15 0	0											
	51 !		0	7												0.75 0	_												
Age	yr						0	-	2	3	4	5	9	7							0	-	2	3	4	5	9		18
4			1 5	_	4 8	5 9	6 1	_	80				12 16			14 5	15 6	16 7			19 10			22 13					

Contributor: Morrow, P. E.

Reference: Stewart, C. A., Am. J. Dis. Child. 24:451, 1922.

Ventilatory values have been corrected to BTPS conditions (cf. Page 1). Data of Morse, Robinson, and Kaltreider are ranges and, except for data of Shock, conform to estimate "c" of the 95% range (cf Introduction). Data of Shock

Age yr	Height cm	Weight kg	Surface Area sq m	Inspiratory Capacity ¹ L	Expiratory Reserve Volume ²
(A)	(B)	(C)	(D)	(E)	(F)
	T	Males			
1 6.0(5.8-6.5)	115(107-126)	20.1(17.6-29.0) 34.3(25.7-41.6)	0.81(0.72-0.97)	0.99	0.27(0.12-0.41)
2 9.6(9.5-9.7) 3 10.5(10.0-10.9)	139.2(127.1-148.4)		1.15(0.95-1.31)	1.70(1.42-1.86)	0.39(0.36-0.41)
4 10.8(8.2-12.6)	145.4(138.7-153.4) 139(131-149)	38.4(29.9-47.4)	1.25(1.09-1.39)	1.82(1.44-2.05)	0.46(0.42-0.52)
5 11.5(11.2-11.9)	145.7(137.8-162.5)	32.3(25.3-39.0) 35.3(28.8-50.7)	1.12(0.98-1.39) 1.20(1.07-1.49)	1.77(1.49-2.07)	0.50(0.27-0.86)
6 12.5(12.0-12.9)	151.7(136.0-161.9)	42.6(32.0-77.3)	1.34(1.11-1.71)	2.13(1.55-2.87)	0.52(0.26-0.84)
7 13.4(13.0-13.9)	155.6(140.4-171.7)	45.9(33.9-71.6)	1.41(1.15-1.84)	2.17(1.32-3.69)	0.56(0.32-1.05)
8 14(13-15)	165(156-177)	55.8(41.7-67.4)	1.62(1.39-1.83)	2.89	0.82(0.49-1.28)
9 14.5(14.0-14.9)	163.8(143.4-183.7)	53.2(34.7-101.1)	1.57(1.18-2.11)	2.72(1.56-4.12)	0.72(0.48-1.08)
0 15.4(15.0-15.9)	170.5(151.7-185.4)	55.5(39.0-68.3)	1.64(1.30-1.90)	3.05(1.83-4.52)	0.80(0.52-1.16)
1 16.3(16.0-16.7)	173.9(156.4-190.0)	61.7(51.8-75.7)	1.74(1.57-2.02)	3.34(2.52-4.34)	0.85(0.55-1.25)
2 17.5(16.0-19.0)	179(163-190)	70.3(55.1-88.0)	1.91(1.58-2.15)	3.77	1.18(0.89-1.54)
3 22.9(16.3-29.5)	176.2(166.0-186.4)	72.5(50.1-94.9)	1.88(1.52-2.20)	3.79(2.75-4.83)	0.98(0.46-1.50)
4 24(20-29)	177(170-188)	72.9(63.4-84.4)	1.89(1.71-2.11)	3.86	1.39(0.96-1.83)
5 25.5(13.5-37.5)	173.8(156.6-191.0)	66.0(49.4-82.6)	1.79(1.46-2.11)		,,
6 26(24-29)	174.3(164,7-183.9)	77.5(39.1-115.9)	1.92(1.53-2.31)	3.42(1.95-4.89)	0.91(0.50-1.32)
7 27(17-37)			,-(,		, , , , , , , , , , , , , , , , , , , ,
8 33.9(4.7-63.1)	169.4(163.2-175.6)	62.1(19.9-104.3)	1.72(1.02-2.18)	2.99(1.65-4.33)	0.98(0.36-1.29)
9 34(30-39)	176.6(166.2-187.0)	74.2(52.4-96.0)	1.90(1.65-2.15)	3.19(1.58-4.79)	0.85(0.14-1.56)
0 35(31-38)	175(169-185)	77.5(60.7-85.2)	1.93(1.69-2.09)	3.78	0.98(0.37-1.87)
1 42.7(34.5-50.9)	171.7(157.8-185.6)	64.9(42.5-87.3)	1.78(1.38-2.10)		
2 44(40-48)	177(163-183)	75.6(63.5-86.2)	1.93(1.68-2.09)	3.59	0.69(0.23-2.20)
3 44(41-48)	173,2(162,8-183,6)	67.8(45.3-90.3)	1.81(1.57-2.05)	2.52(1.16-3.87)	0.82(0.23-1.40)
4 48.2(35.4-61.0)	170.5(156.1-184.7)	70.8(46.6-95.0)	1.82(1.40-2.18)	3.37(2.23-4.51)	0.69(0.07-1.31)
5 51 (48-55)	172(156-180)	68.6(62.6-81.7)	1.82(1.60-2.01)	3.33	0.83(0.00-1.61)
(6 53(47-62)					
7 54(50-59)	171.3(158.4-184.2)	63.0(46.2-79.8)	1.74(1.49-1.99)	2.53(1.33-3.73)	0.63(0.16-1.10)
8 54.3				2.89(1.25-4.53)	1.39(0.23-2.55)
9 58.0(33.2-82.8)	168.7(148.5~188.9)	63.6(38.8-88.4)	1.72(1.28-2.14)	2.47(1.59-3.35)	0.84(0.12-1.56)
0 59.6(48.8-70.4)	169.6(153.0-186.2)	66.3(49.1-83.5)	1.78(1.43-2.09)		
1 61.5(47.9-75.1)	169.0(159.4-178.6)	65.9(41.1-90.7)	1.77(1.38-2.08)	2.61(1.39-3.83)	1.01(0.23-1.79)
2 62(59-66)	173(166-180)	68.9(54.3-79.0)	1.83(1.58-1.99)	3.37	0.68(0.38-1.19)
3 64(60-68)	167.8(158.6-177.0)	63.5(44.9-82.1)	1.72(1.48-1.96)	2.21(0.93-3.48)	0.48(0.00-1.01)
4 73(70-77)	166.9(154.9-178.9)	63.2(36.7-89.7)	1.71(1.36-2.06)	1.90(1.09-2.71)	0.37(0.00-0.75)
5 77(71-91) 6 83(80-87)	171(164-184)	66.9(57.6-75.6)	1.78(1.58-1.98)	2.73	0.47(0.18-0.87)
6 83(80-87)	163.9(147.8-180.0)	59.7(39.9-79.5)	1.65(1.34-1.96)	1.82(0.83-2.82)	0.45(0.00-1.09)
7 7.1(6.4-7.9)	126(121-129)	Females 25.2(21.2-31.5)	0.94(0.88-1.05)	1.20(1.04-1.41)	0.28(0.21-0.40)
8 8.2(8.0-8.4)	133(127-145)	29.5(23.2-37.4)	1.04(0.91-1.23)	1.24(1.01-1.54)	0.27(0.17-0.36)
9 9.6(9.0-9.9)	139(135-142)	34.6(26.0-44.9)	1.15(1.01-1.30)	1.53(1.30-1.95)	0.38(0.21-0.52)
0 10.2(10.1-10.6)	148(146-150)	46.7(36.6-63.2)	1.37(1.23-1.58)	1.95(1.81-2.15)	0.45(0.35-0.63)
1 11.6(11.1-11.9)	149(132-167)	37.2(27.7-46.6)	1.25(1.06-1.44)	1.71(1.36-1.92)	0.44(0.27-0.68)
2 12.6(12.2-12.9)	156(137-172)	45.3(31.6-54.0)	1.41(1.10-1.62)	2.05(1.55-2.51)	0.53(0.28-0.66)
3 13.3(13.0-13.7)	160(148-169)	51.2(39.2-59.0)	1.51(1.40-1.60)	2.45(1.94-3.27)	0.55(0.34-0.79)
4 14.5(14.3-14.8)	165(162-169)	52.4(49.6-54.3)	1.57(1.52-1.60)	2.42(2.06-2.80)	0.63(0.50-0.79)
5 15.4(15.1-15.8)	166(160-172)	63.7(53.2-74.4)	1.70(1.54-1.85)	2.43(1.93-2.87)	0.59(0.42-0.85)
6 21.5(18.0-23.7)	165.8(148.8-176.5)	62.0(42.4-88.4)	1.68(1.34-1.98)	2.69(1.50-3.85)	0.63(0.33-1.17)
7 23.1(16.3-29.9)	163.4(155.0-171.8)	57.2(38.4-76.0)	1.62(1.34-1.87)	2,42(1.70-3.14)	0.73(0.35-1.11)
8 25.1(12.7-37.5)	161.8(149.4-174.2)	59.2(37.0-81.4)			
9 25.2(24.3-28.5)	165.7(158.4-173.2)	58.9(47.6-70.4)	1.65(1.53-1.81)	2.62(1.92-3.31)	0.64(0.36-0.88)
0 33(30-37)	164.2(152.2-175.0)	60.5(50.2-79.5)	1.64(1.47-1.96)	2.72(2.06-3.35)	0.69(0.50-0.84)
1 43.3(36.1-50.5)	164.0(150.4-177.6)	62.6(32.0-93.2)	1.68(1.22-2.10)		
2 48.4(21.6-75.2)	163.6(153.4-173.8)	61.9(45.9-77.9)	1.67(1.41-1.89)	2.38(1.56~3.20)	0.59(0.00-1.19)
3 59.8(41.8-77.8)	158.4(145.0-171.8)	67.2(45.2-89.2)	1.68(1.35-1.98)		
4 60.9				1.96(1.06-2.86)	0.44(0.00-0.94)

/1/Inspiratory capacity = maximal volume of air that can be taken into the lungs beyond the normal expiratory level. expiration. /3/ Vital capacity = inspiratory capacity + expiratory reserve volume. /4/ Residual volume = volume of residual capacity. /6/ Functional residual capacity = volume of air left in lungs after normal expiration.

Contributors: (a) Galdston, M., (b) Morrow, P. E., (c) Morse, M., (d) Shock, N. W.

References: [1] Robinson, S., Arbeitsphysiologie 10:251, 1938. [2] Morse, M., Univ. of Chicago, unpublished.

and Hyde, II., Am. Rev. Tuberc. 37:622, 1938. [5] Baldwin, E. de F., Cournand, A., and Richards, D. W., Jr., 1956. [7] Bates, D. V., and Christie, R. V., Clin. Sc. 9:17, 1950. [8] Whitfield, A. G., Waterhouse, J. A., and [10] Galdston, M., Wolfe, W. H., and Steele, J. M., J. Appl. Physiol. 5:17, 1952. [11] Greifenstein, F. E.,

VOLUMES: MAN

were obtained using closed-circuit wet spirometer method (modification of Christie method). Values in parentheses conform to estimate "b."

			Functional		
Vital	Residual	Total Lung	Residual		
Capacity ³	Volume ⁴	Capacity ⁵	Capacity ⁶	Reference	
L	L	L	L		
(G)	(H)	(1)	(J)	(K)	
		Males			
1.26(0.92-1.67)	0.39(0.26-0.58)	1.65(1.35-2.06)	0.66(0.5-0.95)	1	1
2.09(1.83-2.22)	0.46(0.41-0.51)	2.48(2.24-2.73)	0.84(0.82-0.84)	2	2
2.28(1.86-2.53)	0.62(0.34-0.82)	2.95(2.39-3.36)	1.09(0.76-1.34)	3	3
2.20(1.97-2.74)	0.57(0.45-0.95)	2.78(2.43-3.69)	1.07(0.80-1.48)	1	4
2.30(1.86-2.70)	0.60(3.60-0.86)	2.92(2.49-3.56)	1.11(0.88-1.62)	3	
2.65(1.81-3.40)	0.56(0.29-0.88)	3.19(2.63-4.14)	1.11(0.80-1.58)	3	6
2.73(1.66-4.33)	0.64(0.29-1.06)	3.27(2.17-4.59)	1.20(0.68-1.87)	3	7
3.71(2.93-5.07)	0.95(0.70-1.52)	4.67(3.63-6.15)	1.77(1.23-2.46)	1	8
3.45(2.06-5.09)	0.85(0.56-1.52)	4.36(2.88-6.54)	1.59(1.10-2.46)	3	9
3.84(2.36-5.42)	0.97(0.59-1.30)	4.97(3.86-6.66)	1.80(1.28-2.41)	3	10
1.19(3.10-5.55)	0.98(0.61-1.29)	5.13(3.79-6.36)	1.80(1.27-2.25)	3	11
1.95(4.12-5.98)	1.30(0.97-1.75)	6.25(5.23-7.58)	2.48(2.05-3.14)	1	12
1.78(3.60-5.96)	1.19(0.49-1.89)	5.97(4.35-7.59)	2.18(1.18-3.18)	4	13
5.25(4.20-6.03)	1.66(0.84-2.94)	6.81(5.04-8.37)	3.05(1.91-4.45)	1	14
.01(2.77-5.25)				5	15
1.31(2.66-5.96)	1.28(0.57-1.99)	5.59(3.69-7.49)	2.19(1.25-3.13)	6	16
			3.15(2.39-4.60)	7	17
.98(2.02-5.94)	1.46(0.44-2.48)	5.43(3.95-6.91)	2.44(1.10-3.78)	8	18
1.03(2.17-5.89)	1.45(0.66-2.24)	5.43(3.14-7.73)	2.29(1.00-3.59)	6	19
.76(3.83-6.49)	1.60(1.27-2.12)	6.36(5.30-8.48)	2.57(1.84-3.92)	1	20
.16(3.20-5.12)	,	, , , , , , , , , , , , , , , , , , , ,		5	21
.28(3.76-5.16)	1.48(0.66-2.24)	5.77(4.42-7.05)	2.17(1.27-2.97)	1	22
.36(1.81-4.91)	1.64(0.68-2.60)	4.97(3.36-6.59)	2.46(1.59-3.32)	6	23
.07(2.83-5.31)	1.30(0.48-2.12)	5.37(3.69-7.05)	2.00(1.00-3.00)	4	24
.16(3.60-5.52)	1.81(1.00-2.38)	6.31(5.33-7.90)	2.61(1.63-3.46)	i	25
,	1101(1100 2100)		3.16(2.16-3.91)	7	26
.17(1.89-4.44)	2.22(0.84-3.59)	5.39(3.97-6.80)	2.80(1.32-4.38)	6	27
.26(2.38-6.14)	2.22(0.01 3.37)	6.80(4.42-9.18)	3.90(2.54-5.26)	9	28
.31(2.11-4.51)	1.78(1.02-2.54)	5.09(3.57-6.61)	2.62(1.42-3.82)	10	29
.42(1.76-5.08)	1.10(1.02 2.54)	3.07(3.37-0.01)	2.02(1.42-3.02)	5	30
.48(2.52-4.44)	2.43(1.43-3.43)	5.92(4.78-7.06)	3.44(1.96-4.92)	11	31
.05(3.45-5.04)	1.72(1.43-2.39)	5.77(4.34-6.73)	2.39(1.81-2.82)	1	32
.69(1.18-4.20)	1.87(0.67 - 3.07)			6	33
.28(1.35-3.20)		4.57(3.08-6.06)	2.38(1.38-3.38)	6	34
.20(2.61-3.40)	2.34(1.16-3.52)	4.62(3.05-6.18)	2.73(1.39-4.06)		
	1.92(1.71-2.52)	5.12(4.33-7.01)	2.73(1.89-3.39)	1	3.5
.27(0.78-3.75)	2.21(1.01-3.41)	4.47(2.20-6.75)	2.65(1.05-4.25)	6	36
.53(1.31-1.81)	0.44(0.23-0.61)	Females 1.95(1.71-2.27)	0.75(0.62-0.86)	2	37
.51(1.17-1.90)	0.50(0.30-0.67)	The state of the s			5
.91(1.70-2.30)		1.91(1.64-2.22)	0.77(0.51-0.94)	2	38
	0.60(0.21-0.75)	2.55(2.16-2.97)	0.96(0.73-1.14)	2	39
.40(2.16-2.78)	0.72(0.66-0.79)	2.93(2.82-3.05)	1.08(1.01-1.15)	2	40
.15(1.63-2.67)	0.66(0.25-1.16)	2.81(2.25-3.84)	1.11(0.80-1.84)	2	41
.58(1.83-3.10)	0.75(0.48-1.28)	3.38(2.39-4.36)	1.28(0.84-1.87)	2	42
.00(2.29-4.06)	0.90(0.29-1.48)	3.92(2.57-4.84)	1.45(0.63-2.12)	2	43
.05(2.66-3.59)	0.71(0.57-1.04)	3.76(3.26-4.63)	1.34(1.14-1.83)	2	44
.02(2.50-3.72)	1.31(0.98-1.77)	4.09(3.58-5.02)	1.80(1.48-2.19)	2	45
.32(1.88-4.74)	1.03(0.66-1.39)	4.16(3.16-5.60)	1.67(1.14-2.17)	2	46
.14(2.32-3.96)	1.10(0.50-1.70)	4.24(3.10-5.38)	1.82(1.04-2.60)	4	47
.06(1.96-4.16)				5	48
.25(2.27-4.13)	1.19(0.73-1.62)	4.44(3.89-5.40)	1.83(1.49-2.09)	2	4
.41(2.58-4.20)	1.21(0.98-1.51)	4.74(3.56-5.71)	1.93(1.50-2.36)	2	50
.83(2.03-3.63)				5	51
.98(1.72-4.24)	1.40(0.64-2.16)	4.38(2.82-5.94)	2.00(0.84-3.16)	10	5.2
42/1 27 2 401				-	1
.43(1.37-3.49)	1.78(0.98-2.58)			5	53

/2/ Expiratory reserve volume = maximal volume of air that can be voluntarily expelled from the lungs after a normal air left in lungs after reserve volume has been expelled. /5/ Total lung capacity = inspiratory capacity + functional

^[3] Morse, M., Schlutz, F. W., and Cassels, D. E., J. Clin. Invest. 31:380, 1952. [4] Kaltreider, N., Fray, W. W., Medicine 27:243, 1948. [6] Norris, A. H., Shock, N. W., Landowne, M., and Falzone, J. A., Jr., J. Geront. 11:379, Arnott, W. M., Brit. J. Social M. 4:113, 1950. [9] Gilson, J. C., and Hugh-Jones, P., Clin. Sc. 7:185, 1948. King, R. M., Latch, S. S., and Comroe, J. H., Jr., ibid 4:641, 1952.

39. EFFECT OF POSTURAL CHANGE OF LUNG VOLUMES: MAN

Values for supine and sitting positions are expressed as per cent of total lung capacity. The tidal volume is variable and can be assumed to be 10-15%. Values are for adult males less than 30 years of age, and for healthy females 18-34 years.

		, M;	ale	Fem	nale	Variation with	
	Characteristic	Supine	Sitting	Supine	Sitting	Change of Posture ²	Reference
		%	%	%	%	%	
	(A)	(B)	(C)	(D)	(E)	(F)	(G)
1	Residual volume	21.8	23.91	25.9	28.21	-20.9	B, 1, 2, a; C, 3-9, a;
							D, 1, a; E, 3-5, a;
							F, 1, 10, a
2	Expiratory reserve		,				
	volume	18.5	27.91	17.0		-42.5	C, 7, 8, a; B, 1, 2, a;
							F, 1, 10, 11, a; D, 1, a
3	Inspiratory capacity ³	59.7	48.24	57.1		11,2	B, 1, 2, a; F, 1, 10, a;
							D, 1, a
4	Vital capacity	78.2	76.14	74.1	71.8	-4.8	B, 1, 2, a; D, 1, a;
							F. 1. 10-14
5	Total capacity	100.0	100.04	100.0	100.0	-9.8	B, 1, 2, a; D, 1, a;
	•						F, 1, 10

/1/ Mean of averages. /2/ Mean values. /3/ Tidal volume + inspiratory reserve volume. /4/ Computed.

Contributor: (a) Rahn, H.

References: [1] Kaltreider, N. L., Fray, W. W., and Hyde, H. W., Am. Rev. Tuberc. 37:662, 1938. [2] Robinson, S., Arbeitsphysiologie 10:251, 1938. [3] Lundsgaard, C., and Van Slyke, D., J. Exp. M. 27:65, 1918. [4] Lundsgaard, C., and Schierbeck, K., Acta med. scand. 58: 541, 1923. [5] Binger, C. A., J. Exp. M. 38:445, 1923. [6] Anthony, A. J., Deut. Arch. klin. Med. 167:129, 1930. [7] Rotta, A., and Guerrero, F., Ann. Fac. cienc. méd. 19: , 1936. [8] Rahn, H., Fenn, W. O., and Otis, A. B., J. Appl. Physiol. 1:725, 1949. [9] Dejours, P., and Rahn, H., ibid 5:445, 1953. [10] Hurtado, A., and Fray, W. W., J. Clin. Invest. 12:825, 1933. [11] Osher, W. J., Am. J. Physiol. 161:352, 1950. [12] Bahnson, H. T., J. Appl. Physiol. 5:445, 1953. [13] Dow, P., ibid 127:793, 1939. [14] Christie, C., and Beams, A. J., Arch. Int. M. 30:34, 1922.

40. EFFECT OF PREGNANCY ON LUNG VOLUMES AND OTHER VENTILATORY VARIABLES: MAN Ranges in parentheses are estimate "b" of the 95% range (cf Introduction).

_		1									
	Variable			Preg	nanc	y, Lu	nar N	Ionth	H	Postpartum, Month	Method
		IV	V	VI	VII	VIII	IX	X	_I	VI	
	(A)	(B)	(C)	(D)	(E)	(F)	(G)	(H)	(I)	(J)	(K)
1	Respiratory rate,										
	breaths/min	16	15	16	16	16	16	16(12-20)	17	15(11-19)	Spirometer.
2	Tidal volume, L	0.56	0.59	0.61	0.61	0.65	0.70	0.7(0.4-1.0)	0.55	0.5(0.2-0.8)	Spirometer.
3	Minute volume,	1				1					
	L/min	8.7	9.1	10.0	9.7	10.3	11.0	10.3(7.3-13.6)	9.5	7.3(4.3-10.3)	Spirometer.
4	Ventilatory equiv-	3.3	3.5	3.6	3.5	3.6	3.7	3.3(1.3-5.3)	3.4	3.0(1.0-5.0)	Minute volume/O2 con-
	alent, ml air/				1						sumption.
	ml O ₂		1	1		1					
5	Maximal breathing	•				1					
	capacity, L/min	97	99	97	96	97	97	96(74-118)	92	102(80-124)	Douglas bag.
6	Total lung	4.2	4.2	4.2	4.1	4.3	4.1	4.1(3.5-4.7)	4.1	4.2(3.6-4.8)	Residual volume + vital
	capacity, L	1		1							capacity.
7	Vital capacity, L	3.2	3.2	3.2	3.2	3.3	3.3	3.3(2.9-3.7)	3.1	3.3(2.8-3.8)	Spirometer.
8	Inspiratory	i					}				
	capacity, L	2.6	2.7	2.7	2.7	2.7	2.7	2.7(2.3-3.1)	2.5	2.6(2.2-3.0)	Spirometer.
9	Expiratory reserve				ĺ						
	volume, L	0.65	0.65	0.65	0.61	0.63	0.56	0.55(0.3-0.8)	0.56	0.65(0.4-0.9)	Spirometer.
10	Functional reserve					}					
	capacity, L	1.6	1.6	1.6	1.5	1.5	1.4	1.3(1.0-1.6)	1.5	1.6(1.3-1.9)	Open-circuit method.
11	Residual	1.0	1.0	1.0	0.9	0.9	0.8	0.8(0.6-1.0)	1.0	1.0(0.8-1.2)	Functional residual
	volume, L										capacity-expiratory
											reserve.

Contributors: (a) Assali, N. S., (b) Jensen, A., (c) Larks, S.

Reference: Adapted from Cugell, D. W., et al, Am. Rev. Tuberc. 67:568, 1953.

41. RESPIRATORY RATE, TIDAL AND MINUTE VOLUMES: VERTEBRATES

Values, unless otherwise specified, are for the resting state.

	Animal	Body Weight	Condition	Respiratory Rate	Tidal Volumel		Refer-
	2311111764	kg	00114111011	breaths/min	ml	L/min	ence
_	(A)	(B)	(C)	(D)	(E)	(F)	(G)
			Ma	mmals			
1	Man, o		Resting	11.7(10.1-13.1)	750(575-895)	7.43(5.8-10.3)	
2		68.5	Light work	17.1(15.7-18.2)	1673(1510-1770)	28.6(27.3-30.9)	1
3			Heavy work	21.2(18.6-23.3)		42.9(39.3-45.2)	
4	Q		Resting	11.7(10.4-13.0)	339(285-393)	4.5(4.0-5.1)	
5	· •	54	Light work	19.0	860(836-885)	16.3(15.9-16.8)	1
6		'		30.0(25.0-35.3)	880(490-1270)	24.5(17.3-31.8)	
7	Beaver (Castor canadensis)	18		16	000(1/0 12/0)		2
8	Cat (Felis catus)	2.45	-	26	12,4	0.322	3
0	Cow (Bos taurus)	2.43	-	20	12,+	0.562	J
9	Hereford, heifer		Lying	34	1400	46	
	Hereford, heller	144	Standing	32	1500	49	4
10	TT 1-1-1-1 1-16			35	1700	59	
11	Holstein, heifer	164	Lying		2000	61	i 4
12			Standing	31		93	
13	Guernsey, full-grown	410	Lying		3100		4
14			Standing	29	3700	107	
15	Hereford, full-grown	422	Lying	30	3400	102	4
16			Standing	29	3800	109	
17	Holstein, full-grown	514	Lying	30	3400	104	4
18		J	Standing	27	4200	114	
19	Jersey, full-grown	403	Lying	30	2700	82	4
20		403	Standing	27	3400	92	1
21	Dog (Canis familiaris)2	30.5		16(11-18)	432	6.1(5.1-7.4)	
22		28.6		17(11-21)	302	5.3(4.9-5.4)	.b
23		19.1		22(13-37)	251	5.5(4.5-6.4)	
24		16.4		13(12-16)	296	4.1(3.3-4.9)	
25	Guinea pig (Cavia cobaya)	0.471		90(69-104)	1.8(1.0-3.9)	0.16(0.09-0.38)	- 5
26	Hamster (Mesocricetus	0.091		74(33-127)	0.8(0.42-1.2)	0.05(0.025-0.083)	5
	auratus)						
27	Horse (Equus caballus) ³	696		11.9(10.6-13.6)	9060(8520-9680)	107	6
28	Manatee, Florida	250		7(6-8)	7000(5000-9000)	45(35-60)	7
20	(Trichechus latirostris)	250		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	7000(3000 7000)	13(33 00)	
29	Marmot (Marmota		Awake4	8.0	22	0.174	
30	,	2.13	Hiber-	0.68	13(11.3-14.8)	0.0089	.8
30	marmota)		nating ⁵	0.00	13(11.3-11.0)	0.0007	
2.	B.C	2 40	nating-	40/31-531	21(9.8-29)	0.86(0.31-1.41)	5
31	Monkey (Macaca rhesus)	2.68		40(31-52)		0.023(0.011-0.036)	
32	Mouse (Mus musculus)	0.0198		163(84-230)	0.15(0.09-0.23)		9
33	Porpoise (Tursiops	170		1.1(0.9-1.3)	9000(8000-10,000)	7.7(7.0-10.4)	7
1	truncatus)6		_			0.040.37 3.33	5
34	Rabbit (Lepus cuniculus)	2.07		4.0	21	0.8(0.27-1.2)	10
35	Rabbit, pigmented			69	21	1.45	1
36	White			53	19	1.02	11
37	Rat, cotton (Sigmodon	0.77		94.5(75-115)	0.35(0.24-0.70)	0.04(0.023-0.071)	5
	hispidus)						-
38	White (Rattus norvegicus)			85.5(66-114)	0.86(0.60-1.25)	0.074(0.05-0.102)	5
39	Seal (Phoca vitulina) ⁷	27.5(15-30)		9(6-12)		3.97	12
40	Sheep, Dorset ewe	63		19	310	5.7	5
41	Sloth (Choleopus hoffmani)	4.5		13		0.844(0.78-0.96)	13
42	(Bradypus griseus)	3.1		6.2(4.5-8.0)		0.485(0.33-0.73)	
42	Swine (Sus scrofa), d	225				37	6
4.5			1	Birds			
4.5							
	Canary			108(96-120)			14
43 44 45	Canary Chicken, d			108(96-120)	45		14

^{/1/} Air inspired or expired in one respiration. /2/ Measurements made after 30-min rest in hammock, at 24°C; values corrected to BTPS conditions. /3/ Percheron gelding. /4/ Rectal temperature = 37.8°C. /5/ Rectal temperature = 5-6°C. /6/ Captive animal. /7/ Cheyne-Stokes respiration.

41. RESPIRATORY RATE, TIDAL AND MINUTE VOLUMES: VERTEBRATES (Concluded)

Values, unless otherwise specified, are for the resting state.

	Animal	Body Weight kg	Condition	Respiratory Rate breaths/min	Tidal Volumel ml	Minute Volume L/min	Refer- ence
	(A)	(B)	(C)	(D)	(E)	(F)	(G)
			Birds	(Concluded)			
47 48	Duck, of			42 110	36.5(35-38)8		14
49 50	Goose, o			20 40			14
51	Pigeon			27.5(25-30)	4.8(4.5-5.2)9		14
52	Turkey			13.410			14
			R	eptile			
53	Turtle (Malaclemys centrata)11	(0.65-0.72)		3.7	14	0.051	15

/1/ Air inspired or expired in one respiration. /8/ Standing; supine, 30. /9/ Standing; supine, 4.7. /10/ Also reported, \(\sigma 28\), \(\gamma 49\). /11/ Diamondback terrapin; periodic cycles at (24-29)\(\sigma C\).

Contributors: (a) Stroud, R., and Forster, R. E., (b) Hemingway, A., (c) Elisberg, E. I., (d) McCutcheon, F. H.

References: [1] Taylor, C., Am. J. Physiol. 135:27, 1941. [2] Irving, L., and Orr, N. D., Science 82:569, 1935. [3] Wang, S. C., and Nims, L. F., J. Pharm. Exp. Ther. 92:187, 1948. [4] Hall, W. C., and Brody, S., Missouri Agr. Exp. Sta. Res. Bull. 180:11, 1933. [5] Guyton, A. C., Am. J. Physiol. 150:70, 1947. [6] Brody, S., "Bioenergetics and Growth," New York: Reinhold, 1945. [7] Scholander, P. F., J. Cellul. Physiol. 17:169, 1941. [8] Endres, G., and Taylor, H., Proc. Roy. Soc., Lond. 107:231, 1930. [9] Irving, L., Scholander, P. F., and Grinnell, S. W., J. Cellul. Physiol. 17:145, 1941. [10] Hurtado, A., and Buller, C., J. Clin. Invest. 12:793, 1933. [11] Smith, R. M., "Physiology of Domestic Animals," Philadelphia: Davis, 1889. [12] Irving, L., Solandt, O. M., Solandt, D. Y., and Fisher, K. C., J. Cellul. Physiol. 7:137, 1936. [13] Irving, L., Scholander, P. F., and Grinnell, S. W., ibid 20:189, 1942. [14] Sturkie, P. D., "Avian Physiology," New York: Comstock, 1954. [15] McCutcheon, F. H., Physiol. Zool. 16:255, 1943.

42. RESPIRATORY RATE, TIDAL AND MINUTE VOLUMES: INFANTS

Data are from individual resting infants as measured by body plethysmograph. Ranges, in parentheses, are estimate "c" of the 95% range (cf Introduction).

Age	Weight	Respiratory Rate	Minute Volume	Tidal Volume, Mean
da	kg	breaths/min	cc/min	ce
(A)	(B)	(C)	(D)	(E)
0.2	3.12	19.0(14-21)	349(313-375)	18.4
2 0.3	3.52	22.7(20-25)	539(501-585)	23.7
0.5	3,57	26.0(23-30)	542(444-598)	20.8
1 0.5	3.83	31.0(29-34)	651(591-696)	21.0
0.51	3.74	28.3(25-33)	557(479-646)	19.8
Average	3.6	25.4	527.6	20.7
7 6	3.91	26.6(18-33)	754(646-813)	28.3
3 6	3.18	28.8(25-36)	535(479-563)	18.5
6	3,66	29.1(22-33)	466(438-485)	16.0
7	5.0	28.9(20-34)	795(708-855)	27.5
71	3.74	28.4(25-32)	526(480-563)	18.5
. 7	3.06	36.0(32-40)	598(543-668)	16.6
3 7	3.29	22.4(22-24)	384(354-459)	17.1
Average	3.69	28.6	579.7	20.5

/1/ Lines 5 and 11 are for the same infant.

Contributor: Smith, C. A.

Reference: Cross, K. W., J. Physiol., Lond. 109:459, 1949.

43. TIDAL AND MINUTE VOLUMES: MAN

Values in parentheses are ranges. Letter superscript identifies type of range (cf Introduction).

	Age	Sex	Position	Tidal Volume ^l	Minute Volume ²	Method		Refer-
	yr	sex	Position	ml	L/min	Miethod	Conditions	ence
_	(A)	(B)	(C)	(D)	(E)	(F)	(G)	(H)
1	Infant, premature4	Q.5	Supine	11.5(6.1-17)d	0.396(0.160-0.646)c		Amb	1
2	mant, premature.	0.δ	Supine		0.430(0.281-0.581)		ATPS	2
3		Q, ₹	Supine		0.698(0.304-1.225)°		ATPS	3
4	Newborn, full-term4	o γ 0 γ	Supine	, ,	0.731(0.413-1.13)°	Pneumograph	ATPS	4
5	Newborn, iuii-term	Q. J.	Supine		1.08(0.354-2.01)°	Plethysmograph	Amb	5
6		Q.δ.	Supine		0.851(0.225-1.83)d	Plethysmograph	Amb	6
7		Q.A	Prone	16.7(10-27)d	0.721(0.433-1.41)°	Plethysmograph	BTPS	7
8		Q.δ Ω.δ	Supine	16.8	0.642(0.365-0.894)		ATPS	2
ō		0.4	Supine	(13.3-21.8)°	0.042(0.303-0.894)	Fremysmograph	AIIS	-
_		-40	Ct	21.5(15-32)d	0.59(0.35-0.83)d	Plethysmograph	BTPS	8
9	5 7 14	9,5	Supine		0.39(0.33-0.83)4	Spirometer	BTPS	9
10	5.7-14	Q. 5	Upright	388(195-581)b	4.79(3.74-5.84)b	Spirometer	STPD	10
11	11.7-12.2	ď	Supine	305(185-425)b 289(189-389)b	4.54(3.07-6.01)b	Spirometer	STPD	10
12		₽	Supine		5.27(3.80-6.74)b		STPD	10
13	13.7-14.2	ď	Supine	316(196-436)b		Spirometer	STPD	10
14		\$	Supine	315(235-395)b	4.86(3.60-6.12)b	Spirometer	STPD	10
15	15.7-16.2	ď	Supine	344(184-504)b	5.13(3.45-6.81)b	Spirometer		
16		\$	Supine	282(162-402)b	4.21(2.53-5.89)b	Spirometer	STPD	10
17	18-27	ਰ	Supine	372(192-552)b	5.04(2.94-7.14)b	Spirometer	STPD	10
18		Ş	Supine	319(139-499)b	4.45(2.14-6.76)b	Spirometer	STPD	10
19	27-43	ರ್	Supine	390(250-530)b	5.25(3.45-7.05)b	Spirometer	STPD	10
20		2	Supine	338(205-471)b	4.63(3.11-6.15)b	Spirometer	STPD	10
21	40-49	ď	Supine	422(259-585)b	6.90(4.37-9.43)b	Spirometer	STPD	11
22	50-59	ď	Supine	427(284-569)b	6.95(4.96-8.93)b	Spirometer	STPD	11
23	60-69	ď	Supine	408(263-554)b	6.70(4.76-8.65)b	Spirometer	STPD	11
24	70-79	ರ್	Supine	377(231-523)b	6.87(4.41-9.32)b	Spirometer	STPD	11
25	80-89	o"	Supine	366(240-493)b	6.57(4.00-9.14)b	Spirometer	STPD	11
26	17-36	ď	Upright	773(520-1130)°		Pneumotachograph		12
27	18-34	₽	Upright	480(300-980)C	6.86(4.24-13.1)c	Spirometer	BTPS	13
28	21-27	9,5	Upright	508(398-685)C	7.61(7.34-7.90)°	Pneumotachograph		14
29	20-32	Q.5	Upright	597(218-1307)°		Pneumotachograph		15
30	22-28	₽	Semirecumbent	481(453-510)C	6.09(5.89-6.25)°	Spirometer	BTPS	16
31	18-38	o"	Semirecumbent	654(416-1131)C	9.33(7.07-11.3) ^C	Spirometer	BTPS	17
32	21-35	ď	Upright	504(387-583)C	5.39(4.54-7.60) ^C	Pneumotachograph		18
33	26-35	ď	Semirecumbent		7.94(5.14-11.1) ^C	Spirometer	BTPS	16
34	22-40	\$	Semirecumbent		8.12(6.57-10.6)°	Spirometer	BTPS	17
35	35-61	ď	Upright	764(704-824)b	10.5(9.9-11.1)b	Spirometer	BTPS	19
36	Adult	Q, Č	Upright	522(468-555)C	5.27(6.10-11.4)C	Spirometer	ATPS	20
37	Adult	Q.5	Upright	616(315-745)C	8.73(4.9-12.2)°	Respirograph	ATPS	21
38	Adult	9,5	Upright	651(350-975)C	11.1(6.7-14.3) ^C	Pneumotachograph	ATPS	22
39	Adult	9.5	Upright	738(399-1107)c	8.37(4.56-14.3)°	Spirometer	ATPS	23
40	50-75	ď	Semirecumbent	343(111-575)b	10.6(5.92-14.2)d	Spirometer	BTPS	24
41	50-77	ç	Semirecumbent		9.18(4.68-13.1)d	Spirometer	BTPS	24
42	53-81	ď	Semirecumbent	521 (330-643)C	8.61(6.05-12.1) ^c	Spirometer	BTPS	16

/1/ Air inspired or expired per breath. /2/ Respiration frequency x tidal volume. /3/ Amb = ambient conditions. i.e., plethysmograph was not at saturation. For conversion among respective categories of gaseous conditions, see Page 1. /4/ Within first 14 da of life.

Contributors: (a) Morrow, P. E., (b) Cohn, J. E., (c) Shock, N. W.

References: [1] Cross, K. W., and Oppe, T. E., J. Physiol., Lond. 116:168, 1952. [2] Boutourline-Young, H. J., and Smith, C. A., Am. J. Dis. Child. 80:753, 1950. /3/ Shaw, L. A., and Hopkins, F. R., ibid 42:335, 1931. [4] Howard, P. J., and Bauer, A. R., ibid 77:592, 1949. [5] Deming, J., and Washburn, A. H., ibid 49:108, 1935. [6] Deming, J., and Hanner, J. P., ibid 51:823, 1736. [7] Murphy, D. P., and Thorpe, E. S., J. Clin. Invest. 10:545, 1931. [8] Cross, K. W., J. Physiol., Lond. 109:459, 1949. [9] Turner, J. A., and McLean, R. L., Pediatrics, Springf. 7:360, 1951. [10] Shock, N. W., and Soley, N. H., J. Nutrit. 18:143, 1939. [11] Shock, N. W., and Yiengst, M. J., J. Geront. 10:31, 1955. [12] Specht, H., Marshall, L., and Hoffmaster, B., Am. J. Physiol. 157:265, 1949. [13] Hurtado, A., et al, J. Clin. Invest. 13:169, 1934. [14] Fleisch, A., Pflügers Arch. 214:595. 1926. [15] Bretschger, J. J., ibid 210:134, 1925. [16] Fowler, W. S., Cornish, E. R., Jr., and Kety, S. S., J. Clin. Invest. 31:40, 1952. [17] Bateman, J. B., J. Appl. Physiol. 3:143, 1950. [18] Morrow, P. E., and Vosteen, R. E., ibid 5:348, 1953. [19] Kaltreider, N., Fray, W. W., and Hyde, H. van Z., Am. Rev. Tuberc. 37:662, 1938. [20] Killick, E. M., J. Physiol., Lond. 84:162, 1935. [21] Guyton, A. C., Am. J. Physiol. 150:70, 1947. [22] Rumpf, K., Zschr. ges. exp. Med. 101:493, 1937. [23] Lippelt, H., Beitr. Klin. Tuberk. 81:520, 1932. [24] Greifenstein, F. E., King, R. M., Latch, S. S., and Comroe, J. H., Jr., J. Appl. Physiol. 4:641, 1952.

Respiratory values are corrected to STPD conditions (cf Page 1). Determinations were made on fasting subjects compute frequency distributions. Ranges in parentheses conform to estimate "b" of the 95% range (cf Introduction), gasometer method; O_2 and CO_2 concentrations by Boothby-Sanford modification of Haldane technique; samples of DuBois nomogram.

	Δ σο		Respiratory	Ventilati	on Volume	Tidal V	olume l	Expired	l Air
	Age yr	Sex	Rate breaths/min	L/min	L/sq m/min	cc/breath	cc/sq m/breath	% O ₂	% CO2
	(A)	(B)	(C)	(D)	(E)	(F)	(G)	(H)	(1)
1	11.75-12.24	ď	16.3	4.79	3.81	305	242	16.99	3.49
			(7.9-24.7)	(3.74-5.84)	(2.76-4.86)	(185-425)	(158-326)	(16.36-17.62)	(2.86-4.12)
2		Ş.	16.1	4.54	4.41	289	216	16.90	3.57
			(9.8-22.4)	(3.07-6.01)	(2.57-4.25)	(189-389)	(132-300)	(16.27-17.53)	(2.94-4.20)
3	13.75-14.24	ď	17.0	5.27	3.55	316	212	16.84	3.58
			(12.8-21.2)	(3.80-6.74)	(2.92-4.18)	(196-436)	(149-275)	(16.21-17.47)	(3.16-4.00)
4		ç	15.6	4.86	3.24	315	208	16.97	3.51
			(11.4-19.8)	(3.60-6.12)	(2.40-4.08)	(235-395)	(145-271)	(16.34-17.60)	(2.88-4.14)
5	15.75-16.24	ď	15.6	5.13	2.98	344	200	16.35	4.01
			(9.3-21.9)	(3.45-6.81)	(2.14-3.82)	(184-504)	(137-263)	(15.30-17.40)	(3.17-4.85)
6		ç	15.2	4.21	2.67	282	177	16.59	3.81
			(8.9-21.5)	(2.53-5.89)	(1.83-3.51)	(162-402)	(193-240)	(15.12-18.06)	(2.97-4.65)
7	18.00-26.99	ď	14.0	5.04	2.76	372	203	16.48	3.80
			(7.7-20.3)	(2.94-7.14)	(1.71-3.81)	(192-552)	(198-308)	(15.43-17.53)	(2.75-4.85)
8		Ŷ.	14.7	4.45	2.91	319	202	16.98	3.41
			(4.2-25.2)	(2.14-6,76)	(1.86-3.96)	(139-499)	(176-328)	(15.72-18.24)	(2.36-4.46)
9	27.00-43.00	ď	13.7	5.25	2.93	390	218	16.90	3.53
			(7.7-19.7)	(3.45-7.05)	(2.13-3.73)	(250-530)	(138-298)	(15.90-17.90)	(2.73-4.33)
10		Q.	14.4	4.63	2.84	338	202	17.08	3.32
1			(6.8-22.0)	(3.11-6.15)	(1.70-3.98)	(205-471)	(126-278)	(16.32-17.84)	(2.56-4.08)
11	40-49	ರೆ	16.8	6.90	3.97	422	243	17.03	2.58
			(11.4-22.2)	(4.37-9.43)	(2.61-5.33)	(259-585)	(151-334)	(17.03-18.75)	(1.95-3.21)
12	50-59	ď	16.7	6.95	4.03	427	247	18.04	2.52
			(11.3-22.1)	(4.96-8.93)	(2.69-5.37)	(284-569)	(165-328)	(17.16-18.92)	(1.79-3.25)
13	60-69	ď	16.9	6.70	3.93	408	239	18.12	2.44
•			(11.1-22.7)	(4.76-8.65)	(2.25-5.61)	(263-554)	(153-324)	(17.52-18.72)	(1.93-2.95)
14	70-79	ď	18.8	6.87	4.13	377	226	18.28	2.26
			(11.6-25.9)	(4.41-9.32)	(2.78-5.48)	(231-523)	(153-299)	(17.60-18.96)	(1.64-2.88)
15	80-90	ď	18.2	6.57	4.03	366	223	18.43	2.14
			(12.5-23.9)	(3.95-9.14)	(2.47-5.59)	(240-493)	(169-277)	(17.75-19.11)	(1.61-2.67)

/1/ Volume of gas entering or leaving respiratory tract with each breath.

Contributor: Shock, N. W.

References: [1] Lines 1-10: Shock, N. W., and Soley, M. H., J. Nutrit. 18:143, 1939. [2] Lines 11-15:

45. O2 AND CO2 PRESSURES IN ALVEOLAR AIR AND SUBCUTANEOUS TISSUE: MAN

All values for males, under resting conditions. Methods: A = alveolar air drawn by method of Haldane and Priestley, T = microanalysis of gas bubble in tissue by method of Krogh. Values in parentheses are ranges, estimate "c" of the 95% range (cf Introduction).

		Alveolar	Air	Subcu	taneous Ti	ssue	
Gas	Subjects no.	Method	Pressure mm Hg	Subjects no.	Method	Pressure mm Hg	Reference
(A)	(B)	(C)	(D)	(E)	(F)	(G)	(H)
1 Oxygen	54	A	97.8(87-107)	5	Т	22(15-24)	B-D,1;E-G,2
2 Carbon dioxide	54	A	40.9(36.4-47.0)	5	T	45(41-50)	B-D, 1; E-G, 2

Contributors: Bartels, H., and Opitz, E.

<u>References</u>: [1] Bartels, H., and Rodewald, G., Pflügers Arch. <u>256</u>:113, 1952. [2] Seevers, M. H., Am. J. Physiol. <u>115</u>:38, 1936.

FUNCTIONS: MAN

in recumbent position after 20-minute rest period. Averages of six determinations for each subject were used to Techniques and apparatus: Siebe-Gorman half mask; 8 minute tests of basal O₂ consumption by Tissot open-circuit respiratory alveolar air by Haldane-Priestley technique; CO₂ analyses by Haldane apparatus; surface areas by

CO ₂ Tension,	C	O ₂ Elimination	on		O ₂ Consump	tion	Heat	
Alveolar Air mm Hg	cc/min	cc/kg/min	cc/sq m/min	cc/min	cc/kg/min	cc/sq m/min	Production cal/sq m/hr	
(J)	(K)	(L)	(M)	(N)	(O)	(P)	(Q)	
41.0				195	5.15	154.5	45.03	1
(34.7-47.3)				(153-237)	(3.89-6.41)	(120.9-188.1)	(35.37-54.69)	
40.1				189	4.46	140.8	40.99	2
(35.9-44.3)				(126-252)	(3.20-5.72)	(117.7-163.9)	(34.27-47.71)	
42.2				223	4.65	149.7	43.46	3
(38.0-46.4)				(160-286)	(3.60-5.70)	(122.4-177.0)	(36.11-50.81)	
39.4				198	3.90	130.1	37.96	4
(33.1-45.7)				(156-240)	(3.06-4.74)	(109.1-151.1)	(31.87-44.05)	
42.1				244	4.13	141.8	41.13	5
(33.7-50.5)				(181-307)	(3.29-4.97)	(112.4-171.2)	(33.15-49.11)	
38.8				187	3.43	117.9	34.29	6
(32.5-45.1)				(124-250)	(2.59-4.27)	(92.7-143.1)	(27.15-41.43)	
43.0				232	3.43	125.9	36.57	7
(32.5-53.5)				(169-295)	(2.38-4.48)	(100.7-151.1)	(28.59-44.55)	
41.6				187	3.38	118.3	34.28	8
(29.0-54.2)				(124-250)	(2.33-4.43)	(86.8-149.8)	(25.88-42.68)	
42.7		•		218	3.39	122.1	35.44	9
(30.7-54.7)				(158-278)	(2.39-4.39)	(102.1-142.1)	(29.84-41.04)	
40.0				186	3,13	112.5	32.63	10
(30.5-49.5)				(148-224)	(1.80-4.46)	(78.3-146.7)	(23.13-42.13)	
	173.0	2.72	99.7	215	3.37	123.5	35.73	11
	(132.0-215.0)	(2.08-3.36)	(81.1-118.2)	(152-278)	(2.55-4.19)	(94.9-152.0)	(27.99-43.47)	
	171.0	2.72	98.9	211	3.35	121.9	34.50	12
	(131.0-211.0)	(1.84-3.60)	(75.0-122.9)	(146-276)	(2.23-4.47)	(86.2-157.6)	(25.74-43.26)	
	160.0	2.51	93.4	193	3.03	112.9	33.00	13
	(119.0-201.0)	(1.78-3.24)	(72.2-114.7)	(141-245)	(2.18-3.88)	(87.4-138.4)	(25.95-40.05)	
	150.9	2.49	90.5	188	3.12	113.1	32.60	14
	(99.9-202.0)	(1.91-3.07)	(68.2-112.7)	(131-245)	(2.27-3.97)	(87.6-138.6)	(25.31-39.89)	
	138.9	2.34	84.6	172	2.89	104.7	30.05	15
	(89.0-189.5)	(1.66-3.02)	(62.9-106.3)	(106-238)	(1.99-3.79)	(73.1-136.2)	(20.94-39.16)	

Shock, N. W., and Yiengst, M. J., J. Geront. 10:31, 1955.

46. VENTILATION AND O2 UPTAKE, RIGHT VS LEFT LUNG: MAN

	Supine 1	Position	Right Lateral Position		
Variable	Right	Left	Right	Left	
(A)	(B)	(C)	(D)	(E)	
Ventilation, % Oxygen uptake, %	52 49-50	48 50-51	53-54 61-63	46-47 3 7 -39	

Contributor: Rahn, H.

References: [1] Inada, K., Kishimoto, S., Sato, A., and Watanabe, T., J. Thorac. Surg. <u>27</u>:173, 1954. [2] Rothstein, E., Landis, F. B., and Navodick, B. G., ibid <u>19</u>:821, 1950.

47. RESPIRATORY DEAD SPACE: MAN

For purposes of defining dead space, expiratory air is arbitrarily divided into two components: that which is like alveolar air, and that--called dead space--which is like the inspired air. Dead space can be considered for any inspired or expired gas, CO2 being most often studied. There are many methods for measuring dead space, differing primarily with the way alveolar air is measured or computed. It has not been shown that any two methods give identical results, nor is it known exactly which geometric portion of the lung they measure. Until identical results can be shown, it is best that different methods be identified by different names. For CO2 and O2, dead space is subdivided by some into two parts: one, the conducting airway from nares to terminal bronchioles, the other, a portion of the tidal volume going to alveoli but wasted because of uneven distribution of blood and gas in the lung. The terms in most common use are: (1) Anatomic Dead Space. Strictly, this is the geometric volume of the conducting airway. The term is used both by those making plaster or other casts of the dead lung airway; and by many whose methods are thought to approximate this volume in vivo, the most widely used of which methods is Fowler's singlebreath analysis of gas flow and concentration [1]. Other terms and methods believed to approximate this anatomic space are grouped in this section under the heading Anatomic. (2) Physiologic Dead Space. This term includes both anatomic and distribution dead space, and indicates the value of alveolar CO2 tension obtained by measuring arterial CO2 lension. Other methods also attempt to include distribution dead space; these are all grouped with the arterial CO2 tension methods under the heading Physiologic. Those marked "Haldane-Priestley" are now felt by most investigators to be too large, because the alveolar tension obtained by a forced lung expiration is too high. Regarding other methods, it is not possible to be certain whether they belong in the Anatomic or Physiologic group. "Alveolar" dead space [2] is the difference between the physiologic dead space and the anatomic dead space (Fowler); it is one measure of the distribution dead space. "Parallel" dead space also refers to the distribution dead space, as determined by the isosaturation technique [3].

Contributor: Severinghaus, J. W.

References: [1] Fowler, W. S., Am. J. Physiol. 154:405, 1948. [2] Severinghaus, J. W., and Stufpel, M., J. Appl. Physiol. 10:335, 1957. [3] Pappenheimer, J. R., Fishman, A. P., and Borrero, L. M., ibid 4:855, 1952.

Part I: AT REST

Values in parentheses conform to estimate "c" of the 95% range (cf Introduction).

_			1						
	Age	Subjects	Sex	Dead Space	Method	Reference			
	yı.	110.		L					
	(A)	(B)	(C)	(D)	(E)	(F)			
	Anatomic								
1	Young		ੂ ਹੈ	0.130(0.100-0.160)	Fractional sampling, analysis of expiratory CO2.	1			
2	19-38	45	ď	0.156(0.106-0.219)	Nitrogen (Lilly nitrogen meter).	2			
3	20-25	2	Ş	0.108(0.093-0.124)	Foreign gas (hydrogen).	3			
4	24	1	\$	0.133		4			
5	25-32	5	o*	0.144(0.098-0.164)		3			
6	27-29	3	ď	0.122(0.089-0.143)		4			
7	29-36	7	ਰ	0.164(0.145-0.215)	Isosaturation.	5			
8	68-89	18	ď	0.235(0.127-0.370)	Continuous recording of expiratory CO2 infrared gas analyzer.	6			
9:		7		0.177(0.154-0.214)		7			
10		I	ď	0.176	Isosaturation.	8			
11		4	ď	0.155(0.109-0.181)	Foreign gas (hydrogen).	9			
12		1		0.144	Plaster cast.	10			
13		1	Ş	0.090	Isosaturation.	5			
					Physiologic				
14	18-34	50	9	0.144(0.041-0.449)	Alveolar CO2 tension (Haldane-Priestley).	11			
15	18-38	5	ರೆ	0.189(0.128-0.259)	Nz clearance.	12			
16	18-39	8		0.180(0.130-0.260)		13			
17	21-32	10	ď	0.173(0.052-0.223)	Arterial CO ₂ tension.	14			
18	21-32	4	Ŷ	0.110(0.090-0.140)	H ₂ clearance.	13			
19	22	1			Arterial CO ₂ tension.	15			
20	29-36	7	of of	0.174(0.140-0.208)		5			
21		2			Alveolar CO2 tension (Haldane-Priestley).	16 /			
22		4			Arterial CO ₂ tension.	17			
_									

Contributors: (a) Rossier, P. H., (b) Bateman, J. B., (c) Fishman, A. P., (d) Kaltreider, N. L., (e) Severinghaus, J. W.

References: [1] Hatch, T., Cook, K. M., and Palm, P. E., J. Appl. Physiol. 5:341, 1953. [2] Fowler, W. S., Am. J. Physiol. 154:405, 1948. [3] Siebeck, R., Deut. Arch. klin. Med. 102:390, 1911. [4] Siebeck, R., Scand. Arch. Physiol. 25:86, 1911. [5] Fishman, A. P., J. Clin. Invest. 33:469, 1954. [6] Tenney, S. M., and Miller, R. M., J. Appl. Physiol. 9:321, 1956. [7] DuBois, A. B., Fowler, R. C., Soffer, A., and Fenn, W. O., ibid 4:526, 1952. [8] Pappenheimer, J. R., Fishman, A. P., and Borrero, L. M., ibid 4:855, 1952. [9] Krogh, A., and Lindhard, J., J. Physiol. 47:30, 1913-14. [10] Loewy, A., Pflügers Arch. 58:416, 1894. [11] Hurtado, A., Fray, W. W., Kaltreider, N. L., and Brooks, W. D., J. Clin. Invest. 13:169, 1934. [12] Bateman, J. B., J. Appl. Physiol. 3:143, 1950. [13] Birath, G., Acta med. scand., suppl., 154, 1944. [14] Blickenstorfer, E., Schweiz. Zschr. Tuberk., 4:suppl. 1, 1947. [15] Enghoff, H., Upsala läk. fören. förh. 44:191, 1938. [16] Haldane, J. S., and Priestley, J. G., J. Physiol. 32:240, 1905. [17] De Coster, A., and Denolin, H., Acta clin. belg. 9:135, 1954.

CR-209. RESPIRATORY DEAD SPACE: MAN (Continued)

Part II: DURING ACTIVITY

Values in parentheses conform to estimate "c" of the 95% range (cf Introduction). VD = volume of dead space gas, Vr = tidal volume.

<u>· 1</u>	- tidai vi				v _T	v _D	$\frac{V_D}{V_T} \times 100$	
	Subjects	Sex	Activity	O ₂ Consumption			V _T	Refer-
	no.			L/min	L	L	%	ence
	(A)	(B)	(C)	(D)	(E)	(F)	(G)	(H)
					Anatomic			
1	2	ď	Moderately			0.172		1
2	2	ರ್	severe work			0.211		1
3	2	ď	750 kg/min,			0.142		2
4	2	ď	bicycle			0.093		2
			ergometer					
5	1	ď	Quiet breathing		0.580	0.168	29	3
6	1	₽			0.895	0.105	12	3
7	1	ರೆ	Post-exercise		0.810	0.188	23	3
8	1	· P	hyperpnea		1.310	0.158	12	3
				P	hysiologic			
9	1	ď	At rest1		0.403	0.198	49	4
10	1	ರ್	Fast walking l		1.373	0.650	47	4
11	1	ď	Bed rest1	0.237	0.457	0.160	35	5
12	1	ď	Standing rest1	0.328	0.612	0.222	36	5
13	1	ď	Walkingl	1.436(0.668-2.543)	2.014(1.271-3.145)	0.463(0.293-0.622)	23.5(20-27.5)	5
14	4	ď	Severe work		2.400(1.500-3.300)2	0.303(0.245-0.365)2	13.3(11-16)2	6
15	4	ď	(bicycle	2.5002	3.304(3.030-3.500)2	0.310(0.292-0.362)2	10(9-11)2	6
16	30	o*	ergometer)	1.200(0.400-2.000)2		0.315(0.155-0.470)2		7
17	2	o*		0.8622	1.2762	0.2812	222	8
18	2	ď		1.5382	1.7062	0.3602	212	8
19	1	ď		1.740(1.410-2.050)3	2.562(1.890-3.520)3	0.322(0.280-0.392)3	12.8(11-15)3	9
20	2	ď	Treadmill		0.4501 (at rest)	0.1201	26.51	10
21	2	ď			2.9501 (at work)	0.5551	191	10
22	3	ď		1.667(1.255-2.425)2		$0.227(0.131-0.296)^2$	10.8(8-17)2	11
23	3	0		2.0422	2.8092	0.3772	13.52	11
24	3	ď		0.6902	0.7622	0.2582	332	11
25		ď		1.080(0.810-1.350)2			15.1(0-31)2	12

^{/1/} Alveolar CO₂ tension method (Haldane-Priestley). /2/ Arterial CO₂ tension method. /3/ Fractional sampling of expiratory gas, CO2 analysis.

Contributors: (a) Rossier, P. H., (b) Severinghaus, J. W.

References: [1] Siebeck, R., Scand. Arch. Physiol. 25:81, 1911. [2] Krogh, A., and Lindhard, K., J. Physiol. 47:30, 1913-1914. [3] Fowler, W. S., Am. J. Physiol. 154:405, 1948. [4] Henderson, Y., Chillingworth, F. P., and Whitney, J. L., ibid 38:1, 1915. [5] Douglas, C. G., and Haldane, J. S., J. Physiol. 45:235, 1912. [6] Asmussen, E., and Nielsen, M., Acta physiol. scand. 38:1, 1956. [7] Rossier, P. H., and Buhlmann, A., unpublished. [8] Houston, C. S., and Riley, R. L., Am. J. Physiol. 149:565, 1947. [9] Aitken, R. S., and Clark-Kennedy, A. E., J. Physiol. 65:389, 1928. [10] Bannister, R. G., Cunningham, D. J., and Douglas, C. G., ibid 125:90, 1954. [11] Riley, R. Shenard, R. H. Cohn, J. F. Carroll, D. G. and Armstrong, R. W. J. ibid 125:90, 1954. [11] Riley, R. L., Shepard, R. H., Cohn, J. E., Carroll, D. G., and Armstrong, B. W., J. Appl. Physiol. 6:673, 1954. [12] Filley, G. F., Gregoire, F., and Wright, G. W., J. Clin. Invest. 33:517, 1954.

Part III: DURING CO2 HYPERPNEA

Male subjects at rest. Except where otherwise indicated, measurements are for alveolar CO2 tension by Haldane-Priestley method. VD = volume of dead space gas, VT = tidal volume.

	Air Respirati	on	Air plus CO ₂ Respiration			
v _T	v _D	$\frac{V_D}{V_T} \times 100$	VT	$v_{\rm D}$	$\frac{V_D}{V_T} \times 100$	Reference
L	L	%	L	L	%	
(A)	(B)	(C)	(D)	(E)	(F)	(G)
1 0.532	0.170	32	1.018	0.252	25	1
2 0.468	0.141	30	1.254	0.358	29	1
3 0.400	0.105	26	1.600	0.340	21	2
0.500	0.135	27	1.300	0.330	25	2
5	0.1421			0.2161		3
5				0.3851		3
	0.1352			0.1092		4
8	0.1422			0.1432		4

/1/ Arterial CO2 tension method. /2/ Foreign gas method (hydrogen).

Contributors: (a) Rossier, P. H., (b) Severinghaus, J. W.

References: [1] Campbell, J. M., Douglas, C. G., and Hobson, F. G., J. Physiol. 48:303, 1914. [2] Bannister, R. G., Cunningham, D. J., and Douglas, C. G., ibid 125:90, 1954. [3] Cooper, D. Y., Emmel, G. L., Kough, R. H., and Lambertsen, C. J., Fed. Proc. 12:28, 1953. [4] Siebeck, R., Scand. Arch. Physiol. 25:31, 1911.

48. RESPIRATORY DEAD SPACE AND CHANGE IN FUNCTIONAL RESIDUAL CAPACITY: DOG

Determinations made on 11 dogs; tidal volume was held constant at 200 ml and rate at 10 or 12 respirations per min. Anatomic dead space is proportional to end inspiratory lung volume, while physiologic dead space is approximately constant over range of lung volumes studied. For definitions and clarifying information on various dead space concepts, see Page 46.

Contributor: Severinghaus, J. W.

Reference: Severinghaus, J. W., and Stupfel, M., J. Appl. Physiol. 10:335, 1957.

49. SOME FACTORS AFFECTING RESPIRATORY DEAD SPACE: MAN Part I: EFFECT OF BREATHHOLDING

Male subjects. V_D = volume of dead space gas. For definitions and clarifying information on various dead space concepts, see Page 46.

Subjects	Dead	Quiet Breathing		Breathholdin	g	
no.	Space	Inspiration Time	$v_{\rm D}$	Inspiration Time	VD	Reference
110.	Gas	sec	m1	sec	ml	
(A)	(B)	(C)	(D)	(E)	(F)	(G)
21			198	5	157	1
				10	146	
			189	5	135	
				10	118	
52		2.0	132	20	70	2
		2.0	128	21	66	
		1.3	160	20	95	
		1.3	173	21	74	
		2.0	168	22	107	
		2.5	107	21	55	
		2.2	114	20	61	
		2.5	192	22	136	
		2.1	178	21	145	
13	CO2		195	3	195	3
				5	160	
				10	150	
				20	163	
				30	138	
				60	105	
	He		225	3	175	
				5	165	
				10	160	
				20	132	
				20	110	
				60	95	

/1/ Foreign gas method (hydrogen). /2/ Nitrogen method (Lilly nitrogen meter). /3/ Recording mass spectrometer method (Lilly nitrogen meter).

49. SOME FACTORS AFFECTING RESPIRATORY DEAD SPACE: MAN (Concluded)

Part 1: EFFECT OF BREATHHOLDING (Concluded)

Male subjects. VD = volume of dead space gas.

Subjects	Dead	Quiet Breathing		Breathholding		
_	Space	Inspiration Time	V _D	Inspiration Time	V _D	Reference
no.	Gas	sec	ml	sec	ml	
(A)	(B)	(C)	(D)	(E)	(F)	(G)
6 13	N ₂		190	3	170	3
7				5	150	
8				10	140	
.9				20	120	
0				30	105	
1				60	118	
2	O ₂		210	3	180	
3				5	155	
4				10	140	
5				20	165	
6				30	130	
7				60	115	

^{/3/} Recording mass spectrometer method (Lilly nitrogen meter).

Contributor: Rossier, P. H.

References: [1] Siebeck, R., Deut. Arch. klin. med. 102:390, 1911. [2] Fowler, W. S., Am. J. Physiol. 154:405, 1948. [3] Bartels, J., Severinghaus, J. W., Forster, R. E., Briscoe, W. A., and Bates, D. V., J. Clin. Invest. 33:41, 1954.

Part II: EFFECT OF BREATHING LEVEL

Each set of values is for a single subject. Unless otherwise indicated, measurements are by foreign gas (H2) method.

Sex	Deep Expiratory Level	Normal Expiratory Level	High Inspiratory Level	Reference	
	m1	ml	ml		
(A)	(B)	(C)	(D)	(E)	
1 0	109	135	152	1	
2 0	109	142	206		
3 01	33	150	796	2	
4 0	99.5	111	185	3	
5 ♀	98.5	108.5	171		
6 0	158		294	4	
7 02	119	168	233	5	
8 22	84	105	202		

^{/1/} Alveolar CO2 tension method (Haldane-Priestley). /2/ Nitrogen method.

Contributors: (a) Rossier, P. H., (b) Severinghaus, J. W.

References: [1] Siebeck, R., Scand. Arch. Physiol. <u>25</u>:91, 1911. [2] Henderson, Y., Chillingworth, F. P., and Whitney, J. L., Am. J. Physiol. <u>38</u>:1, 1915. [3] Krogh, A., and Lindhard, J., J. Physiol. <u>51</u>:59, 1917. [4] Mundt, E., Schoedel, W., and Schwarz, H., Pflügers Arch. <u>244</u>:107, 1941. [5] Fowler, W. S., Am. J. Physiol. <u>154</u>:405, 1948.

Part III: DEAD SPACE FOR O2, CO2, He, AND N2

Values are for single subjects at rest. All inspirations were 80% He-20% O_2 and followed a period of breathing air. All breathholding times were about $2\frac{1}{2}$ sec. Recording mass spectrometer method (Lilly nitrogen meter). Ranges in parentheses conform to estimate "b" of the 95% range (cf Introduction).

	Sex	O ₂ ml			N ₂ ml
	(A)	(B)	(C)	(D)	(E)
1	đ	149(141-157)	145(137-153)	141(131-151)	128(122-134)
2	đ	169(151-187)	161(149-173)	152(144-160)	165(159-171)
3	đ	165(155-175)	160(150-170)	155(143-167)	169(163-175)
4	ď	195(185-205)	207(193-221)	198(180-216)	189(179-199)
5	\$	161(145-177)	144(136-152)	134(122-146)	124(114-134)

Contributor: Rossier, P. H.

Reference: Bartels, J., Severinghaus, J. W., Forster, R. E., Briscoe, W. A., and Bates, D. V., J. Clin. Invest. 33:41, 1954.

50. RESPIRATORY DEAD SPACE AND TIDAL VOLUME: MAN

Resting subjects. V_D = volume of dead space gas in ml. V_T = tidal volume in ml. For definitions and clarifying information on various dead space concepts, see Page 46.

No. and S	Sex Mean Value	Range	Method	Reference
(A)	(B)	(C)	(D)	(E)
1 10	$V_{D} = 0.31 \times V_{T}$		Alveolar CO2 (Haldane-Priestley).	1
2	$V_D = 0.275 \times V_T$		Statistical data.	2
3 509	$V_D = 0.4949 \times V_T - 89.9$	$V_D = 0.4949 \times V_T - 30$	Alveolar CO2 tension (Haldane-	3
		$V_D = 0.4949 \times V_T - 160$	Priestley).	
4 420	$V_D = 0.41 \times V_T - 55$	$V_D = 0.41 \times V_T + 30$	Alveolar CO2 tension (Haldane-	4
		$V_D = 0.41 \times V_T - 150$	Priestley).	
5 10	V _D = 0.24 x V _T		Arterial CO ₂ tension.	5
6 80	$V_{\rm D} = 0.34 \times V_{\rm T}$	$V_D = 0.448 \times V_T$	Hydrogen clearance.	6
	_	$V_{D} = 0.186 \times V_{T}$		
7 49	$V_{\rm D} = 0.254 \times V_{\rm T}$	$V_D = 0.305 \times V_T$	Hydrogen clearance.	6
		$V_{D} = 0.225 \times V_{T}$		
8 80	$V_{\rm D} = 0.199 \times V_{\rm T}$	$V_D = 0.29 \times V_T$	Arterial CO ₂ tension.	7
		$V_D = 0.13 \times V_T$	_	
9 50, 32	$V_D = 0.30 \times V_T - 4.9$		Nitrogen clearance.	8
10 4d	$V_{\rm D} = 0.31 \times V_{\rm T}$	$V_{D} = 0.25 \times V_{T}$	Arterial CO2 tension.	9
	1	$V_{\rm D} = 0.38 \times V_{\rm T}$		
11 90, 49	$V_{\rm D} = 0.36 \times V_{\rm T}$	$V_D = 0.36 \times V_T - 25$	Arterial CO ₂ tension.	10
	1	$V_D = 0.36 \times V_T + 25$		
12 350, 159	$V_{\rm D} = 0.35 \times V_{\rm T}$	$V_D = 0.35 \times V_T - 25$	Arterial CO ₂ tension.	11
		$V_D = 0.35 \times V_T + 25$		

Contributors: (a) Rossier, P. H., (b) Fishman, A. P., (c) Kaltreider, N. L., (d) Severinghaus, J. W. References: [1] Campbell, J. M., Douglas, C. G., and Hobson, F. G., J. Physiol. 48:303, 1914. [2] Enghoff, H., Scand. Arch. Physiol. 63:15, 1931. [3] Hurtado, A., Fray, W. W., Kaltreider, N. L., and Brooks, W. D., J. Clin. Invest. 13:169, 1934. [4] Kaltreider, N. L., Fray, W. W., and Hyde, H. van Z., Am. Rev. Tuberc. 37:662, 1938. [5] Enghoff, H., Upsala läk. fören. förh. 44:191, 1938. [6] Birath, G., Acta med. scand. suppl., 154, 1944. [7] Riley, R. L., and Cournand, A., J. Appl. Physiol. 1:825, 1949. [8] Bateman, J. B., ibid 3:143, 1950. [9] De Coster, A., and Denolin, H., Acta clin. belg. 9:135, 1954. [10] Bartels, H., Beer, R., Koepchen, H. P., Wenner, J., and Witt, I., Pflügers Arch. 261:133, 1955. [11] Rossier, P. H., and Buhlmann, A., unpublished.

51. RESPIRATORY DEAD SPACE AND TIDAL VOLUME: DOG

Male subjects. V_D = volume of dead space gas. For definitions and clarifying information on various dead space concepts, see Page 46.

Contributor: Severinghaus, J. W.

Reference: Severinghaus, J. W., and Stupfel, M., J. Appl. Physiol. 10:335, 1957.

52. RESPIRATORY DEAD SPACE IN PATHOLOGICAL CONDITIONS: MAN Ranges are estimate "c" of the 95% range (cf Introduction). $V_{\rm D}$ = volume of dead space gas, $V_{\rm T}$ = tidal volume. For definitions and clarifying information on various dead space concepts, see Page 46.

	Condition	Subjects no.	Sex	V _D	V _D x 100	Method	Reference
_	(A)	(B)	(C)	(D)	(E)	(F)	(G)
1	Emphysema	8	ď	189-253		Foreign gas (hydrogen)	1
2		2	ਰ	490-570	59-76	Hydrogen clearance	2
3		6	ď		23-52	Arterial CO ₂ tension	3
4		5	ď		35-53	Arterial CO ₂ tension	4
5		5	ď	142-231	36-47	Arterial CO2 tension	5
6		100		190-320	38-60	Arterial CO ₂ tension	6
7	Sarcoidosis	22	ď		11-48	Arterial CO2 tension	7
8	Pulmonary fibrosis, including						
	sarcoidosis	8		190-310	36-60	Arterial CO2 tension	6
9	Pneumonectomy, recently	15		120-160	471	Arterial CO ₂ tension	8
10	operated	5	ď	160-340	36-57	Hydrogen clearance	2
11	•	1	ç	300	50	Hydrogen clearance	2
12	Pneumonectomy with						
	thoracoplasty	15		80-120	261	Arterial CO ₂ tension	8
13	Pneumothorax, unilateral	9	ď	190-450	38-60	Hydrogen clearance	2
14		2	ç	90-140	29	Hydrogen clearance	2
15	Pneumothorax, bilateral	2	ď	180-270	35-59	Hydrogen clearance	2
16	Thoracoplasty	8	ď	140-400	44 - 57	Hydrogen clearance	2
17		2	· · ·	150-190	37 - 39	Hydrogen clearance	2
18	Renal and diabetic acidosis	5		To 400		Arterial CO ₂ tension	6
	Acute asthmatic attacks						
19	Before attack	5	ď	190-320	28-44	Arterial CO ₂ tension	9
20	During attack	5	ď	254-686	40-65	Arterial CO2 tension	9
21	Before attack	3	· Q	230-310	37-51	Arterial CO2 tension	9
22	During attack	3	2	167-294	42-63	Arterial CO2 tension	9

/1/ Mean value.

Contributors: (a) Rossier, P. H., (b) Severinghaus, J. W.

References: [1] Siebeck, R., Deut. Arch. klin. Med. 102:380, 1911. [2] Birath, G., Acta med. scand., suppl., 154, 1944. [3] Riley, R. L., and Cournand, A., J. Appl. Physiol. 1:825, 1949. [4] West, J. R., Baldwin, E. de F., Cournand, A., and Richards, D. W., Am. J. M. 10:481, 1951. [5] De Coster, A., and Denolin, H., Acta clin. belg. 9:135, 1954. [6] Rossier, P. H., and Buhlmann, A., unpublished. [7] Stone, D. J., Schwartz, A., Feltman, J. A., and Lovelock, F. J., Am. J. M. 15:468, 1953. [8] Rossier, P. H., and Buhlmann, A., Schweiz. Zschr. Tuberk. 7:1, 1950. [9] Scherrer, M., Kostyal, A., Wierzejewski, H., Schmidt, F., and Von Geuns, H. A., Internat. Arch. Allergy, Basel 9:65, 1956.

53. DIFFUSION CAPACITY OF THE LUNGS: MAN

 D_{x} is the amount of gas in ml (STPD) per min which diffuses through the whole lung, when a mean partial pressure difference of one mm Hg exists between alveolar air and capillary blood of the lung ($\Delta \bar{p}$). $D = \frac{\text{ml gas}}{\min x \ \Delta \bar{p}}$; therefore,

the total oxygen consumption of the lungs (Q) is as follows: $Q = D_{O2} \times \Delta \bar{p}$. Calculation of D_{O2} from D_{CO} : $D_{O2} = D_{CO} \times 1.23$. Calculation of D_{CO2} from D_{CO2} : $D_{CO2} = D_{CO} \times 24.6$. Methods: A = single breath CO method of Krogh [1], or modification [2]; B = oxygen method with graphical integration of mean oxygen pressure gradient [3]; C = steady state CO method based on arterial CO2 tension; D = steady state CO method based on end tidal gas sampling or assumed dead space value; E = radioactive C^{140} method of Kruhoffer. Values are in most cases corrected for lung volume at mid-capacity (sum of residual reserve and half the resting tidal volume) or for the volume at functional residual capacity (sum of residual and reserve volume). Values in parentheses are ranges, estimate "c" of the 95% range (cf Introduction).

Part I: AT REST AND DURING ACTIVITY

	Λ ===	No and Sav	Mathad	D	O ₂	Work Load	Reference
	Age	No. and Sex	Method	Rest	Work	WOLK FORG	Reference
	(A)	(B)	(C)	(D)	(E)	(F)	(G)
1	10-15 yr	5, &\$	A	23.1(20.6-27.3)			1
2	Adult	140	A	36.7(27.8-43.3)			1
3		5♀	A	28.0(21.9-30.5)			1,4
4		10 ರ	E	27(21-31)1			5
5		5♀	E	22(20-24)1			5
6		90	В	24.4(16-36)2			6
7	25-28 yr	5 <i>o</i> *	A		51.3(41.7-60.2)	450 kg-m/min	4
8		60	A	35.6(24.7-42.9)	55.7(43.0-68.8)	670-900 kg-m/min	4
9		5 ರ	A		63.5(60.4-66.8)	1130 kg-m/min	4
10		40	A		57.5(49.0-68.6)	1300 kg-m/min	4
11		30	A		63.7(57.3-73.4)	1590 kg-m/min	4
12	Adult	60	В	21(12-36)3	62(50-76)2		7
13		60,19	С	20.7(12.9-34.5)	44.6(28.5-67.6)4	2-16% grade at 2.5-3.5 mi/hr	8
14		140,49	D	21.6(13.0-35.3)	37.9(25.5-53.4)	0 grade at 3 mi/hr	9
15		12, 00	D		39.2(29.6-57.8)	9% grade at 3 mi/hr	9

/1/ 15% O₂ in inspired air. /2/ 12% O₂ in inspired air. /3/ 10% O₂ in inspired air. /4/ 10 males, 1 female.

Contributors: (a) Bartels, H., and Opitz, E., (b) Bates, D. V.

References: [1] Krogh, M., J. Physiol., Lond. 49:271, 1914-15. [2] Forster, R. E., Cohn, J. E., Briscoe, W. A., Blakemore, W. S., and Riley, R. L., J. Clin. Invest. 33:1417, 1955. [3] Bohr, C., Skand. Arch. Physiol., Berl. 22:221, 1909. [4] Bøje, O., Arbeitsphysiologie 7:157, 1934. [5] Kruhoffer, P., Acta physiol. scand. 32:106, 1954. [6] Bartels, H., et al. Pflügers Arch. 261:99, 1955. [7] Lilienthal, J. L., Jr., Riley, R. L., Proemmel, D. D., and Franke, R. E., Am. J. Physiol. 147:199, 1946. [8] Filley, G. F., MacIntosh, D. J., and Wright, G. W., J. Clin. Invest. 33:530, 1954. [9] Bates, D. V., Boucot, N. G., and Dormer, A. E., J. Physiol., Lond. 129:237, 1955.

Part II: EFFECT OF ACCLIMATIZATION TO ALTITUDE

	No and Cau	Method		D_{O_2}					
	No. and Sex	Method	Sea Level	Acclimatized	Residents	Reference			
	(A)	(B)	(C)	(D)	(E)	(F)			
1	50	A	35.2(25,3-46,8)	36.5(25.4-43.8)1	48.0(41.5-65.3)1	1			
2	68	В	(20-30)	702,3		2			

/1/ Altitude 13,000 feet at Cerro di Pasco, Peru. /2/ At 20,000 feet after 22 days in low-pressure chamber following gradual ascent. /3/ One subject.

Contributors: Bartels, H., and Opitz, E.

References: [1] Barcroft, J., "The Respiratory Function of the Blood," vol I, London: Cambridge University Press, 1925. [2] Houston, C. S., and Riley, R. L., Am. J. Physiol. 149:565, 1947.

54. ALVEOLAR-CAPILLARY DIFFUSION: MAN

Part I: PULMONARY CAPILLARY O2 PRESSURE

Mixed venous blood enters the pulmonary capillaries with pO_2 of 40 mm Hg. Blood normally requires about 0.75 seconds to pass through the capillaries, at the end of which time its pO_2 has risen to almost 100 mm Hg. The pO_2 of arterial blood is lower because of venous-to-arterial shunts.

Réference: Comroe, J. H., Jr., Forster, R. E., II, DuBois, A. B., Briscoe, W. A., and Carlsen, E., "The Lung," Chicago: The Year Book Publishers, Inc., 1956.

Part II: END- AND MEAN CAPILLARY OZ PRESSURE

The graphic and tabular presentation illustrates different rates at which venous blood may be oxygenated in pulmonary capillaries, depending upon the diffusing capacity of the lung. Alveolar pO₂ in each case is 100 mm Hg.

Reference: Comroe, J. H., Jr., Forster, R. E., II, DuBois, A. B., Briscoe, W. A., and Carlsen, E., "The Lung," Chicago: The Year Book Publishers, Inc., 1956.

55. DYNAMICS OF PULMONARY CIRCULATION: MAN, DOG

	G		Pressure,	mm Hgl		Blood	1
	Condition	C	Arterial	34	Venous2	Flow	Reference
	(4)	Systolic	Diastolic	Mean	(72)	L/min	(0)
	(A)	(B)	Man (C)	(D)	(E)	(F)	(G)
1 1	Resting ³	25	14	18	 	6.0	1
2	Resting ³	23	1 1 1	14		7.1	2
3	Resting ³	25	11	16		5.4	3
4	Resting	23	9	15	9	7.4	4
- 1	Resting	23	7	16	7	5.5	5
	Exercise, supine ³			15	'	10.4	2
7	Exercise, supine			21	10	9.6	6
3	Exercise, standing ³	26	9	16	10	12.0	i
٠	Hypoxia	20	7	20	7	5.5	5
٠.	Hypoxia ³	26	1.2	18	8	8.0	7
- 1	• •	20	12		_		
1	Saline infusion ³			23	16	6.7	8
٦.	Drug effect, intravenous				_		
2	Epinephrine ³			19	7	7.9	9
3	Norepinephrine	28	11	21	15	4.5	10
4	Tetraethylammonium chloride			15	10	4.7	11
	Disease patterns						
5	Emphysema, mild ³	29	12	18		5.5	12
6	Emphysema, severe ³	43	16	28		5.6	12
7	Cor pulmonale, with hypoxia ³	43	19	28		5.4	12
8	Cor pulmonale, with hypoxia			35	9	5.4	13
9	Cor pulmonale, with congestive failure ³	74	39	52		7.4	12
0	Primary pulmonary hypertension3	101	47	66		2.9	14
1	Left ventricular failure			45	30	3.5	4
2	Mitral stenosis			51	29	4.3	15
3	Mitral stenosis	68	33	47	28	4.0	16
4	Mitral insufficiency			15	12	5.9	17
5	Mitral stenosis and insufficiency			36	23	3.8	17
6	Aortic stenosis and insufficiency			29	16	5.0	18
7	Chronic constrictive pericarditis	36	22	26	20	4.3	19
`	Atrial septal defect	30		"	-	1	1 1
8	Left to right shunts ³	38	12	23	134	16.5	20
9	Left to right shunts ³	31	14	21	8	18.0	4
1	Atrial septal defect	31	14	21	"	10.0	3
0	Right to left shunts ³	96	53	68	94	2.6	20
1	Right to left shunts ³	88	59	73	7-	3.5	21
2	Patent ductus arteriosus	43	19	29		12.2	22
3		34	1		1.4	1	4
4	Patent ductus arteriosus		17	28	14	19.0	1 -
- 1	Patent ductus arteriosus ³	46	23	31		7.7	23
5	Patent ductus arteriosus ³			36	,	12.4	24
6	Tetralogy of Fallot		8	4	6	2.5	25
7	Pulmonic stenosis	24	10	17	11	5.4	a
3	Eisenmenger syndrome	120	65	87	8	3.3	4
7	Eisenmenger syndrome			86		3.5	a
)	Ventricular septal defect ³			37		10.3	24
1 [Ventricular septal defect	35	20	27		5.7	a
F			Dog				
2	Resting ⁵			18	10	2.3	26
	Resting			17	4	3.2	27
	Hypoxia, moderate ⁵			22	84	2.4	26
- 1	Hypoxia, moderate			26	44	3.8	27
6	Hypoxia, severe			26	94	8.1	26

^{/1/} Zero point = 10 cm anterior to back in man; zero point = back in dog. /2/ Pulmonary "capillary" mean pressure used except where indicated. /3/ Pressure approximately corrected to 10 cm zero point. /4/ Pulmonary venous or left atrial mean pressure. /5/ Anesthetized.

Contributor: (a) Gorlin, R.

References: [1] Riley, R. L., Himmelstein, A., Motley, H. L., Weiner, H. M., and Cournand, A., Am. J. Physiol. 152:372, 1948. [2] Hickam, J. B., and Cargill, W. H., J. Clin. Invest. 27:10, 1948. [3] Cournand, A., Circulation 2:641, 1950. [4] Dexter, L., Dow, J. W., Haynes, F. W., Whittenberger, J. L., Ferris, B. G., Goodale, W. T., and Hellems, H. K., J. Clin. Invest. 29:602, 1950. [5] Westcott, R. N., Fowler, N. O., Scott, R. C., Hauenstein, V. D., and McGuire, J., ibid 30:957, 1951. [6] Dexter, L., Whittenberger, J. L., Haynes, F. W., Goodale, W. T., Gorlin, R., and Sawyer, C. G., J. Appl. Physiol. 3:439, 1951. [7] Doyle, J. T., Wilson, J. S., and Warren, J. V., Circulation 5:263, 1952. [8] Doyle, J. T., Wilson, J. S., Estes, E. H., and Warren, J. V., J. Clin. Invest. 30:345, 1951. [9] Witham, A. C., and Fleming, J. W., ibid 30:707, 1951. [10] Fowler, N. O., Westcott, R. N., Scott, R. C., and McGuire, J., ibid 30:517, 1951. [11] Fowler, N. O., Westcott, R. N., Hauenstein, V. D., Scott, R. C., and McGuire, J., ibid 29:1387, 1950. [12] Harvey, R. M., Ferrer, M. I., Richards, D. W., Jr., and Cournand, A., Am. J. Med. 10:719, 1951. [13] Dexter, L., Whittenberger, J. L., Gorlin, R., Lewis, B. M., Haynes, F. W., and Spiege, R. J., Trans. Ass. Am. Physicians 64:226, 1951. [14] Dresdale, D. T., Schultz, M., and Michtom, R. J., Am. J. M. 11:686, 1951. [15] Gorlin, R., Haynes, F. W., Goodale, W. T., Sawyer, C. G., Dow, J. W., and Dexter, L., Am. Heart J. 41:30, 1950. [16] Lukas, D. S., and Dotter, C. T., Am. J. M. 12:639, 1952. [17] Gorlin, R., Lewis, B. M., Haynes, F. W., and Dexter, L., Am. Heart J. 43:357, 1952. [18] Gorlin, R., Matthew, M. B., MacMillen, I. K., Daley, R., and Medd, W. E., Ann. Mtg. Brit. Cardiac Soc., May 21, 1953. [19] Sawyer, C. G., Burwell, C. S., Dexter, L., Eppinger, E. C., Goodale, W. T., Gorlin, R., Harken, D. E., and Haynes, F. W., Am. Heart J. 44:207, . 1952. [20] Hickam, J. B., ibid 38:801, 1949. [21] Handelsman, J. C., Bing, R. J., Campbell, J. A., and Greswold, H. E., Johns Hopkins Hosp. Bull. 82:615, 1948. [22] Taylor, B. E., Pollack, A. A., Burchell, H. B., Clagett, O. T., and Wood, E. H., J. Clin. Invest. 29:745, 1950. [23] Cournand, A., Baldwin, J. S., and Himmelstein, A., "Cardiac Catheterization in Congenital Heart Disease," Commonwealth Fund, New York. [24] Wood, P., Brit. M. J. 2:639, 1950. [25] Bing, R. J., Vandam, L. D., and Gray, F. D., Jr., Johns Hopkins Hosp. Bull. 80:323, 1947. [26] Lewis, B. M., and Gorlin, R., Am. J. Physiol. 170:574, 1952. [27] Stroud, B. C., and Rahn, H., ibid 172:211, 1953.

56. BLOOD GASES, VARIABLES, FACTORS, AND CONSTANTS: MAN

The values from which this table has been synthesized are in many instances derived by calculation from basic assumptions, factors, and constants, and do not have the same validity as measured values. Those for females are in

general less well-founded than those for males. A = arterial blood, V = mixed venous blood.

gen	ierai iess weii-ioui	ided ura	an tile	ose for ma	168. H = 3	arterial bio				d.	
			1		Whole Bloc			ml Gas	Blood		
			1		ml Gas in	ml Gas In	in	in	Gas	Fa	ctors
	Variable	Blood	Sex	100 ml	d 45.0 ml	d 55.0 ml	100 ml	100 ml	Pressure		and
				Whole	♀ 40.0 ml	♀ 60.0 ml	RBC	Plasma	(Tension)	Cor	nstants
			1	Blood	RBC	Plasma	(In Co	ntact)1	mm Hg		
	(A)	(B)	(C)	(D)	(E)	(F)	(G)	(H)	(1)	(J)	(K)
1			ď	20.4		1	45.3	(==,			(11)
2	Oxygen capacity ²		2	18.0			45.33				
											A-V O ₂ Diff.
3			ď	20.3	20.1	0.142	44.7	0.258	94		5.00
4		A	ç	17.9	17.7	0.155	44.7	0.258	943		4.20
5	Total oxygen		- ÷	15.3	15.2	0.060	33.9	0.110	40		1.20
6		v	0	13.7	13.6						
0			¥	13.7	13.0	0.068	34.4	0.113	41	0 0 11 4	0 71 4
-				0.305						aO ₂ Cells ⁴	aO ₂ Plasma ⁴
7		Α .	ď	0.285	0.144	0.142	0.319	0.258	943		
8	Free oxygen		\$	0.282	0.126	0.156	0.319		943	0.0258	0.02089
9	Troo on Jeon	v	ď	0.122	0.061	0.061	0.136	0.110	40	0.0250	0.02007
10			\$	0.124	0.055	0.068	0.139	0.113	41		
										HbO2 Sat.%	
11		Α		20.0	20.0	0	44.4	0	94	98	
12	Combined oxygen	A	9	17.6	17.6	0	44.4	0	943	98	
13	(HbO ₂)		ď	15.2	15.2	0	33.6	0	40	73.5	
14	. 2	v	·	13.6	13.6	0	34.3	0	41	74.5	
			,							115115	A-V CO ₂ Diff. 6
15			ď	49.0	16.2	32.8	36.0	59.6	41	1.217	4.1
16	Total carbon-	A	ç	48.0	13.6	34.4	34.3	57.0	39	1.187	3.4
17	dloxlde		ď	53.1	18.0	35.1	40.1	63.8	46	1.201	3.4
18	dioxide	V				36.5					
10			Ŷ	51.4	14.9	30.5	37.7	60.4	43	1.175	7
				- / -					41	aCO _Z Cells ⁷	aCO _Z Plasma ⁷
19	_	A	ď	2.62	1.06	1.56	2.36	2.84			
20	Free carbon-			2.53	0.89	1.64	2.25	2.72	39	0.4399	0.5311
21	dioxlde	v		3.00	1.21		2.69	3.25	46.5	0.13//	0.3311
22		, i	Ş	2.78	0.96	1.82	2.44	3.01	43		
					-					pH Cells	pH Plasma
23		A	ਰ	46.4	15.1	31.2	33.6	56.8	41	7.19	7.40
24	Total combined	A.	9	45.5	12.7	32.8	32.1	54.3	39	7.20	7.40
25	carbon-dloxide	v	d	50.1	16.8	33.3	37.4	60.5	46.5	7.17	7.37
26		· V	ç	48.6	14.0	34.7	35.3	57.4	43	7.18	7.38
										"c" Cells8	"c" Plasma8
27			ď	2.2	1.7	0.4	3.9	0.8	41	0.115	0.014
28	Carbamino	A		1.9	1.5	0.5	3.7	0.8	39	0.116	0.014
29	carbon-dloxide		_	3.1	2.6	0.5	5.8	0.8	46.5	0.154	0.014
30	carbon droxide	v		2.7	2.2	0.5	5.5	0.8	43		0.014
30			*	2.1	۵.۵	0.5	5.5	0.0	7.5	0.156	0.014
31			ď	44.2	13.4	30.8	29.8	56.0	41		
32	Discoulant	A									
	Bicarbonate			43.6	11.2		28.3	53.5	39		
33	carbon-dloxide	v		47.0	14.2		31.6	59.7	46.5		
34			Ŷ	46.0	11.8	34.2	29.8	56.6	43	0	0-
										aN2 Cells	aN ₂ Plasma ⁹
35	Nitrogen	A, V		0.979	0.494	0.484	1.099	0.881	572	0.0146	0.0117
36		12, 7	_₽	0.970	0,437	0.534	1.103	0.884	574	0.0140	0.0111

/1/ 100 ml RBC in contact with plasma, and 100 ml plasma in contact with RBC. /2/ O2 capacity = g Hb x 1.36. This factor based on hemoglobin Fe content of 0.339%. /3/ Assumed to be equal to the value for males. /4/ ml O2 dissolved in 100 ml human RBC = 100 x 0.0258 x O2 pressure/760; ml O2 dissolved in 100 ml horse plasma = 100 x 0.02089 x O₂ pressure/760. /5/ Plasma CO₂ = "f" x blood CO₂; "f" depends upon pH, O₂ capacity, and HbO₂ saturation per cent. /6/ Arterio-venous CO2 difference calculated as A-V O2 difference x standard resting respiratory quotient of 0.82. /7/ ml CO2 (including H2CO3) dissolved in 100 ml RBC = 0.4399 x 100 x CO2 pressure/760. For plasma, substitute 0.5311 instead of 0.4399. /8/ The values of the factor "c" are provisional, as other factors underlying it have not in every instance been determined for human blood. Combined CO2 x "c" = carbamino CO2 in 100 ml of red blood corpuscles or plasma. For cells, "c" is calculated from K'/Kcarbamino (= 0.315 for HbO2, 0.11 for reduced Hb) and the mEq of lib (= 2.05 x 20.0 mM Hb for male arterial cells, 2.08 x 20.0 for female arterial cells, 1.99 x 14.7 and 1.55 x 5.3 for male venous cells, 2.02 x 14.9 and 1.57 x 5.1 for female venous cells), and for plasma, "c" is calculated from K'/ $K_{carbamino}$ (= 1.2) and the mEq of plasma proteinate(= 17.0). /9/ ml N_2 dissolved in 100 ml RBC = $0.0146 \times 100 \times N_2$ pressure/760. For plasma, substitute 0.0117 for 0.0146. Contributors: (a) Barron, D. H., (b) Bing, R. J., (c) Comroe, J. H., Jr. (d) Cournand, A., (e) Drabkin, D. L.,

(f) Hickam, J. B., (g) Kirk, J. E., (h) Lambertsen, C. J., and Kough, R. H., (i) Olis, A. B., (j) Penrod, K. E., (k) Singer, R. B., (l) Singer, R. B., and Hastings, A. B., (m) Van Slyke, D. D., (n) Wood, E. Reference: Albritton, E. C., "Standard Values in Blood," Philadelphia: W. B. Saunders Co., 1952 (adapted from

Table 94).

57. ARTERIAL AND VENOUS BLOOD GAS COMPARISONS: MAN, ADULT AND NEWBORN

In the adult, A = arterial blood from femoral or brachial artery; V = venous blood from internal jugular vein, unless otherwise indicated; all values for males, under resting conditions. In the newborn (before first breath), where the oxygenated blood goes from the placenta to the fetus via the umbilical vein, A = arterial blood from vena umbilicalis, V = venous blood from arteria umbilicalis. Methods: A-R = calculated from alkali reserve, Henderson nomogram, and CO₂ content; D-M = potentiometric measurement with the dropping-mercury electrode; G-E = measurement with glass electrode; H-H = calculated from the Henderson-Hasselbalch equation, using 6.10 for pK'; P-A = calculated from pH and arterial CO₂ content converted to plasma CO₂ content by use of the Henderson-Hasselbalch equation; R-C = Van Slyke-Neill manometric method with Roughton corrections for O₂ capacity; V-N = Van Slyke-Neill manometric method. Values in parentheses are ranges, estimate "c" of the 95% range (cf Introduction).

				Ac	iult		Newb	orn	
	Measurement	Blood	Subjects no.	Method	Value	Subjects no.	Method	Value	Reference
	(A)	(B)	(C)	(D)	(E)	(F)	(G)	(H)	(I)
1	O ₂ pressure,	A	59	D-M	93.0(80.0-104.0)	50	D-M	24.4(13.5-34.0)	C-E, 1;F-H, 2
2	mm Hg	Vl	9	D-M	39.4(29.5-48.5)	47	D-M	10.4(1.2-19.0)	C-E, 3; F-H, 2
3	Oz content,	A	50	V-N	19.6(17.3-22.3)	24	V-N	10.6(5.6-17.9)	C-E, 4; F-H, 2
4	vol %	v	50	V-N	12.9(11.0-16.1)	19	V-N	2.9(0.4-8.4)	C-E, 4; F-H, 2
5	Oz capacity,	A	46	R-C	20.2(16.8-22.9)	24	V-N	22.2(17.2-26.2)	C-E, 5; F-H, 2
6	vol %	VI	9	V-N	4.2(3.2-5.8)2	18	V - N	7.2(2.1-12.5)2	C-E, 3; F-H, 2
7	Oz satura-	A	46	R-C	96.2(93.5-97.5)	24	V-N	47.7(25.7-73.8)	C-E, 5; F-H, 2
8	tion, %	V	50	V-N	61.8(55.3-70.7)	18	V-N	13.9(2.4-37.6)	C-E, 4;F-H, 2
9	CO ₂ pres-	A	50	P-A	39.9(36.2-44.9)	11	A-R	44.9(35.0-60.0)	C-E, 4; F-H, 2
10	sure, mmHg	V	50	P-A	49.9(46.9-54.3)	9	A-R	59.2(43.5-68.0)	C-E, 4; F-H, 2
11	CO2 content,	A	50	V-N	48.2(44.6-50.2)	23	V-N	40.9(31.2-51.8)	C-E, 4; F-H, 2
12	vol %	V	50	V-N	54.8(51.0-57.7)	19	V - N	48.0(37.4-55.2)	C-E, 4; F-H, 2
13	. **	A	50	G-E	7.424(7.374-7.455)	11	H-H	7.32(7.23-7.41)	C-E, 4; F-H, 2
14	рH	V	50	G-E	7.37(7.32-7.40)	9	H-H	7.25(7.14-7.37)	C-E, 4; F-H, 2

/1/ Mixed venous blood from pulmonary artery. /2/ Arterio-venous O2 difference.

Contributors: Bartels, H., and Opitz, E.

References: [1] Bartels, H., and Rodewald, G., Pflügers Arch. 256:113, 1952. [2] Beer, R., Bartels, H., and Raczkowski, H. A., ibid 260:306, 1955. [3] Bartels, H., Beer, R., Fleischer, E., Hoffheinz, H. J., Krall, J., Rodewald, G., Wenner, J., and Witt, 1., ibid 261:99, 1955. [4] Gibbs, E. L., Lennox, W. G., Nims, L. F., and Gibbs, F. A., J. Biol. Chem. 144:325, 1942. [5] Douglas, J. C., and Edholm, O. G., J. Appl. Physiol. 2:307, 1949.

58. ARTERIO-VENOUS OZ AND COZ DIFFERENCES: MAN, DOG, MONKEY

Single observation on each subject, unless otherwise specified. All blood gases measured by manometric method of Van Slyke and Niell [1], with the exception of Line 6, Column D (measured by method of Roughton and Scholander [2]). Values in parentheses are ranges, estimate "c" of the 95% range, unless otherwise specified (cf Introduction).

		Subjects		A-V	V-A	Metabolic	Blood	
	Animal	Subjects	Physiologic State	OZ	CO2	Rate	Flow	Reference
		no.		vol %	vol %	ml O2/min	m1/100 g/min	
	(A)	(B)	(C)	(D)	(E)	(F)	(G)	(H)
				Systemic	1			
1	Man	242	Rest	4.4				3
				(3.0-5.8)b				
2		63	Rest	3.9				3
3		3	Rest, control	3.8		126		4
				(3.6-4.2)		(111-147)		
4		3	Exercise, mild ⁴	7.3		406		4
				(6.2-7.6)		(269-512)		
5		3	Exercise, mild4	10.2		812		4
				(9.2-11.6)		(700-912)		
6	Dog	20	Pentothal, light	4.2	4.1			5
			_	(3.4-5.0)b	(3.7-4.5)b5			
7		9	Pentobarbital	4.1				6
				(2.3-6.3)				
				Cerebral	6			
8	Man	147	Rest, normal	6.3	6.4	3.3	54	7
			11001, 1101 1101	(3.9-8.7)b		(2.4-4.2)b	(36-72)b8	
9		8	Pentothal seminarcosis	6.2	6.1	Normal	Normal8	8
- 1				(5,6-7.0)	(5.0-7.1)			
10	Monkey	11	Pentobarbital	8.0	8.0	3.7	47	9
				(6.0-10.1)	(6.0-10.7)	(2.5-4.5)	(33-74)8	
11	Dog	5	Pentobarbital	9.1	,	,	,	10
				(5,3-15.1)				
				Coronary	9			
12	Don	20	Pentothal	13.1	12.6			5
12	Dog	20	remothar	(12.0-14.2)b	(11.2-14.0)			,
13		9	Pentobarbital	13.4	(11.2-14.0)	8.0	60	6
13		7	remodarbitai	(12.1-15.8)		(5,6-14.4)	(45-107)10	0
				(12.1-15.0)		(5,0-14,4)	(42-101)10	

/1/ Venous samples: Lines 1 and 2, right auricle or ventricle via catheter; Lines 3-7, pulmonary artery via catheter. Arterial samples: all from brachial or femoral artery. /2/ Thirteen normal males and 11 male patients with normal cardiovascular function. /3/ Female patients with normal cardiovascular function. /4/ Intensity of exercise indicated by corresponding metabolic rates. /5/ Represents only 10 observations. /6/ Venous samples: Lines 8 and 9, jugular bulb via needle puncture; Line 10, cannulation of both internal jugulars; Line 11, sagittal sinus via cannula. /7/ Thirty-four observations. /8/ Measured by method of Kety and Schmidt [11]. /9/ Venous samples: Lines 12 and 13, catheterization of coronary sinus. /10/ Measured by an adaptation of the nitrous oxide method of Kety and Schmidt [11].

Contributor: Hegnauer, A. H.

References: [1] Van Slyke, D. D., and Niell, J. M., J. Biol. Chem. 61:523, 1924. [2] Roughton, F. J., and Scholander, P. F., ibid 148:541, 1943. [3] Cournand, A., Riley, R. L., Breed, E. S., Baldwin, E. de F., and Richards, D. W., Jr., J. Clin. Invest. 24:106, 1945. [4] Riley, R. L., Himmelstein, A., Motley, H. L., Weiner, H. M., and Cournand, A., Am. J. Physiol. 152:372, 1948. [5] Goodale, W. T., Lubin, M., Eckenhoff, J. E., Hafkenschiel, J. H., and Banfield, W. G., Jr., ibid 152:340, 1948. [6] Eckenhoff, J. E., Hafkenschiel, J. H., Foltz, E. L., and Driver, R. L., ibid 152:545, 1948. [7] Kety, S. S., and Schmidt, C. F., J. Clin. Invest. 27:476, 1948. [8] Kety, S. S., Woodford, R. B., Harmel, M. H., Freyhan, F. A., Appel, K. E., and Schmidt, C. F., Am. J. Psychiat. 104:765, 1947-48. [9] Schmidt, C. F., Kety, S. S., and Pennes, H. H., Am. J. Physiol. 143:33, 1945. [10] Lougheed, W. M., and Kahn, D. S., J. Neurosurg. 12:226, 1955. [11] Kety, S. S., and Schmidt, C. F., Am. J. Physiol. 143:53, 1945.

59. ARTERIO-VENOUS LACTATE AND PYRUVATE DIFFERENCES IN VARIOUS STRUCTURES: MAN Methods: C = colorimetric, highly specific, greatly delayed collection technique [1]; D = distillation, relatively high (non-specific), delayed collection technique [2,3]; E = colorimetric, extremely rapid collection [1,4]; F = colorimetric, fairly rapid collection [1,5]; M = colorimetric, not arterio-venous but arm vein minus hepatic vein, directional value only [1,6]; R = fairly specific, extremely rapid collection; S = specific, moderately rapid collection [5,6]; U = unknown collection technique, analysis completely specific (chromatographic); Y = very specific, extremely rapid collection [4]. All values taken in state of complete rest. Values in parentheses are ranges, estimate "b" of the 95% range (cf Introduction).

	Ctt	Lactate		Pyruvate		Lactate-Pyruva	ate	Refer-
	Structure	mM/L	Method	mM/L	Method	Ratio	Method	ence
	(A)	(B)	(C)	(D)	(E)	(F)	(G)	(H)
				Concentrations				
1	Artery	1.100	D					7
2		0.887	C					8
3		0.667	F					9
4		0.670	F					5
5		0.618(0.464-0.772)	E	0.142(0.044-0.240)	Y	4.24(3.36-5.12)	E, Y	10
6				0.144	S			11
7	Vein, arm	1.110	D					12
8		1.450	D					13
9		1.540	D					14
10		1.222(0.514-1.930)	F	0.119(0.021-0.217)	S	10.12(8.18-12.06)	F, S	10
11		1.130	D	0.088	S	13.20	D, S	15
12				0.116	R	9.30	R	16
13				0.073(0.041-0.105)	U			17
14						11.3	D, S	15
				A-V Differences1				
15	Forearm	-0.110(-0.154 to -0.066)	F					81
16		-0.164(-0.238 to -0.090)	E	-0.025(-0.139 to +0.089)	Y	-0.44(-0.74 to -0.14)	E, Y	19
17	Leg	-0.237(-0.405 to -0.069)	E	-0.030(-0.158 to +0.098)	Y	-0.49(-1.01 to +0.03)	E, Y	19
18	Brain	-0.178(-0.288 to -0.068)	D	-0.025(-0.063 to +0.013)	S			7
19	Heart	+0.300	F	+0.045	S			20
20		+0.574(-0.406 to +1.554)	E	+0.054(-0.020 to +0.128)	Y	+0.54(+0.32 to +0.76)	E, Y	19
15	Splanchnic	-0.280	M	+0.050	M	-6.51	M	21
22	Uterus,	+0.350	E	+0.072	Y	+2.40	E, Y	19
	pregnant							
			1					

^{/1/} Venous concentration algebraically subtracted from arterial concentration, i.e., negative values indicate output by the various structures.

Contributor: Huckabee, W. E.

References: [1] Barker, S. B., and Summerson, W. H., J. Biol. Chem. 138:535, 1941. [2] Edwards, H. T., ibid 125:571, 1938. [3] Friedemann, T. E., Cotonio, M., and Shaffer, P. A., ibid 73:335, 1927. [4] Huckabee, W. E., J. Appl. Physiol. 2:163, 1956. [5] Friedemann, T. E., and Haugen, G. E., J. Biol. Chem. 144:67, 1942. [6] Friedemann, T. E., and Haugen, G. E., ibid 147:415, 1943. [7] Gibbs, E. L., Lennox, W. G., Nimms, L. F., and Gibbs, F. A., ibid 144:325, 1942. [8] Bay, E., Barron, E. S., Adams, W., Gase, T., Halstead, W. C., Ricketts, H. T., Committee on Medical Research, Office of Scientific Research and Development, Rept. No. 344, 1944. [9] Decker, D. G., and Rosenbaum, J. D., Am. J. Physiol. 138:7, 1942. [10] Huckabee, W. E., J. Clin. Invest. 37:255, 1958. [11] Himwich, W. A., and Himwich, H. E., J. Neurophysiol. 9:133, 1946. [12] Bock, A. V., Dill, D. B., and Edwards, H. T., J. Clin. Invest. 11:775, 1932. [13] Welss, S., and Ellis, L. B., Arch. Int. M. 55:665, 1935. [14] Hallock, P., J. Clin. Invest. 18:385, 1939. [15] Friedemann, T. E., Haugen, G. E., and Kmieciak, T. C., J. Biol. Chem. 157:673, 1945. [16] Bueding, E., and Goldfarb, W. J., ibid 141:539, 1940. [17] Seligson, D., McCormick, G. J., and Sborov, V., J. Clin. Invest. 31:661, 1952. [18] Andres, R., Cader, G., and Zierler, K. L., ibid 35:671, 1956. [19] Huckabee, W. E., unpublished. [20] Goodale, W. T., Olson, R. E., and Hackel, D. B., Fed. Proc. 9:49, 1950. [21] Mendeloff, A. I., J. Clin. Invest. 33:1298, 1954.

60. ARTERIO-VENOUS POSTABSORPTIVE GLUCOSE DIFFERENCES: MAN Values are mg/100 ml. Those in parentheses are ranges, estimate "c" of the 95% range (cf Introduction).

Observations	Arterial Blood	Venous Blood	A-V Difference	Reference
(A)	(B)	(C)	(D)	(E)
1 1001	88.4(78-97)2	83.9(74-95)	4.5(1-13)	I
2 63	91.5(72-121)4	89.0(67-121)	2.5(0-4)	2
3 103	85.0(68-108)4	77.0(66-89)	9.0(-1 to +34)	2
4 165	99.0(93-105)4	98.0(87-105)	1.0(-2 to +7)	3

^{/1/} Copper iodometric analysis on zinc sulfate-barium hydroxide filtrate; anticoagulant = potassium oxalate-sodium fluoride; accuracy = 1 mg/100 ml. /2/ Finger-tip blood, demonstrated to be arterial in character. /3/ Analytical method and accuracy not stated. /4/ Radial artery. /5/ Analytical method of Folin and Wu (1920). Contributor: Hegnauer, A. H.

References: [1] Somogyi, M., J. Biol. Chem. 174:189, 1948. [2] Rabinowitch, I. M., Brit. J. Exp. Path. 8:76, 1927. [3] Foster, G. L., J. Biol. Chem. 55:291, 1923.

61. BLOOD LACTATE VENOUS LEVELS IN CONDITIONS OF REST, EXERCISE, AND HYPERVENTILATION: MAN

Data, except for Lines 4 and 7, were obtained on tungstic-acid filtrate via KMnO₄ oxidation to aldehyde, and titration of bound aldehyde by iodine. Data for Line 4: through conversion to aldehyde by concentrated $\rm H_2SO_4$, and color formation with para-phenyl phenol. Data for Line 7: by oxidation with KMnO₄ and measured as $\rm CO_2$ manometrically in Van Slyke apparatus. Values are expressed in mg/100 ml. Values in parentheses are ranges, estimate "c" of the 95% range (cf Introduction).

Observations	Rest ¹	Exercise	Hyperventilation	Altitude ²	Reference
(A)	(B)	(C)	(D)	(E)	(F)
1 263	12.0(8.4-16.6)				1
2 114	11.7(9.0-16.0)	12.6(8.6-25.4)5			2
3 6	12.5(10.0-16.9)	17.8(11.8-22.0)6			1
1 6	19.0(5.0-45.0)	77.0(53.0-86.0)7			3
5 1	10.7	38.78			4
5 1	10.7	139.59			4
7 6	13.2(5.2-21.6)	157.0(145.0-174.0)10			5
3 6	10.1(8.1-13.6)	· ·	27.6(21.3-35.7)11		2
9 1	8.2		· ·	16.212	4

/1/ At sea level. /2/ At 22,000 ft. /3/ On 9 subjects on different days; day-to-day variations may reach \pm 25% of mean. /4/ On 3 subjects in good physical condition, walking 3.5-8.6 mph. /5/ Only the subject walking at 8.6 mph showed rise in blood lactate (to 25.4 mg%). /6/ Increases in 3 subjects, walking 4.5-5.25 mph. /7/ Severity of exercise not stated. /8/ Jogging at 6.48 mph. /9/ Running at 8.8 mph. /10/ Samples taken 4-10 min after 440-yd run by untrained subjects. Samples at 1-2 min show only 124 mg%, indicating that following strenuous exercise blood lactate continues to rise for 3-6 min. /11/ Hyperventilation to alveolar pCO₂ of 11-15 mm Hg. /12/ Simulated altitude reached without supplementary O₂ in 1 hr (no acclimatization); approximately linear rise in blood lactate starting at 10,000 ft.

Contributor: Hegnauer, A. H.

References: [1] Cook, L. C., and Hurst, R. H., J. Biol. Chem. 79:443, 1933. [2] Bock, A. V., Dill, D. B., and Edwards, H. T., J. Clin. Invest. 11:775, 1932. [3] Hummel, J. P., J. Biol. Chem. 180:1225, 1945. [4] Friedemann, T. E., Haugen, G. E., and Kmieciak, T. C., ibid 157:673, 1945. [5] Laug, E. P., Am. J. Physiol. 107:687, 1934.

62. ARTERIO-VENOUS LACTATE DIFFERENCES IN CONDITIONS OF REST, EXERCISE, AND HYPERVENTILATION: MAN

Values are expressed in mg/100 ml. Values in parentheses are ranges, estimate "c" of the 95% range (cf Introduction).

Observations	Arterial Blood	Venous Blood	A-V Differencel	Reference
(A)	(B)	(C)	(D)	(E)
		Rest ²		
7	12.6(9.7-16.3)3	12.5(9.0-14.7)4	0	1
6	14.1(11.7-16.2) ³	14.4(10.2-18.0)5	0	1
		Exercise ⁶		
27	65.2(58.6-71.8)3	68.5(62.1-74.8)4	-3.3	1
18	75.83	74.84	09	1
		Hyperventilation 10		
6	21.5(11.9-27.7)11	27.6(21.3-35.7)12	-6.1(0 to -15.7)	2

/1/ A-V differences given as zero unless statistically significant, or greater than analytical error. /2/ Day-to-day variations in resting venous level may range from 7-25% of mean. /3/ Femoral artery. /4/ Femoral vein. /5/ Jugular bulb. /6/ Standing-running at full speed for 1 min. /7/ Blood samples taken within 3 min after exercise. /8/ Blood samples taken 5 min after exercise. /9/ 1 mg difference may be real and indicate that removal rate at 5 min exceeds production rate. /10/ Hyperventilation to alveolar pCO₂ of 11-15 mm Hg. /11/ Radial artery. /12/ Arm vein.

Contributor: Ilegnauer, A. II.

References: [1] Cook, L. C., and Hurst, R. H., J. Biol. Chem. 79:443, 1933. [2] Bock, A. V., Dill, D. B., and Edwards, H. T., J. Clin. Invest. 11:775, 1932.

63. ARTERIO-VENOUS GLUCOSE DIFFERENCES AS INFLUENCED BY ALIMENTARY HYPERGLYCEMIA: MAN

Non-glucose reducing substances are reported as glucose with the exception of Lines 7-12 where the analytical method employed excludes non-glucose reducing substances. The values presented in Lines 7-12 are, therefore, accurate reflections of true blood glucose and A-V differences.

				1	
Subjects	Observation ¹	Arterial	Venous	A-V	Reference
	hr	Blood	Blood	Difference	(57)
(A)	(B)	(C)	(D)	(E)	(F)
		25 g Glu		2.5(0.5)	
62	0	91.5(72-121)	89(67-121)	2.5(0-5)	1
	0.5	218(188-258)	165(149-180)	53(32-80)	1
		50 g Glu			
103	0	85(68-108)	77(66-89)	9(-1 to +34)	2
	0.5	126(98-158)	106(78-128)	21(8-50)	2
	1	101(74-144)	88(63-128)	13(-1 to +30)	2
	2	86(68-124)	79(62-125)	7(-7 to +17)	2
		100 g G1			
164	0	91(83-102)5	86(75-98)	5(1-13)	3
	0.5	160(133-189)5	126(96-150)	34(20-53)	3
	1	142(95-190)5	108(71-140)	34(18-55)	3
	2	122(100-165)5	96(70-142)	26(11-34)	3
	3	102(64-144) ⁵	85(50-131)	17(3-35)	3
	4	82(57-119) ⁵	73(53-94)	9(1-25)	3
76	0	101(94-105)	101(93-105)	0(-1 to +4)	4
	0.5	183(147-214)	140(110-163)	43(27-81)	4
	1	158(118-190)	109(81-134)	49(28-81)	4
	2	120(106-144)	86(61-107)	34(26-45)	4
1	3	103(94-108)	87(80-98)	16(10-28)	4
		100 g Gal	lactose		
36	0	96(95-96)	95(93-97)	1(-1 to +2)	4
	0.5	148(126-174)	133(117-153)	15(9-21)	4
	1	182(152-218)	162(142-182)	20(12-36)	4
	2	238(212-278)	221(195-261)	17(16-17)	4
	3	186(180-197)	187(173-215)	-2(-18 to +9)	4
	4	110	109	1	4
		100 g Fr	uctose		
46	0	99(93-103)	98(87-105)	1.1(-2 to +6)	4
	0.5	122(107-139)	101(76-130)	22(9-45)	4
	1	118(112-125)	97(79-116)	21(9-33)	4
	2	112(109-114)	103(96-109)	9(5-13)	4
	2.5	105(98-109)	90(84-100)	15(8-25)	4
		70-100 g	Starch		
26	0	98(95-100)	95(93-96)	3(-1 to +7)	4
	0.5	158(151-166)	119(118-120)	35(23-46)	4
	1	146(140-152)	102(98-107)	44(42-45)	4

/1/ After ingestion. /2/ Glycosuric subjects, but without clinical signs or symptoms of diabetes; method not stated. /3/ Modification of method of Benedict (1925). /4/ Copper iodometric analysis of zinc sulfate-barium hydroxide precipitates of whole blood; anticoagulant = potassium oxalate-sodium fluoride; accuracy = 1 mg/100 ml. Normal subjects. Rated abnormal and therefore excluded: subjects with arterial peaks exceeding 190 mg/100 ml, with venous peaks exceeding 150 mg/ml, and in whom use continued into second hr. /5/ Finger-tip blood, demonstrated to be arterial with respect to glucose content. /6/ Method of Folin and Wu (1920). Since "time" coordinates of original data did not correspond, in all cases, to those employed in this table, data of individual experiments were plotted and curves drawn. Values for desired times after sugar ingestion were taken from the plotted curves; tabulated data are means and ranges of these values.

Contributor: Hegnauer, A. H.

References: [1] Rabinowitch, I. M., Brit. J. Exp. Path. 8:76, 1927. [2] Friedenson, M., Rosenbaum, M. K., Thalheimer, E. J., and Peters, J. P., J. Biol. Chem. 80:269, 1928. [3] Somogyi, M. J., ibid 174:189, 1948. [4] Foster, G. L., ibid 55:291, 1923.

64. EFFECT OF TEMPERATURE CHANGE ON BLOOD CO2 AND O2 PRESSURES: MAN, DOG

These line charts illustrate the effect of changes in temperature on CO_2 and O_2 tensions in human or dog blood sealed in an anaerobic environment. The values are applicable to either in vitro or in vivo conditions. Error increases progressively as pH and temperature deviate from standard values of 7.4 and 37°C respectively.

 ΔT = temperature change in ${}^{\circ}C$.

Contributor: Severinghaus, J. W.

This nomogram allows for calculation of serum pK' for carbonic acid in man and dog when pH and temperature are known. Mean pK' at 37.5°C and pH 7.40 = 6.090.

Contributor: Severinghaus, J. W.

Reference: Severinghaus, J. W., Stupfel, M., and Bradley, A. F., J. Appl. Physiol. 9:197, 1956.

66. Il₂CO₃ DISSOCIATION CONSTANTS: MAN, DOG, OX

The first apparent dissociation constants of H₂CO₃ are the same for man, dog, and ox. Methods used were gasometric or glass electrode. Values in parentheses are ranges, estimate "c" of the 95% range (cf Introduction).

Medium	Temp, OC	Dissociation Constant	Reference
(A)	(B)	(C)	(D)
1 Plasma, pH 7.4	37	6.09(6.088-6.098)1	1
Serum			
2 Normal	20	6.183(6.163-6.208)	2
3 Normal	38	6.11(6.097-6.122)	2-4
4 Nephritis	38	(6.108-6.134)	2-4
RBC			
5 Reduced	37	5.982	3
6 Oxidized	37	6.043	3

/1/ Range varies with pH (7.6-7.1). /2/ Variation with pH; pK' = 7.275-0.18 pH. /3/ Variation with pH; pK' = 7.120 - 0.18 pH.

Contributors: Bartels, H., and Opitz, E.

References: [1] Wiesinger, K., Rossier, P. H., Saboz, E., and Sampholo, G., Helvet. physiol. pharm. acta
7:(suppl.C) 28, 1949. [2] Cullen, G. E., Keeler, H. R., and Robinson, H. W., J. Biol. Chem. 66:301, 1925.
[3] Dill, D. B., Daly, C., and Forbes, W. H., ibid 117:569, 1937. [4] Hastings, A. B., Sendroy, J., Jr., and Van Slyke, D. D., ibid 79:183, 1928.

67. BLOOD CO2 ABSORPTION AS FUNCTION OF CO2 PRESSURE: MAN

Data are for normal blood at temperatures corrected to 37° C. [1] Values for oxygenated blood are means of values in the literature, the 100% range being approximately \pm 5 ml gas per 100 ml blood; other data are calculations based upon these means. [2-11] Major factors which influence CO_2 absorption include state of oxygenation, temperature, hemoglobin concentration, and alkali reserve. [1,6-9,11-13]

р(0,	Reduced (R)		Total Co		F	ree CO	1 2	Total (Combine	ed CO ₂ ²	Plasma ⁶	
mı	n Ḧ́g	Oxygenated (O)	Whole ³ Blood	RBC ⁴	Plasma ⁵	Whole Blood	RBC	Plasma	Whole Blood	RBC	Plasma	pН	
	(A)	(B)	(C)	(D)	(E)	(F)	(G)	(H)	(1)	(J)	(K)	(L)	
1	10	R	32.9	24.0	39.8	0.64	0.58	0.70	32.3	23.4	39.1	7.86	
2	10	0	27.6	17.8	35.1	0.64	0.58	0.70	27.0	17.2	34.4	7.80	
3	20	R	42.3	31.5	50.8	1.29	1.16		41.0	30.3	49.4	7.66	
4	20	0	36.8	25.3	46.0	1.29	1.16		35.5	24.1	44.6	7.61	
5	30	R	48.8	37.2	58.1	1.94	1.74		46.9	35.5	56.0	7.54	
6	50	0	43.2	30.1	53.6	1.94	1.74	2.10	41.3	28.4	51.5	7.50	
7	40	R	54.1	42.4	63.8	2.58	2.32	2.80	51.5	40.1	61.0	7.45	
8	40	0	48.5	35.5	59.1	2.58	2.32		45.9	33.2	56.3	7.41	
9	50	R	58.6	46.7	68.6	3.22	2.90	3.50	55.4	43.8	65.1	7.38	
10	50	0	52.8	39.3	63.9	3.22	2.90		49.6	36.4	60.4	7.35	
11	60	R	62.6	50.7	72.6	3.87	3.47	4.20	58.7	47.2	68.4	7.32	
12	00	0	56.7	42.8	68.1	3.87	3.47	4.20	52.8	39.3	63.9	7.29	
13	70	R	66.6	54.7	76.6	4.52	4.05	4.90	62.1	1	71.7	7.27	
14	10	0	60.5	46.8	72.0	4.52	4.05	4.90	56.0	42.7	67.1	7.25	
15	80	R	70.2	58.6	80.1	5.16	4.63	5.60	65.0	54.0	74.5	7.23	
16	00	0	63.9	50.1	75.5	5.16	4.63	5.60	58.7	45.5	69.9	7.21	

/1/ Calculated by equation: $[H_2CO_3] = 100 \text{ap}CO_2/760$, where $[H_2CO_3] = \text{vol}\%$ of free CO₂, and alpha is the solubility coefficient for CO₂ with the values at 37°C of 0.490 for whole blood, 0.440 for cells, and 0.531 for plasma. [13-15] /2/ Includes both HCO_3^- and $NHCOO^-$ as the rounded difference between total and free CO₂. /3/ Reduced blood values calculated from: $[CO_2]O + [CO_2]b = [CO_2]R$, where $[CO_2]O = \text{total}$ CO₂ of oxygenated blood at a given CO₂ pressure, $[CO_2]b = \text{average}$ increase in bound CO₂ with complete reduction, and $[CO_2]R = \text{total}$ CO₂ of reduced blood. [2-12] /4/ For cells in contact with plasma at equilibration. Calculations based upon assumed mean cell volume of 45 ml/100 ml arterial blood (corrected for pH and oxygenation), and derived by equation: $[CO_2]c = ([CO_2]b\text{-}[CO_2]p \times [1\text{-h}])$ 1/h, where CO₂ is in ml/100 ml of cells (c), blood (b), or plasma (p), and h is the cell volume as a decimal fraction of blood volume for any given pH and oxygenation. [13, 16-18] /5/ For plasma In contact with cells at equilibration. Calculations are based upon CO₂ of whole blood using "f" values of Van Slyke, Sendroy, and Liu, and an estimated O₂ capacity, pH, and state of oxygenation. O₂ capacity estimated from CO₂ absorption curve of oxygenated whole blood using Cartesian nomogram of Henderson, Bock, Dill and Edwards.

Plasma $CO_2 = [CO_2]b \times "f"$. [18,19] /6/ Calculated from equation: $pH = pK_1 + log \frac{[CO_2]p - 0.0699 pCO_2}{0.0699 pCO_2}$, where $[CO_2]p$ is total vol % of plasma CO_2 , and 0.0699 (the factor, qp/7.6) expresses dissolved CO_2 in vol % of plasma. pK_1 , taken as equal to 6.11 at 37°C, is the Hastings, Sendroy, and Van Slyke average for human serum at 38°C plus a temperature correction of 0.005 at 37°C. [13,15,20] Contributor: Root, R. W.

References: [1] Eisenmann, A. J., J. Biol. Chem. 99:359, 1932. [2] Means, J. H., Bock, A. V., and Woodwell, M. N., J. Exp. M. 33:201, 1921. [3] Liljestrand, G., and Linhard, J., J. Physiol., Lond. 53:420, 1919-20. [4] Davies, H. W., Haldane, J. S., and Kennaway, E. L., ibid 54:32, 1920-21. [5] Peters, J. P., Barr, D. P., and Rule, F. D., J. Biol. Chem. 45:489, 1920-21. [6] Dill, D. B., Vancaulaert, C., Hurxthal, L. M., Stoddard, J. L., Bock, A. V., and Henderson, L. J., ibid 73:251, 1927. [7] Parsons, T. R., J. Physiol., Lond. 51:440, 1917. [8] Christiansen, J., Douglas, C. G., and Haldane, J. S., ibid 48:244, 1914. [9] Joffe, J., and Poulton, E. P., ibid 54:129, 1920-21. [10] Dill, D. B., Wilson, J. W., Hall, F. G., and Robinson, S., J. Biol. Chem. 136:449, 1940. [11] Henderson, L. J., "Blood: A Study in General Physiology," New Haven: Yale Univ. Press, 1928. [12] Bock, A. V., Field, H., and Adair, G. S., J. Biol. Chem. 59:353, 1924. [13] Peters, J. P., and Van Slyke, D. D., "Quantitative Clinical Chemistry," vol II, Baltimore: Williams and Wilkins, 1931. [14] Van Slyke, D. D., Sendroy, J., Jr., Hastings, A. B., and Neill, J. M., J. Biol. Chem. 78:765, 1928. [15] Dill, D. B., Edwards, H. T., and Consolazio, W. V., ibid 118:635, 1937. [16] Dill, D. B., ibid 76:543, 1928. [17] Albritton, E. C., "Standard Values in Blood," Philadelphia: W. B. Saunders Co., 1952 (value from Table 94). [18] Henderson, L. J., Bock, A. V., Dill, D. B., and Edwards, H. T., J. Biol. Chem. 87:181, 1930. [19] Van Slyke, D. D., Sendroy, J., Jr., and Liu, S. H., ibid 95:547, 1932. [20] Hastings, A. B., Sendroy, J., Jr., and Van Slyke, D. D., ibid 79:183, 1928.

68. BLOOD CO₂ ABSORPTION AS FUNCTION OF CO₂ PRESSURE: ANIMALS

Values for CO2 are volumes absorbed gas per 100 ml whole blood or serum, obtained by interpolation from smoothed CO2 absorption curves. In all cases, except the squid, CO2 values are for oxygenated blood or serum.

			L	3									ż		ż								20			1
the state of the s	Reference	0	B-L, a; M, N, 1	B-L, 2; M, N, 3	B-N-4	* 3	B-L, 5		B-N, 6, 7	B-N, 8		B-L, 9	B-L, 10, 11; M, N,	12	B-L, 13-15, M, N,	14,16	B-N 12	B-C. J-M. 17		B-F, J-N, 18		B-F, J-L, 19	B-L, 19; M, N, 20		B-L, 19	
ical pCO,	Venous	Ź)	46.5	49.2	53.55	2				00d ~25			~I0e		5-10		9017			celomic fluid ~7			0.9			
Physiological pCO,		(M)	41	41.6	42-44	:			~28	aortic blood ~25			92~		3-5		922			celomic			2.2			
l at	DCO ₂	Ð	40	40	40	2	30		30	25		25	10		10		-						10		10]
[-ABHCO3]1 at		(K)	0.27	0,35	0.32		0.52		0.44	0.46		0.454	0.43-	0.955	0.547		0.40	0.08		0.0.0		0.011	69.0		-0.6413	
Temp	၁၀	(r)	37	38	40		29		25	15		24	15		15-16		2.0	25		18.5		22	23		24	
	80 mm	(1)	63.9		61.6)	36.2		92.3			63.2	37.0				48.9						24.8		48.7	
	70 mm	(H)	60.5	50.2	60.2	!	34.0		8.68	0.07		8.09	35.0		43.6		46.2						23.9		46.5	
of:	10 mm 20 mm 30 mm 40 mm 50 mm 60 mm 70 mm 80 mm	(B)	56.7	46.2	58.2		31.5		87.1	68.5		58.7	32.8		41.4		43.8						23.0		44.2	
at pCO ₂	50 mm	(E)	52.8	42.2	55.5		28.8		83.9	65.8		56.4	30.5		39.3		41.0			20.02		12.6	25.2		42.2	
Total CO2 at pCO2 of:	40 mm	(三)	48.5	37.9	51.5		26.0		80.3	63.0		53.9	27.3		36.7		37.8			18.0		11.4	21.2		39.6	
Tot	30 mm	(D)	43.2	33.2	45.8		22.2		76.0	58.4		50.9	23.5		33.7		33.0	`		16.0		10.2	19.3		36.5	
	20 mm	(C)	36.8	27.3	38.5		17.5		6.07	51.7		47.1	19.5		29.6		28.5			14.0		8.9	17.0		32.2	
	10 mm	(B)	27.6	19.3	28.8		11.2		64.0	42.5		41.7	14.2		22.3		21.0			10.5		6.7	11.7		24.6	4
A varies		(A)	Man	aballus)	Goose (Anser a.	Crocodile (Crocodilus		Turtle ² (Pseudemys	troosti) 6	Frog (Rana catesbeiana)	Congo snake 3 (Amphiuma	tridactyla) 4	Blackfish (Tautoga onitis)		9 Carp (Cyprinus carpio) 2	Month on Comment	scombrus)	scillata)		(Urechis caupo)	Horsehoe crab ¹² (Limulus	polyphemus) 6	Squid ¹² (Loligo pealei)	Whelk12 (Busycon	canaliculatum) 2	
			-	2	۸)	4		2		9	7		00		6	2	4	11	12		13		14	15		

/1/ - \DBHCO3/AO2 indicates approximate magnitude of Haldane effect; negative sign implies that oxygenation reduces amount of bound CO2. AO2 was taken as equal to O2 capacity or as difference between bound O2 values in oxygenated and in reduced blood. /2/ Data compare favorably with Pseudemys concinna /11/ Reversed Bohr effect in this species; on a theoretical basis a reversed Haldane effect might be expected. [19] /12/ Hemocyanin instead of hemoglobin. as to height of CO₂ absorption curve, but slope is different. /3/ Average of two blood samples with cell volume of 18.5%. /4/ Value obtained from oxygencarolinus [12]. 77 Average from two sources (0.45 and 0.64). /8/ An unusually low hemoglobin concentration (about 1/4 that for man) may be responsible increases in magnitude with oxygenation of blood (atypical Haldane effect) [10, 11]. /6/ Estimated from arterial and venous blood of sea-robin, Prionotus for obscuring Haldane effect [17]. /9/ Blood, containing hemoglobin in red blood corpuscles, from celomic cavity [18]. /10/ Bohr effect is absent [18]. ated and reduced CO2 curves of one blood sample with O2 capacity of 4.4 ml/100 ml blood [9]. /5/ Ratio is not constant for a given CO2 tension but /13/ Negative sign before number indicates reversed Haldane effect, i.e., oxygenation increases bound CO₂ [19]. Contributor: Root, R. W.

Press, 1928. [4] Wastl, H., and Leiner, G., Arch. ges. Physiol. 227:460, 1931. [5] Dill, D. B., and Edwards, H. T., J. Biol. Chem. 90:515, 1931. [6] Wilson, J. W., J. Cellul. Physiol. 13:315, 1939. [7] Southworth. F. C., and Redfield, A. C., J. Gen. Physiol. 9:387, 1926. [8] Wastl, H., and Seliškar, Hastings, A. B., and Neill, J. M., J. Biol. Chem. 54:507, 1922. [3] Henderson, L. J., "Blood: A Study in General Physiology," New Haven: Yale Univ. [1] Albritton, E. C., "Standard Values in Blood," Philadelphia: W. B. Saunders Co., 1952 (values from Table 94). [2] Van Slyke, D. D., 11] Root, R. W., and Irving, L., Biol. Bull. 81:307, 1941. [12] Root, R. W., ibid 61:427, 1931. [13] Wastl, H., Biochem. Zschr. 197:363, 1928. A., J. Physiol., Lond. 60:264, 1925. [9] Scott, W. J., Biol. Bull. 61:211, 1931. [10] Root, R. W., and Irving, L., J. Cellul. Physiol. 16:85, 1940. References:

14] Ferguson, J. K., and Black, E. C., Biol. Bull. 80:139, 1941. [15] Black, E. C., ibid 79:215, 1940. [16] Hoar, W. S., Black, V. S., and Black, E. C.,

Some Aspects of the Physiology of Fish," Toronto: Univ. of Toronto Press, 1951. [17] Dill, D. B., Edwards, H. T., and Florkin, M., Biol. Bull. 52:23,

932. [18] Redfield, A. C., and Florkin, M., ibid 61:185, 1931. [19] Redfield, A. C., Coolidge, T., and Hurd, A. L., J. Biol. Chem. 69:475, 1926.

20] Redfield, A. C., and Goodkind, R., J. Exp. Biol., Lond. 6:340, 1929.

69. DATA FOR CONSTRUCTING BLOOD O2 DISSOCIATION CURVES

Lowest oxygen tension, in mm Hg, at which respiratory blood pigment (hemoglobin, unless otherwise indicated) is 95% or more saturated, is referred to as tension of saturation; that at which the pigment is 50% saturated (i.e., when unoxygenated pigment equals oxygenated pigment) is called the tension of half-saturation and indicated as "t. $\frac{1}{2}$ sat." The tension of half-saturation for a specific pigment establishes the upper limit of tissue oxygen tension and the lower limit of environmental oxygen for the function of that pigment. When per cent saturation is plotted as ordinate against oxygen pressure as abscissa, the "position" (O₂ pressure required to produce 50% saturation) of the resultant dissociation curves differs from species to species, and varies greatly within the same species with changes in pH, temperature, and dilution. The "shape" is not affected by these factors, in that the curves may be superimposed upon each other by multiplying pO₂ (t. $\frac{1}{2}$ sat.) of standard curve for man by a suitable factor "f"[1]. This is true only as a first approximation, for certain fish show some change in shape with changes in pCO₂, and sheep hemoglobin at low O₂ pressures has definite changes in shape as pH is varied [2]. The figure below illustrates dissociation curves for two animals whose blood has a low affinity for oxygen, i.e., a high t. $\frac{1}{2}$ sat. (pigeon, crocodile), and for two others (arenicola, eel) showing a high affinity and low t. $\frac{1}{2}$ sat. In the tables below, values in brackets are calculated "f" factors.

Part I: MAN

	pO ₂ mm Hg	% Saturation	рН	Temperature °C	pCO ₂ mm Hg	Reference
	(A)	(B)	(C)	(D)	(E)	(F)
1	3.7	5.0	7.40	37.0	47.4	A-E 3; F 4, 5
2	8.2	10.0	7.40	37.0	47.0	A-E 3; F 4, 5
3	10.9	15.0	7.40	37.0	46.6	A-E 3; F 4, 5
4	13.4	20.0	7.40	37.0	46.2	A-E 3; F 4, 5
5	17.9	30.0	7.40	37.0	45.3	A-E 3; F 4, 5
6	22.0	40.0	7.40	37.0	44.6	A-E 3; F 4, 5
7	26.31	50.01	7.401	37.01	43.81	A-E 3; F 4, 5
8	31.1	60.0	7.40	37.0	43.0	A-E 3; F 4, 5
9	36.1	70.0	7.40	37.0	42.2	A-E 3; F 4, 5
10	45.7	80.0	7.40	37.0	41.5	A~E 3; F 4, 5
11	51.7	85.0	7.40	37.0	41.1	A-E 3; F 4, 5
12	61.4	90.0	7.40	37.0	40.7	A-E 3; F 4, 5
13	80.0	95.0	7.40	37.0	40.3	A-E 3; F 4, 5
14	113.0	98.0	7.40	37.0	40.0	A-E 3; F 4, 5

/1/ Standard reference condition with an "f" factor taken as [1.00].

Part II: MAMMALS

Animal	t. $\frac{1}{2}$ sat. mm Hg	рН	Temperature °C	pCO ₂ mm Hg	Reference
(A)	(B)	(C)	(D)	(E)	(F)
1 Man [1.48]	(39.0)1	7.00	37.0	142	A-D 3; E 4, 5
2 Man [1.35]	(35.5)1	7.10	37.0	110	A-D 3; E 4, 5
3 Man [1.22]	32.2	7.20	37.0	84	A-D 3; E 4, 5
4 Man [1.11]	29.2	7.30	37.0	60	A-D 3; E 4, 5

/1/ Values in parentheses are calculated. In calculations at 37° C, pH = $6.15 + \log \frac{(\text{total CO}_2) - 0.0290 \text{ pCO}_2}{0.0290 \text{ pCO}_2}$, where 6.15 and 0.0290 are the pK' and CO₂ factors, respectively, for whole blood.

69. DATA FOR CONSTRUCTING BLOOD O_2 DISSOCIATION CURVES (Continued)

Values in brackets are calculated "f" factors.

Part II: MAMMALS (Continued)

	Part II: MAMMALS (Continued)										
_	Animal	t. ½ sat. mm Hg	рН	Temperature °C	pCO ₂ mm Hg	Reference					
	(A)	(B)	(C)	(D)	(E)	(F)					
5	Man [1.00]	26.3	7.40	37.0	44	A-D 3; E4, 5					
6	Man [0.90]	23.5	7.50	37.0	31	A-D 3; E 4, 5					
7	Man [0.80]	21.0	7.60	37.0	22	A-D 3; E 4, 5					
8	Man [0.71]	(18.5) ¹	7.70	37.0	15	A-D 3; E 4, 5					
9	Man [0.29]	7.4	7.40	10.0		6					
10	Man [0.47]	12.4	7.40	20.0		6					
11	Man [0.74]	19.6	7.40	30.0	(48)1	A-D 6; E 6, 7, 8					
12	Man [1.00]	26.3	7.40	37.0	(44)1	A-D 6; E 6, 7, 8					
13	Man [1.14]	30.0	7.40	40.0	(42)1	A-D 6; E 6, 7, 8					
14	Man, at work [1.00]	26.5	7.40	37.5	34	9					
15		29.0	7.40	37.5	29	10, 11, 12					
16	Man, terminal nephritis [1.14]	30.0	7.11	37.5	7	13					
17	Man, terminal nephritis [1.79]	47.0	6.83	37.5	40	13					
18	Man, pernicious anemia [1.18]	31.0	7.40	37.5	48	14					
19	Man, diabetic coma [1.03]	27.0	7.40	37.5	2	15					
20	Man, diabetic coma [1.25]	33.0	6.86	37.5	40	15					
21	Man, diabetic coma [1.33]	35.0	7.40	37.5	3	15					
22	Man, diabetic coma [1.52]	40.0	6.92	37.5	40	15					
23	Cat [1.44]	38.0	7.40	37.0		16					
24	Cat [1.33]	35.0	7.40	37.0	44	17					
25	Cat	50.0	6.80			18					
26	Dog [1.06]	28.0	7.40	37.5	38	19					
27	Dog (Canis familiaris)	29.4	7.10	37.0		18					
28	DogZ	0.6	7.00	20.0		20					
29	Dog ²	0.5	9.20	20.0		20					
30	Fox	(21) ¹			10	18					
31	Fox (Vulpes fulva)	37.0		37.5	40	18					
32	Goat (Capra hircus), adult	28-33		38.0	50	21					
33	Goat, fetal	25.0		38.0	50	21					
34	Goat, maternal	40		38.0	50	21					
35	Horse [1.03]	27.0	7.40	37.5	50	22					
36	Horse ²	3.7	7.00	37.0		23					
37	Horse ²	3.4 3.2	7.200	37.0	1	23 23					
38 39	_	1.5	7.40 7.40	37.0 30.0		23					
40	Horse ²	1.1	7.40	27.0		23					
41	Horse ²	0.5	7.40	20.0		23					
	Horse ²	0.3	7.40	17.0		23					
43	Llama (Lama huanachus glama) [0.76]	20.0	7.40	39.0		24					
44	Llama (L. peruana)	22.0	7.40	38.0	43	18					
45	Marmot	23.8		38.0	40	18					
46		72.0		38.0	40	18					
47	Ox [1.13]	29.8	(7.40)1	37.0	29.8	25					
48	Ox2	0.6	7.00	19.0	27.0	20					
49	Ox ²	0.5	9.20	19.0		20					
50	Peccary [1.10]	29.0	7.40	37.0		25					
51	Porpoise (Phocaena phocaena) [1.14]	30.0	,	38.0	46	26					
52		31.6	7.40	38.6	32	24					
53		40.0	7.40	37.0		16					
	Rat, kangaroo (Dipodomys spectabilis)										
	[1.93]	51.0		37.0	40	27					
55	Rat, white (Rattus norvegicus) [2.13]	56.0		37.0	40	27					
56	Sea lion (Eumetopiaes stelleri) [1.52]	40.0		38.0	44	28					
57	Seal	25			10	18					
58	Seal (Phoca vitulina)	31		38.0	40	18					
59	Seal, harbor (P. vitulina) [1.06]	28.0		37.0	40	29					

/1/ Values in parentheses are calculated. In calculations at 37°C, pH = 6.15 + $log \frac{(total CO_2) - 0.0290 pCO_2}{0.0290 pCO_2}$,

where 6.15 and 0.0290 are the pK' and CO_2 factors, respectively, for whole blood. /2/ Myoglobin (myohemoglobin, muscle hemoglobin). Oxygen dissociation curves of myoglobin are rectangular hyperbolas and are defined by giving pO₂ for 50% saturation.

69. DATA FOR CONSTRUCTING BLOOD O2 DISSOCIATION CURVES (Continued)

Values in brackets are calculated "f" factors.

Part II: MAMMALS (Concluded)

	Animal	t. ½ sat. mm Hg	рН	Temperature °C	pCO ₂ mm Hg	Reference
	(A)	(B)	(C)	(D)	(E)	(F)
60	Sheep [1.48]	39.0	(7.40)1	37.0		25
61	Sheep (Ovis aries)	37.0		39.0	40	18
62	Sheep, diluted blood and Hb	3.0	9.30	19.0	0.015	17
63	Sheep ²	0.5	9.20	20.0		20
64	Swine [1.28]	33.7	(7.40)1	37.0		25
65	Vicuna (Lama vicugna) [0.69]	18.0	7.40	39.0		24
66	Viscacha (Lagostomus sp) [0.99]	26.0	7.40	38.6	28	24

/1/ Values in parentheses are calculated. In calculations at 37° C, pH = 6.15 + $\log \frac{(\text{total CO}_2) - 0.0290 \text{ pCO}_2}{0.0290 \text{ pCO}_2}$,

where 6.15 and 0.0290 are the pK' and CO₂ factors, respectively, for whole blood. /2/ Myoglobin (myohemoglobin, muscle hemoglobin). Oxygen dissociation curves of myoglobin are rectangular hyperbolas and are defined by giving pO₂ for 50% saturation.

Part III: BIRDS

	Animal	t. ½ sat. mm Hg	pН	Temperature °C	pCO ₂ mm Hg	Reference				
	(A)	(B)	(C)	(D)	(E)	(F)				
1	Chicken [1.98]	51	7.14	40.0	37	30				
2	Chicken	58		38.0	31	31				
3	Chicken (Gallus domesticus)	52	7.10	37.5		32				
4	Chicken, Hb solution [2.35]	62.0	7.10	37.0		32				
5	Chicken, Hb solution [1.58]	41.7	7.40	37.0		32				
6	Chicken, Hb solution [1,12]	29.5	7.70	37.0		32				
7	Crow	53.0		42.0	40	33				
8	Duck	45	7.10	37.5		31,32				
9	Duck (Anas sp)	42:0		37.5	40	18, 33				
10	Duck, domestic [1.71]	45		37.0		32				
11	Duck, muscovy [1.48]	39.0		37.0		32				
12	Duck, muscovy, Hb solution [2.20]	58.0	7.10	37.0		32				
13	Goose	37.5		42.0	50	33				
14	Goose	45.0	7.10	37.5		18				
15	Goose	(24)1			10	18				
16	Goose	35.7			40	18				
17	Goose, domestic [1.64]	43.0		37.0		32				
18	Goose ²	0.7	9.20	20.0		20				
19	Huallata (Chloephaga melanoptera)	33.0	7.35	40.0		24				
20	Ostrich (Rhea americana)	26.0	7.35	40.0		24				
21	Pheasant	50.0	7.10	37.5		18				
22	Pheasant, ringnecked [1.82]	48.0		37.0		32				
23	Pigeon	35.0		37.5	40	17,34				
24	Pigeon	40.0	7.10	37.5		18				
25	Pigeon, domestic [1.48]	39.0		37.0		32				
26	Pigeon, domestic	44.0		40.0		32				

/1/ Values in parentheses are calculated. In calculations at 37°C, pH = $6.15 + log \frac{(total CO_2) - 0.0290 pCO_2}{0.0290 pCO_2}$, where

6.15 and 0.0290 are the pK' and CO₂ factors, respectively, for whole blood. /2/ Myoglobin (myohemoglobin, muscle hemoglobin). Oxygen dissociation curves of myoglobin are rectangular hyperbolas and are defined by giving pO₂ for 50% saturation.

Part IV: REPTILES

	Animal	t. ½ sat. mm Hg	рН	Temperature °C	pCO ₂ mm Hg	Reference
	(A)	(B)	(C)	(D)	(E)	(F)
1	Alligator	11			10	18
2	Alligator	28			40	18
3	Alligator (Alligator mississippiensis) [1.06]	28.0	7.60	29.0	42.0	35
4	Chuckwalla (Sauromalus obesus) [0.91]	24.0	7.60	20.0	37.0	36

69. DATA FOR CONSTRUCTING BLOOD O_2 DISSOCIATION CURVES (Continued)

Values in brackets are calculated "f" factors.

Part IV: REPTILES (Concluded)

Animal	t. ½ sat. mm Hg	pН	Temperature °C	pCO ₂ mm Hg	Reference
(A)	(B)	(C)	(D)	(E)	(F)
5 Chuckwalla (S. obesus) [2.36]	62.0		37.0	(55)1	36
6 Crocodile (Crocodilus acutus) [1.0]	26.0	$(7.40)^{1}$	29.0	(50) ¹	37
7 Crocodile (C. acutus) [2.0]	53.0	(7.40)1	37.0	(45)1	37
8 Crocodile (C. acutus)	38.0	7.20	29.0		37
9 Gila monster (Heloderma suspectum)					
[1.22]	32.0	7.40	20.0	36.0	38
10 Gila monster (H. suspectum) [2.24]	59.0	7.40	37.0	(32)1	38
Gila monster (H. suspectum)	31.0	7.32	20.0	37.0	b
12 Tortoise (Terrapene carolina) ²	12.0	7.40	25.5		18
13 Turtle (Caretta caretta) ²	28.5	7.40	25.5		18
14 Turtle (Chelonis mydras) ²	19.0	7.40	25.5		18
15 Turtle (Chelydra serpentina) ²	14.0	7.40	25.5		39,40
16 Turtle (Pseudemya concinna) [0.77]	20.0		25.0	40.0	41
17 Turtle (P. elegans)	28.0		25.0	27.0	18
18 Turtle (P. scripta) ²	15.8	7.40	25.5		18
19 Turtle (P. troostii)	26.0		25.0	34.0	18,42
20 Turtle, painted (Chrysemis picta) ²	15.0	7.40	25.5		18

^{/1/} Values in parentheses are calculated. In calculations at 37°C, pH = $6.15 + log \frac{(total\ CO_2) - 0.0290\ pCO_2}{0.0290\ pCO_2}$, where 6.15 and 0.0290 are the pK' and CO_2 factors, respectively, for whole blood. /2/ Hemoglobin solutions.

Part V: AMPHIBIANS

Animal	t. ½ sat. mm Hg	pH	Temperature ^o C	pCO ₂ mm Hg	Reference
(A)	(B)	(C)	(D)	(E)	(F)
l Congo eel (Amphiuma tridactyla)					
[1.14]	30.0		26.0	43.0	43
2 Frog (Rana esculenta)	11.0			1-2	18
3 Frog (R. esculenta)	17.0			10.0	18
4 Frog (R. esculenta)	49.0			10.0	18
5 Frog (R. catesbiana), adult1	26.0	7.38	25.4		44
6 Frog (R. catesbiana), adult1	13.5	7.40	20.0		45
7 Frog (R. catesbiana), larval	6.0	7.38	25.4		44
8 Frog (R. catesbiana), larval	4.6	7.32	20.0		45
9 Frog (R. catesbiana), tadpole1	5.0	6.80			44
0 Toad (Bufo sp)1	30.0	7.38	25.4		18,46
1 (Amphiuma sp) ¹	15.0	7.38	25.4		43,46
2 (Cryptobranchus sp) ¹	18.0	7.38	25.4		18,46
3 (Desmognathus sp)1	5.0	7.38	25.4		18,46
4 (Triturus sp)l	7.5	7.38	25.4		18,46

^{/1/} Hemoglobin solutions.

Part VI: FISH

	Animal	t. ½ sat. mm Hg	pH	Temperature °C	pCO ₂ mm Hg	Reference				
	(A)	(B)	(C)	(D)	(E)	(F)				
1	Baiara	8.0		28.0	0	18				
2	Baiara	22.0			25.0	18				
3	Bom-bom	11.0		28.0	0	18				
4	Bom-bom	13.0			25.0	18				
5	Bowfin	4.0		15.0	1-2	18				
6	Bowfin	9.0			10.0	18				
7	Carp	8.0			10.0	18				
8	Carp	13.0		18.0	30.0	47				
9	Carp (Cyprinus carpio)	5.0		15.0	1-2	18				
10	Catfish	1.4			1-2	18				
11	Catfish	5.0			10.0	18				
12	Catfish	1.4		15.0	0-1	18				
13	Cod	15.0		14.0	<0.3	18				
14	Eel, electric	12.0		28.0	0	18				

69. DATA FOR CONSTRUCTING BLOOD O2 DISSOCIATION CURVES (Continued)

Part VI: FISH (Concluded)

	Animal	t. ½ sat. mm Hg	рН	Temperature °C	pCO ₂ mm Hg	Reference
	(A)	(B)	(C)	(D)	(E)	(F)
15	Eel, electric	18.0			25.0	18
16	Eel, salt water (Anguilla					
	bostoniensis)	4.0		17.0	0.3	18
17	Haimara	8.0	İ	28.0	0	18
18	Hassa	11.0		28.0	0	18
19	Hassa	20.0			25.0	18
20	Mackerel (Scomber scombrus)	52.0			10.0	18,48
21	Mackerel (S. scombrus)	17.0	8.0	20.0	1.0	48
22	Mackerel (S. scombrus), dilute Hb					
	solution	18.0	7.38	25.0		18
23	Paku	12.0		28.0	0	18
24	Paku	55.0			25.0	18
25	Plaice	12.0		16.5	0.3	18
26	Ray (Raja sp)1	26.0	7.38	25.0		49
27	Ray (Raja sp)	45.0	1	25.0	1.0	49
28	Remora (Echeneis naucrates)1	11.0	7.38	25.0		49
29	Remora (E. naucrates) 1	53.0	6.80	25.0		49
30	Salmon, Atlantic, brackish water	23.0	""	15.0	1-2	18
31	Salmon, Atlantic, fresh-water	21.0		15.0	1-2	50
32	Salmon, Atlantic, fresh-water	35.0		15.0	10.0	18,50
33	Scup (Stenotomus chrysops)1	6.4	7.38	25.0	10.0	49
34	Sea robin (Prionatus carolinas)	21.0	7.38	25.0		49
35	•	17.0	7.70	20,0	1.0	48
36	, , , , , , , , , , , , , , , , , , , ,	7.0	7.40	25.0	1.0	49
37	Shark (M. canis)!	12.0	6.80	25.0		49
38	Shark (Hypoprion brevirostris)1	7.6	7.40	25.0		51
39	Skate (Raja oscillata)	20.0	7.80	10.4	1.0	52
40		45.0	7.00	25.0	1.0	52
41	Skate (R. oscillata)	98.0		37.0	1.0	52
42	· · · · · · · · · · · · · · · · · · ·	11.0		0.2	1.0	52
43	Stingray (Dasyatus sp)!	13-15	7.40	25.0	1.0	51
	Sucker	12.0	7.40		1-2	18
45	Sucker	43.0		15.0	10.0	18
46	Tautog (Tautoga onitus) ¹		2 20	25.0	10.0	
47	Toadfish	6.0	7.38	25.0		49
				20.0	1-2	18
i	Toadfish (Oncome tout)	33.0	7.30	25.0	10.0	18
49	Toadfish (Opsanus tau) I	3-4.4	7.38	25.0		49
50	Toadfish (O. tau)	13.0	7.70	20.0	1.0	48
51	Trout, brook	17.0		15.0	1-2	18
	Trout, brook	42.0		15.0	10.0	18
	Trout, brown	17.0		15.0	1-2	81
54	Trout, brown	39.0		15.0	10.0	18
55	Trout, rainbow	18.0		15.0	1-2	18
56	Trout, rainbow	35.0		15.0	10.0	18

^{/1/} Hemoglobin solutions.

Part VII: INVERTEBRATES

		- 411 7 341 1.	· · · · · · · · · · · · · · · · · · ·			
	Animal	t. ½ sat. mm Hg	pН	Temperature °C	pCO ₂ mm Hg	Reference
	(A)	(B)	(C)	(D)	(E)	(F)
1	Anadara	10.0				18
2	Arenicola	1.8	7.3			18
3	Arenicola	1.8		17.0	0	18
4	Busyconl	6.0		23.0	13.5	53
5	Cancerl	12.0		23.0	0	18
6	Ceriodaphnia	0.8		17.0	0	18
7	Chironomus	0.2		17.0	0	18
8	Chironomus	0.6		17.0	0	18
9	Daphnia	3.1		17.0	0	18
10	Gastrophilus, concentrated	4.9		39.0		18
					I	

^{/1/} Hemocyanin.

Part VII: INVERTEBRATES (Concluded)

Animal	t. ½ sat. mm Hg	pН	Temperature oC	pCO ₂ mm Hg	Reference
(A)	(B)	(C)	(D)	(E)	(F)
1 Gastrophilus, dilute	0.02		39.0		18
2 Helix, summerl	12.0		20.0	0	18,53
3 Helix, winter ¹	11.0	8.20	20.0		18
4 Homarusl	90.0	7.20			18
5 Limulus1	11.0			0	18
6 Limulusl	13.0	7.70			18
7 Loligol	36.0		23.0	0	18,54,55
8 Nippostrongylus	<0.1		19.0		18
9 Octopus ¹	3.0		25.0	0.6	18,56-58
0 Phascolosoma ²	8.0		19.0		18
1 Planorbis	1.9		17.0	0	18
2 Planorbis	7.0		20.0	0	18
3 Sipunculus ²	8.0		19.0	0.07-80	18
4 Spirographis ³	27.0	7.70	20.0		18
5 Tubifex	0.6		17.0	0	18
6 Urechis ²	12.3		19.0	8.6	18

/1/ Hemocyanin. /2/ Hemerythrin. /3/ Chlorocruorin.

Contributors: (a) Forbes, W. H., (b) Lucas, M. S., (c) McCutcheon, F. H., (d) Oberholzer, R., (e) Root, R. W.,

References: [1] Allen, D. W., Guthe, K. F., and Wyman, J., J. Biol. Chem. 18F:393, 1950. [2] Paul, W., and Roughton, F. J., J. Physiol., Lond. 113:23, 1951. [3] Dill, D. B., in "Handbook of Respiratory Data in Aviation," Committee on Medical Research, Washington, 1944. [4] Dill, D. B., Edwards, H. T., and Consolazio, W. V., J. Biol. Chem. 118:635, 1937. [5] Singer, R. B., and Hastings, A. B., Medicine 27:223, 1948. [6] Dill, D. B., and Forbes, W. H., Am. J. Physiol. 132:685, 1941. [7] Cullen, G. E., Keeler, H. R., and Robinson, H. W., J. Biol. Chem. 66:301, 1925. [8] Dill, D. B., Daly, C., and Forbes, W. H., ibid 117:569, 1937. [9] Christensen, E. H., and Dill, D. B., ibid 109:443, 1935. [10] Dill, D. B., Talbott, J. H., and Consolazio, W. V., ibid 118:649, 1937. [11] Hurtado, A., Dunham Lecture, Harvard Medical School, Boston, 1953. [12] Keys, A., Hall, F. G., and Guzman Barron, E. S., Am. J. Physiol. 115:292, 1936. [13] Henderson, L. J., Bock, A. V., Dill, D. B., Hurxthal, L. M., Van Caulaert, C., J. Biol. Chem. 75:305, 1927. [14] Dill, D. B., Bock, A. V., Van Caulaert, C., Folling, A., Hurxthal, L. M., and Henderson, L. J., ibid 78:191, 1928. [15] Dill, D. B., Bock, A. V., Lawrence, J. S., Talbott, J. H., and Henderson, L. J., ibid 81:551, 1929. [16] Dept. of Biochemistry, Harvard Medical School, unpublished, 1948-53. [17] Roughton, F. J., Symposium, "Haemoglobin," p 85, New York: Interscience Publishers, Inc., 1949. [18] Prosser, C. L., "Comparative Animal Physiology," Philadelphia: W. B. Saunders Co., 1950. [19] Dill, D. B., Edwards, H. A., Florkin, M., and Campbell, R. W., J. Biol. Chem. 95:143, 1932. [20] Hill, R., Proc. Roy. Soc., Lond. B 120:472, 1936. [21] Barcroft, J., Elliott, R. H., Flexner, L. B., Hall, F. G., Herkel, W., McCarthy, E. F., McClurin, T., Talaat, M., J. Physiol., Lond. 83:192, 1934. [22] Dill, D. B., Van Caulaert, C., Hurxthal, L. M., Stoddard, J. L., Bock, A. V., and Henderson, L. J., J. Biol. Chem. 73:251, 1927. [23] Theorell, H., Biochem. Zschr. 268:73, 1934. [24] Hall, F. G., Dill, D. B., and Guzman Barron, E. S., J. Cellul. Physiol. 8:301, 1936. [25] Dill, D. B., and Talbott, J. H., Am. J. Physiol. 90:328, 1929. [26] Green, A. A., and Redfield, A. C., Biol. Bull. 64:44, 1933. [27] Gjonnes, B., and Schmidt-Nielsen, K., J. Cellul. Physiol. 39:147, 1952. [28] Florkin, M., and Redfield, A. C., Biol. Bull. 61:422, 1931. [29] Irving, L., Solandt, O. M., Solandt, D. Y., and Fisher, K. C., J. Cellul. Physiol. 6:393, 1935. 30] Morgan, V. E., and Chichester, D. F., J. Biol. Chem. 110:285, 1935. [31] Rostorfer, H. H., and Rigdon, R. H., Biol. Bull. 92:23, 1947. [32] Christensen, E. H., and Dill, D. B., J. Biol. Chem. 109:443, 1935. [33] Wastl, H., and Leiner, G., Pflügers Arch. 227:367, 421 1931. [34] Drastich, L., ibid 219:227, 1928. [35] Dill, D. B., and Edwards, H. T., J. Cellul. Physiol. 6:243, 1935. [36] Dill, D. B., Edwards, H. T., Bock, A. V., and Talbott, J. T., ibid 6:37, 1935. [37] Dill, D. B., and Edwards, H. T., J. Biol. Chem. 90:515, 1931. [38] Edwards, H. T., and Dill, D. B., J. Cellul. Physiol. 6:21, 1935. [39] Henderson, L. J., "Blood: A Study in General Physiology," New Haven: Yale Univ. Press, 1928.
[40] McCutcheon, F. H., J. Cellul. Physiol. 29:333, 1947. [41] Southworth, F. C., and Redfield, A. C., J. Gen. Physiol. 9:387, 1926. [42] Wilson, J. W., J. Cellul. Physiol. 13:315, 1939. [43] Scott, W. J., Biol. Bull. 61:211, 1931. [44] McCutcheon, F. H., J. Cellul. Physiol. 8:63, 1936. [45] Riggs, A. F., J. Gen. Physiol. 35:23, 1951. [46] McCutcheon, F. H., and Hall, F. G., J. Cellul. Physiol. 9:191, 1937. [47] Wastl, H., Biochem. Zschr. 197:363, 1928. [48] Root, R. W., Biol. Bull. 61:427, 1931. [49] Hall, F. G., and McCutcheon, F. H., J. Cellul. Physiol. 11:205, 1938. [50] Redfield, A. C., Quart. Rev. Biol. 8:31, 1933. [51] McCutcheon, F. H., J. Cellul. Physiol. 29:333, 1947. [52] Dill, D. B., Edwards, H. T., and Florkin, M., Biol. Bull. 62:23, 1932. [53] Redfield, A. C., Biol. Rev. Cambridge Philos. Soc. 9:175, 1934. [54] Redfield, A. C., Coolidge, T., and Hurd, A. C., J. Biol. Chem. 69:475, 1926. [55] Redfield, A. C., and Goodkind, R., J. Exp. Biol. 6:340, 1929. [56] Dhere, C., J. physiol., Par. 18:221, 1919. [57] Winterstein, H., Biochem. Zschr. 19:384, 1909. [58] Wolvekamp, H. P., Zschr. vergl. Physiol. 25:541, 1938.

USE OF CHARTS:

Changes in temperature and pHs (serum) alter the position but not the shape of the oxygen dissociation curve. Dissociation curves for various values of pHs and temperature for man may be computed from the one standard curve for normal human blood at 37°, pHs 7.4, by multiplying all the pO₂ values by factors for temperature and pHs. The left-hand line gives factors for temperature, the next line factors for pHs. The two right-hand line graphs give the standard oxygen dissociation curve in a form more easily read than the usual graph. The computation is given by

$$P_{t,pH} = P \times f_t \times f_{pH}$$

where $P_{t,\,pH}$ is the pO_2 at temperature t and pH, P is the pO_2 at 37°, pHs 7.4 for the same % saturation, given on the standard curve, and f_t and f_{pH} are the multipliers obtained from the line charts.

Examples of the use of these charts follow:

- 1) Problem: Prepare a complete oxygen dissociation curve for 30°, pH 7.6.
 - Method: The factor for 30° is 0.74, and for pH 7.6 is 0.80. Their product is 0.59. Multiply all pO₂ values in the standard curve by 0.59; i.e., for 50% saturation, pO₂ in the new curve is 26.4 x 0.59 = 15.6 mm Hg.
- 2) Problem: Arterial blood taken during surgery had 88% saturation by Van Slyke manometric methods. pH was 7.56 at body temperature of 33.8°C. What is the pO₂?
 - Method: From the standard dissociation curve, right-hand line, at 88% saturation, $pO_2 = 57$ mm Hg. The factors are, for pH, 0.84 and for temperature, 0.87. $pO_2 = 57 \times 0.84 \times 0.87 = 41.6$ mm Hg in the patient.

To convert tension to saturation, factors are used as dividers:

- 3) Problem: Arterial blood from a febrile subject had a pO₂ of 73 mm Hg, determined at body temperature, 40°C, using a Roughton Scholander syringe. pHs, corrected to 40°, was 6.98. What is the % saturation?
 - Method: Factors are 1.14 for temperature, and 1.52 for pHs. $\frac{73}{1.14 \times 1.52}$ = 42.1 mm Hg. From the dissociation curve, this equals 77% saturation.
- 4) Problem: Blood taken from a heart-lung by-pass machine was found to have a pO_2 by polarograph of 65 mm Hg and pHs of 7.72, both having been measured at 37°. The blood in the machine was at 30°. What is the % saturation, and the pO_2 , in the machine?
 - Method: Since the blood was warmed anaerobically to 37° for pHs and pO₂ measurement, its saturation was unchanged, and the only correction needed to calculate saturation is that for pHs. This, for 7.72 is 0.70. $\frac{65}{0.70}$ = 93 mm Hg, which from the dissociation curve reads 96.4% saturation.

To find pO₂ at 30°, first the pHs at 30° must be computed from the whole blood pHs factor. -0.0147 units per degree [1]. -7° x -0.0147 = +0.103. Inasmuch as pHs rises as temperature falls, 0.103 is added to 7.72 (= 7.82). The factor for pH 7.82 is 0.63 and for 30° is 0.74. 93 x 0.63 x 0.74 = 43.3 mm Hg pO₂ in the machine. A simpler method of correcting the pO₂ from 37° to 30° is given in the line chart on page 62 (correction of pO₂ and pCO₂ of blood in vitro for temperature changes).

The standard dissociation curve, and the pHs and temperature factors are taken from curves published by Dill and Forbes [2,3]. Tensions at the high end of the curves were taken from Nahas, et al [4]. These are assumed to be average curves, subject to some variation in normals and perhaps great variation in disease, particularly diabetes and anemia. The chief reason for variation is failure of intracellular pHc, which actually determines the affinity of hemoglobin for oxygen, to be constantly related to serum pHs.

Contributor: Severinghaus, J. W.

References: [1] Rosenthal, T. B., J. Biol. Chem. 173:25, 1948. [2] Dill, D. B., and Forbes, W. H., Am. J. Physiol. 132:685, 1941. [3] Dill, D. B., "Handbook of Respiratory Data in Aviation," Committee on Medical Research, Washington, 1944. [4] Nahas, C. G., Morgan, E. H., and Wood, E. H., J. Appl. Physiol. 5:169, 1952.

Contributor: Severinghaus, J. W.

71. BLOOD O2 DISSOCIATION CURVES: MAN

Part I: AT VARIOUS pH VALUES

Theory and method of development of straight line curves given in headnote and in Parts I and II of Table 72.

Contributors: Bartels, H., and Opitz, E.

Reference: Dill, D. B., in "Handbook of Respiratory Data in Aviation," Committee on Medical Research, Washington, 1944.

Part II: AT VARIOUS TEMPERATURES

Contributors: Bartels, H., and Opitz, E.

<u>Reference</u>: Dill, D. B., and Forbes, W. H., Am. J. Physiol. <u>132</u>:685, 1941.

72. BLOOD O2 DISSOCIATION CURVES: MAMMALS

Oxygen dissociation is the relation between the amount of O2 that remains chemically combined with Hb, and the O2 tension of the blood at definite temperapressure (PO, mm Hg), the proportion of Hb-bound O₂ (HbO₂) to the maximum binding capacity of Hb for O₂ (O₂ capacity) equals the per cent of O₂ satura-If per cent O2 saturations are to be compared at different O2 pressures, the of the physically dissolved O2 is calculated from O2 pressure and solubility, thus obtaining the amount of O2 combined with IIb. At a definite O2 ture and pH. Blood is exposed to O2, CO2, and N2 in tonometers containing gas mixtures, and after sufficient time the O2 content is determined. The $\frac{1}{O_2}$ capacity (vol $\frac{\pi}{N}$) x 100 = % O_2 saturation of Hb. non of Hb (SO2 % of Hb):

pH for all O2 saturations must be the same. Therefore, the pH values of the individual blood tests must be determined, and the O2 pressure of the blood calculated according to pH value. Conversion factor for blood of man: log pO₂ = -0.048 pHs.

Part I: METHODS OF OBSERVATION

In adaptation to height for adults, there were no significant changes in the O₂ dissociation curves except for a very small shift to right [4]. A definite shift to right was seen in sickle cell anemias [5]. Anti-coagulant: H = heparin, P-O = potassium oxalate, S-F = sodium fluoride. Technique: I-Vt = in vitro, I-Vv = in vivo. Method: Bt = Barcroft tonometer [6], F = ferrocyanide modification [7] of Haldane [8], K = Kugel tonometer [9], M = manometric [10] S = Scholander [11], Sp = spectrophotometric [12], V-S = Van Slyke and Stadie [13]. A position to the left of the adult dissociation curve was found for new-born children [1], that shifts to the right during the first three months of llfe [2, 3]

900	vererence	(I)	14	15	16	17	18	19	20	20	4, 21	22	23	24	52	97	4	4	4	27
pH or pCO2	Estimation	(H)	pHs 7.40	pCO ₂ 40 mm Hg	pHs 7.40 ²	pHs 7.40	pHs 7.40	pCO ₂ ~ 44 mm Hg	pHs 7.40	pHs 7.40	pHs 7.40	pHs 7.40	pCO ₂ ~ 40 mm Hg	pCO ₂ 40-42 mm Hg	pCO ₂ ~ 50 mm Hg	pHs 7.40	pHs 7.40	pHs 7.40	pHs 7.40	$pCO_2 \sim 46 \text{ mm Hg}$
apacity	Method	(5)	M	V-S	Sp^1	M	M	M	M	M	M	[II.	S	Barcroft's4	M		M	M	M	M
Oxygen Capacity	DOZ	(F)		~l50 mm Hg		~200 mm Hg			~200 mm Hg	~200 mm Hg										
u	Method	(E)		Bt		*			×	×	Bt	Bt	Glass syringes	Bt	Bt		Bt	Bt	Bt	
Equilibration	Technique	(Ω)	I-Vt	I-Vt	l-Vv	1-Vt	1-Vt	I-Vt	I-Vt	1-Vt	I-Vt, I-Vv	I-Vt	I-Vt	I-Vt	I-Vt	I-Vt	I-Vt, I-Vv	I-Vt, I-Vv	1-Vt	I-Vt
	Temp, oC	(C)	37	37,5	37	37	37	38	37	37	38.6	38	37	38	38	38	39	39.3	39 and 406	38
Anti-	coagulant	(B)		P-0		P-0, S-F		P-0	H, P-O, S-F	H, P-O, S-F	I				P-0, S-F		H	I	H	Sodium oxalate
	opecies	(A)	1 Man	2 Man	3 Man	4 Cat3	5 Dog	6 Sea Lion	7 Guinea pig	8 Rabbit	9 Rabbit	10 Rat, albino	11 Rat, kangaroo	12 Cow	13 Goat ⁵	14 Horse	15 Llama	16 Sheep	17 Vicuna	18 Porpoise

/1/ Method of Riley, et al [28]. /2/ With glass electrode, using the Henderson-Hasselbalch equation [29]. /3/ Chloralose-urethane used as anesthetic. /4/ Differential manometer. /5/ Urethane used as anesthetic. /6/ At 2.81 and 4.71 km respectively.

Part II: MAN

Numbers in legend refer to numbers under Part I: METHODS OF OBSERVATION. 4 — Cat 5 — — Dog 6 Sea lion 4----72. BLOOD O₂ DISSOCIATION CURVES: MAMMALS (Continued) Part III: CARNIVORES 0 60 pO₂, mm Hg % '⁷Os 2.0

72. BLOOD O₂ DISSOCIATION CURVES: MAMMALS (Concluded)

Part VI: CETACEAN

Numbers in legend refer to numbers under Part 1: METHODS OF OBSERVATION.

Contributor: Bartels, H.

[24] Roos, J., and Romijn, C., J. Physiol., Lond. 92:249, 1938. [25] Barcroft, 3] Morse, M., Cassels, D. E., Holder, M., O'Connell, E., and Swanson, A., 19] Florkin, M., and Redfield, A. C., Biol. Bull. 61:422, 1931. [20] Bartels, in Aviation, "Committee on Medical Research, Washington, 1944. [15] Bock, 1950. [8] Haldane, J. S., J. Path. Bact., Lond. 23:443, 1920. [9] Laue, D., Pflügers Arch. 254:142, 1951. [10] Peters, I. P., and Van Slyke, D. D. Biol. Chem. 169:173, 1947. [12] Haldane, J. S., "Methods of Air Analysis," I. Appl. Physiol, 4:873, 1952. [17] Bartels, H., and Lühning, I., unpublished. Jones, E. S., and Sculthorpe, H. H., Ann. Trop. M. Parasit., Liverp. 44:101, Wilkins, 1932. [11] Scholander, P. F., Flemister, S. C., and Irving, L., J. A. V., Field, H., Jr., and Adair, G. S., J. Biol. Chem. 59:353, 1924.
[16] Lambertsen, C. J., Bunce, P. L., Drabkin, D. L., and Schmidt, C. F., London: Charles Griffin, 1920. [13] Van Slyke, D. D., and Stadie, W. C., J. Biol. Chem. 49:1, 1921. [14] Dill, D. B., in "Handbook of Respiratory Data H., and Harms, H., unpublished. [21] Hall, F. G., Dill, D. B., and Barron, Arch. 260:306, 1955. [2] Beer, R., Doll, E., and Wenner, J., unpublished. E. S., Am. J. Physiol. 115:292, 1936. [5] Becklake, M. R., Griffith, S. B., McGregor, M., Goldman, H. I., and Schreve, J. P., J. Clin, Invest, 34:751, J., Flexner, L. B., Herkel, W., McCarthy, E. F., and McClurkin, T., ibid 1955. [6] Barcroft, J., "The Respiratory Function of the Blood," Part II, References: [1] Beer, R., Bartels, H., and Raczkowski, H. A., Pflügers J. Clin. Invest. 29:1091, 1950. [4] Keys, A. B., Hall, F. G., and Barron, Haemoglobin, Cambridge University Press, 1928. [7] Maegraith, B. G., 64:44, 1933. [28] Riley, R. L., Proemmel, D. D., and Franke, R. E., J. Chem. 56:765, 1923. [27] Green, A. A., and Redfield, A. C., Biol. Bull. E. S., J. Cellul. Physiol. 8:39, 1936. [22] Jones, E. S., Maegraith, and 83:215, 1935. [26] Van Slyke, D. D., Wu, H., and McLean, F., J. Biol. "Quantitative Clinical Chemistry: Methods," Baltimore: Williams and Sculthorpe, H. H., Ann. Trop. M. Parasit., Liverp. 44:168, 1950. [23] Gjönnes, B., and Schmidt-Nielsen, K., J. Cellul. Physiol. 39:147, 1952. 18] Rahn, H., and Bahnson, H. T., WADC Tech. Rept. 53-255, 1953.

Biol. Chem. 161:621, 1945. [29] Henderson, L. J., "Blut," Dresden:

Steinkopff, 1932,

73. O_2 CAPACITY OF UMBILICAL VEIN BLOOD AT VARIOUS STAGES OF PREGNANCY: MAN

Values in parentheses are ranges, estimate "c" of the 95% range (cf Introduction).

Duration of Pregnancy	Cases	Oz Capacity
wk	no.	vol %
(A)	(B)	(C)
1 36	9	20.1(16.6-24.1)
2 37	9	22.0(18.5-25.1)
3 38	16	20.7(17.6-25.5)
4 39	24	19.9(17.0-24.2)
5 40	30	21.3(17.8-23.2)
6 Term	88	20.8(16.6-25.5)1
7 41	14	21.3(16.8-25.6)
8 42 and over	40	20.7(16.2-24.5)
9 Postmaturity	54	20.9(16.2-25.6)2

/1/ Mean and range for Lines 1-5. /2/ Mean and range for Lines 7,8.

Contributor: Nesbitt, R. E. L., Jr.

References: Prystowsky, H., and Eastman, N. J., Bull. Johns Hopkins Hosp. 101:45, 1957.

74. $_{\mathrm{O_{2}}}$ SATURATION IN BLOOD OF UMBILICAL VESSELS, NORMAL AND DIFFICULT LABOR: MAN

Spontaneous, uncomplicated delivery: all deliveries in occipito-anterior presentation and without evidence of meconium staining. Complicated delivery: forceps deliveries and cesarean sections; spontaneous deliveries in occipito-anterior presentation, with meconium staining of the amniotic fluid or other signs of asphyxia before or after delivery.

	Menstrual	Spc	ontaneous, Uncor	nplicated	Delivery		Complicate	d Delive	ry
	Age	Cases	Venous O2	Cases	Arterial O ₂	Cases	Venous O2	Cases	Arterial O2
	wk	no.	Saturation, %	no.	Saturation, %	no.	Saturation, %	no.	Saturation, %
	(A)	(B)	(C)	(D)	(E)	(F)	(G)	(H)	(1)
1	>43	30	64.5	25	30.4	22	53.4	18	26.2
2	42	33	60.4	27	33.0	26	47.9	17	19.9
3	41	52	62.6	42	34.6	38	50.7	30	25.6
4	40	39	61.3	26	36.4	28	49.2	23	27.7
5	39	28	62.9	21	39.7	11	61.4	9	34.6
6	38	20	61.8	16	30.6	7	64.9	7	43.6
7	37	14	51.9	10	28.5	3	46.0	3	13.0
8	36	3	69.0	2	47.0	3	16.7	3	10.7
9	35	2	36.5	1	30.0				
10	33	1	60.0	1	38.0				
11	31	1	74.0	1	24.0				
12	28							1	21.0
13	27	1	72.0						
14	20	1	51.0						

Contributor: Nesbitt, R. E. L., Jr.

Reference: Rooth, G., and Sjostedt, S., Acta obst. gyn. scand. 36:374, 1957.

75. O, PRESSURE GRADIENT BETWEEN FETAL AND MATERNAL BLOOD: MAN

Placental vessel: I-S = intervillous space, U-V = unbilical vein, U-A = unbilical artery.

	ethod of elivery	Cases no.	Placental Vessel	O ₂ Capacity vol %	O ₂ Content vol %	O ₂ Saturation %	Estimated pO ₂ mm Hg	MpO2-FpO2 ¹ mm Hg
	(A)	(B)	(C)	(D)	(E)	(F)	(G)	(H)
	arean	2	I-S	14.8	8.1	54.7	27.8	17.7
2			U-V	20.2	5.1	25.0	12.5	
3			U-A	20.2	3.4	16.8	8.0	
4		5	I-S	11.2	5.0	44.6	24.0	18.3
5			U-V	18.4	1.8	9.7	6.5	
6			U-A	18.4	1.1	5.9	5.0	
7 Vag	inal	4	I-S	15.7	8.4	53.5	27.8	15.6
8			U-V	20.6	5.1	24.7	12.2	
9		6	1-S	16.0	8.3	51.8	26.5	14.3
10			U-V	21.9	5.2	23.7	12.2	
11		10	I-S	15.8	15.3	96.8	72.0	33.0
12			U-V	20.7	17.4	84.0	39.0	
13		12	I-S	22.4	19.2	85.7	48.0	27.0
14			U-V	21.2	10.0	47.1	21.0	
15		13	I-S	14.1	10.8	76.5	40.1	15.1
16			U-V	18.1	10.9	60.3	25.0	
17		21	1-S	15.7	10.6	67.4	34.0	20.4
18			U-V	19.3	6.6	34.1	16.0	
19			U-A	19.3	3.9	20.2	11.0	

/1/ MpO2 = partial pressure of O2 in maternal circulation; FpO2 = partial pressure of O2 in fetal circulation.

Contributor: Nesbitt, R. E. L., Jr.

Reference: Prystowsky, H., Bull. Johns Hopkins Hosp. 101:48, 1957.

76. O, DISSOCIATION RELATIONSHIPS OF FETAL AND MATERNAL BLOOD: MAN, COW, SHEEP

An approximate curve can be drawn for the range of values from 15-80 mm Hg pO2, based upon the pO2 at half saturation, but the curve is not necessarily valid above and below these pressures. The half saturation pO2 is, therefore, a satisfactory approximation. Inflections of the curves around this point have not been investigated in sufficient detail as yet. In man, separation of hemoglobin from the corpuscle results in a decrease of half saturation pO2 of 9 mm Hg for maternal blood and 2 mm for fetal at pH 6.8 and 37°C; this may reverse their relative positions [1]. Values in parentheses are ranges, estimate "b" or "c" of the 95% range (cf Introduction).

Animal	No.	Age		nm Hg ^l turation	pCO ₂ mm Hg	Reference
			Maternal	Fetal	min ng	
(A)	(B)	(C)	(D)	(E)	(F)	(G)
1 Man			31(30-35) ^{C2}	25(22-29)c2	40	2
2	1		333	253	40	3
3	224	Term	27.27(26.37-28.17)b5	21.86(21.26-22.46)b5	pH = 7.4	4
4	224	Term	29.08(28.02-30.14)b5	23.94(23.10-24.78)b5	40	4
5 Cow	3	3.5 mo gestation	34	18	43(41-45)b	5
6	2	5.5 mo gestation	33	23	43(41-45)b	5
7	7	7 and 8 mo gestation	32	20	43(41-45)b	5
8	6	At birth	31.5	22.5	43(41-45)b	5
9 Sheep		50 to 111 da	(42-49)c	(17-19)C	40(36-44)b	6
0	2	139 and 140 da gestation		(25-26)°	40(38-42)b	6

/1/ Temperature, 38°C. /2/ Derived from graphic approximations corrected to pCO₂ = 40. /3/ Estimated from published curve. /4/ 6 maternal, 16 fetal. /5/ Corrected for Δ log pO₂ = -0.048 Δ pH.

Contributor: Kaiser, l. H.

References: [1] McCarthy, E. F., J. Physiol., Lond. 102:55, 1943. [2] Leibson, R. G., Likhnitzky, l. l., and Sax, M. G., ibid 87:97, 1936. [3] Eastman, N. J., Geiling, E. M., and De Lawder, A. M., Bull. Johns Hopkins Hosp. 53:246, 1933. [4] Darling, R. C., Smith, C. A., Asmussen, E., and Cohen, F. M., J. Clin. Invest. 20:739, 1941. [5] Roos, J., and Romijn, C., Proc. Koninkl. Ned. Akad. Wetenschap. 43:1212, 1940. [6] Barron, D. H., Yale J. Biol. 24:169, 1951.

77. O2 DISSOCIATION CURVES FOR FETAL BLOOD: MAMMALS

minations lose much of their meaningfulness, for as the pO2 decreases, so does the pH. Another problem arises from the wide normal variation encountered in both oxygen capacity and oxygen content of umbilical cord blood, as any substantial variation in oxygen capacity and content will necessarily result in great tant inroads in the ultimate understanding of intra-uterine fetal environment. The reader should not be discouraged by the apparent conflicting data presented, oxygen reserve in the umbilical artery, and the oxygen gradient, before the true status of fetal oxygenation can be evaluated. These experimental limitations, undoubtedly led the several authors, despite similar objectives, to conduct different experiments. At the same time, the reader should realize that there is variations in the calculated percentage of oxygen saturation. Since the partial pressure of oxygen is calculated from the oxygen saturation, it is understanddisagreement about the best index of fetal oxygenation. The current interest in oxygen saturations has arisen because these determinations are much easier however, should not detract from the statistical validity of the enclosed data derived from careful studies conducted in accordance with accepted physiologinecessarily indicative of the true physiologic circumstances. Moreover, when the pH values are corrected to an arbitrary figure, oxygen saturation deter-Although the following data concerning the oxygen relationships of fetal blood are somewhat sketchy and fragmentary, they represent, nevertheless, importo compute than are pO2 values. It should be borne in mind that pO2, pH, and pCO2 are related variables and that a two-dimensional representation is not several oxygen indexes, namely, oxygen saturation of the umbilical vein and of the umbilical artery, arterio-venous difference between these two figures, able that considerable sampling errors may be encountered in this work. More data are needed concerning the significance and interrelationships of the since the several reports may not be analogous in all respects. The many enigmas in clinical obstetrics and in the selection of cases for study have

Contributor: Nesbitt, R. E. L., Jr.

Part I: METHODS OF OBSERVATION

Since the alkali reserve in fetal blood differs from that of the mother, and differs among species, curves showing equal CO2 pressures may have various pll obtained curves from 28-week-old fetuses showing a minimal shift to the left when compared with curves of older fetuses [3]. Anti-coagulant: H = heparin, values. The affinity of infant blood of man is higher than that of adult blood [1], and therefore the pH values for fetal blood should be standardized by using P-O = potassium oxalate, S-F = sodium fluoride. Technique: 1-Vt = in vitro, 1-Vv = in vivo. Method: B = Barcroft [4], Bt = Barcroft tonometer [5], C = the conversion factor for adult blood of man: log pO2 = -0.048 pHs (pHs = 0.1 pH units). This factor is also best used for other species [2]. Fetal age is quite important as there is a possibility of change in the dissociation curve with the increase in age of the fetus. For man, Bartels, Harms, and Harms colorimetric Hb estimation, E = electrometric, K = Kugel tonometer [6], M = manometric [7], P = potentiometric [8].

Animal	Ž	Fetal	Anti-	Þ	quilibration		Method of pO ₂	pH or pCO2	Doforday
101		Age	coagulant	Temp, oc	Technique	Method	Estimation	Estimation	nererence
(A)	(B)		(D)	(E)	(F)	(S)	(H)	(1)	(7)
	10	Full term1	Н	37	I-Vt	Bt	M	pHs 7.40	6
Man	00	Full term	P-0, S-F	37	I-Vv	۵,	M, K, P	pHs 7.40	10
	-	About 36 wk		38.5	1-Vt	Bt	В	pCO ₂ 43-45 mm Hg	11
	702	At birth and 18 da after birth	P-0	38	I-Vt	ğ	M	pCO ₂ 50 mm Hg	12
Rabbit		30 da		38	I-Vt	Bţ	M, C ²	E3	13
Sheep	9	60-120 da and 120-150 da	Н, S-F	38	I-Vt	Ä	M	pCO ₂ 40 mm Hg	14

/1/8 cases full term and 2 cases before term; no significant difference between the two groups. /2/ Calculated on basis of C. /3/ Estimated.

tory Function of the Blood," Part II, Haemoglobin, Cambridge: University Press, 1928. [6] Lave, D., Pflüger's Arch. 254:142, 1951. [7] Van Slyke, D. D., References: [1] Eastman, N. J., Geiling, E. M., and De Lawder, A. M., Bull. Johns Hopkins Hosp. 53:246, 1933. [2] Bartels, H., and Harms, H., unpublished. [3] Bartels, H., Harms, M. L., and Harms, H., unpublished. [4] Barcroft, J., J. Physiol., Lond. 37:12, 1908. [5] Barcroft, J., "The Respiraand Neill, J. M., J. Biol. Chem. 61:523, 1924. [8] Bartels, H., Pflüger's Arch. 254:107, 1951. [9] Darling, R. C., Smith, C. H., Asmussen, E., and Cohen, F. M., J. Clin. Invest. 20:739, 1941. [10] Beer, R., Bartels, H., and Raczkowski, H. A., Pflüger's Arch. 260:306, 1955. [11] Roos, J., and Romijn, C., J. Physiol., Lond. 92:249, 1938. [12] Barcroft, J., et al, ibid 83:192, 1934. [13] Barron, D. H., and Meschia, G., Sympos. Quant. Biol. 19:93, 1954. [14] Barron, D. H., Yale J. Biol. 24:169, 1951. Contributors: (a) Bartels, H., (b) Kaiser, I. H., (c) Barron, D. H.

78. ACID-BASE BALANCE OF BLOOD: MAN

Definitions of acid, base, and buffer base given on Page 95, Table 80, Part I.

Part I: CONSTANTS, FACTORS, AND FORMULAS

Temperature corrections for pH measurements (Lines 12-16) have been used in an attempt to reduce to a comparable basis some of the experimental values cited in Parts II-IV.

mm Hg, occupied by 1 g M 22.41 Liter moglobin, grams may be e, man constant, carbonic acid ma, 37°C normal human plasma at constant, carbonic acid ma, 37°C od CO2 content should be ma, 37°C od CO2 content should be ma, 37°C od CO2 content should be ma, 37°C od CO2 content should be ma, 37°C od CO2 content should be ma, 37°C od CO2 content should be ma, 37°C od CO2 content should be ma, 37°C od CO2 content should be ma, 37°C od CO2 content should be ma, 37°C od CO2 content should be ma, 37°C in normal blood arterial blood in normal arterial blood in normal arterial blood oglobin, and plasma arterial blood in meq/L in meg/L		Welme	11-24	T. C.	200	
(B) (C) 22.41 Liter 22.26 Liter 0.0314 mM/L per mm CO2 pressure 6.10 About 1.217 in normal arterial blood blood L, arterial blood CO2 pressure -0.0007 CO2 pressure -0.005		Factor	value	OUL	Constant, Formula, or Method	relefence
22.26 Liter 22.26 Liter 0.0314 mM/L per mm CO2 pressure 6.10 About 1.217 in normal arterial blood in normal arterial blood L, arterial blood cO2 pressure -0.0007 CO2 pressure -0.005		(A)	(B)	(C)	(D)	(E)
22.26 Liter 37 Degrees Centigrade 0.0314 mM/L per mm CO2 hout 1.217 in normal arterial blood L, arterial blood CO2 pressure -0.0007 CO2 pressure -0.005		Volume, at 0°C and 760 mm Hg, occupied by 1 g M of O ₂ . In the case of hemoglobin, grams may be related to O ₂ capacity.	22.41	Liter	l mM Hb O ₂ = 22.4 ml. (STP)	ı
Degrees Centigrade 0.0314 mM/L per mm CO2 6.10 About 1.217 in normal arterial blood L, arterial blood C: -0.0007 mM/L per mm of CO2 pressure -0.005 -0.015		Volume, at 00C and 760 mm Hg, occupied by 1 g M of CO2	22.26	Liter	CO2, mM/L = $\frac{\text{CO2}}{2.226}$	-
6.10 About 1.217 in normal arterial blood L, arterial blood CO2 pressure CO2 pressure -0.005 -0.015	01	Standard body temperature, man	37	Degrees Centigrade		2
About 1.217 in normal arterial blood About 49.1 mEq/L (CO ₂)p = f(CO ₂)b in normal arterial blood CO ₂ pressure -0.005 -0.015		Solubility factor of CO ₂ in normal human plasma at 37°C	0.0314	mM/L per mm CO ₂ pressure	For plasma or serum water = 940 g/L $$	ا ا
About 1.217 in normal arterial blood in normal arterial blood blood -0.0007 mM/L per mm of CO2 pressure -0.005	-4		6.10			6-8
About 49.1 in normal arterial blood CO2 pressure -0.005	_	Factor by which whole-blood CO ₂ content should be multiplied to obtain plasma CO ₂ content, when hemoglobin content (or hematocrit value), pH, and O ₂ saturation are given. Normally Hb = 9 mM/L or 15 g/100 ml or 20.2 volume %, pH = 7.40, O ₂ saturation = 100%, and f = 1.217	About 1.217 in normal arterial blood		$(CO_2)p = f(CO_2)_b$	9,10
-0.0007		Buffer base, $(BB)_b$, or cation and equivalent sum of blood bicarbonate, hemoglobin, and plasma protein anions. Normally $(HCO_3^{-1})_b = 21.0 \text{ m Eq/L}$, oxygenated blood Hb = 9 mM/L, plasma protein = 39.8 g/L, pH = 7.40, then $(BB)_b = 21.0 + 9.0$ (2.01) + 39.8 $(0.24) = 49.1 \text{ mEq/L}$	About 49.1 in normal arterial blood	mEq/L	(BB) _b = (HCO3 ⁻) _b + Hb(f ₁) ⁺ plasma protein (f ₂)	=
		remperature coefficients, per ^O C increase, at 37 ^o C: CO ₂ solubility factor	-0.0007	mM/L per mm of CO ₂ pressure		12
		Plasma carbonic acid pK'1	-0.005			13
		pH of whole blood or true plasma	-0.015			14
		pH of separated plasma	-0.012			14

/1/ Henderson-Hasselbalch equation.

Contributors: Singer, R. B., and Hastings, A. B.

79:183, 1928. [7] Robinson, H. W., Price, J. W., and Cullen, G. E., ibid 106:7, 1934. [8] Rossier, P. H., and Mean, H., Rev. med. Suisse rom. 60:633, 1940. [9] Van Slyke, D. D., and Sendroy, J., Jr., J. Biol. Chem. 79:781, 1928. [10] Hastings, A. B., and Shock, N. W., ibid 104:575, 1934. [11] Singer, R. B., and Hastings, A. B., Medicine, Balt. 27:223, 1948. [12] Loomis, A. G., "International Critical Tables," National Research Council, Washington, D. C., vol III, p 260, 1928. [13] Cullen, G. E., Keeler, H. R., and Robinson, H. W., J. Biol. Chem. 66:301, 1925. [14] Rosenthal, T. B., ibid 173:25, 1948. [15] Rosenthal, T. B., ibid 173:25, 1948. [16] Cullen, G. E., ibid 52:501, 1922. [17] Myers, V. C., Muntwyler, E., Binns, D., and Danielson, W. H., ibid 102:19, 1933. [18] Peters, J. P., and Van Slyke, D. D., "Quantitative Clinical Chemistry," vol 11, 1st ed., Baltimore: Williams and Wilkins References: [1] Guye, A., and Batuecas, T., J. Chim. phys., Par. 20:308, 1923. [2] Pembrey, M. S., "Schafer's Textbook on Physiology," vol 1, New York, 1898. [3] Van Slyke, D. D., Sendroy, J., Jr., Hastings, A. B., and Neill, J. M., J. Biol. Chem. 78:765, 1928. [4] Dill, D. B., Edwards, H. T., and Consolazlo, W. V., ibid 118:635, 1937. [5] Van Slyke, D. D., ibid 183:331, 1950. [6] Hastings, A. B., Sendroy, J., Jr., and Van Slyke, D. D., ibid Co., 1932.

78. ACID-BASE BALANCE OF BLOOD: MAN (Continued)

Definitions of acid, base, and buffer base given on Page 95, Table 80, Part 1.

Part II: ARTERIAL BLOOD

oxalate; (2) mixture of dry oxalate and fluoride; (3) dry heparin; (4) heparin in 0.9% NaCl. Drawing of blood: (1) oiled syringe; (2) syringe with dry anticoag-Van Slyke, tonometer saturation with corrections [3]; Z = spectrophotometer, as oxyhemoglobin or cyanmethemoglobin [4,5]; I = interpolated CO2 dissocia-Part I, Line 5); G = glass electrode, whole blood [2]; R = room temperature; X = gasometric Van Slyke, tonometer saturation with O2 [1]; Y = gasometric tion curve [6]; C = calculation of CO2 pressure by means of Henderson-Hasselbalch equation (cf Part 1, Lines 4 and 5). Average adult arterial O2 saturamM (single Fe-atom structure, molecular weight 16,500) combines with 22.4 ml of O2, STP when saturated. Handling of blood [1]: The four digits in the Centrifugation: (1) no centrifugation; (2) special stoppered tube. Abbreviations: CpH = calculation of pH by means of Henderson-Hasselbalch equation (cf ulant; (3) syringe with dead space filled with heparin-saline solution. Storage (chilled to less than 50C): (1) under oil; (2) over mercury; (3) in syringe. Diagram showing ionic patterns of arterial blood appears on Page 96, Table 80, Part II. Hemoglobin concentration assumed to be 20 mM/L RBC; one code number refer, successively, to anticoagulant, method of drawing blood, storage of sample, and centrifugation. Anticoagulant: (1) dry potassium tion = 98%. Values in parentheses are ranges, estimate "b" of the 95% range (cf Introduction).

1	Refer-	ence	(Z	1	~	m		0		_	=	: =	2	. "	<u></u>	4
-		_		-		_										
Buffer	Base	mEq/L	(M)	46.3	48.5	48.4	48.6	48.3		47.4	45.3	45.6	48.5	48.0		
CO2 Pressure	Blood or Plasma Base ⁵	mm Hg	(L)	40.4(33.0-47.8)	42.5(35.4-49.6)	37.0	42.0	39.0(37.4-40.6)		42.8(38.0-46.6)	36.3(28.3-44.3)	37.0(28.8-45.2)	41.0(38.2-43.8)	42.8	43,3	43.1(40.1-46.1)
Ö	Matho		(K)	1	~	O	O	O		н	Ö	Ö	П	Н	-	_
ent	Plasma4	mM/L	(7)	25.6	27.4	26.6	27.1	26.7		26.8	25.0	25,4	26.47	26.5	26.9	27.07
CO ₂ Content	Adiusted Method Concentration Whole Blood Plasma4	mM/L	(1)	21.5	22.5	9.3(8.1-10.5) 21.6(20.4-22.8)	8.7(7.7-9.7) 22.5(20.7-24.3)	8.3(7.1-9.5) 22.2(20.8-23.6)		22.1	21.1(17.7-24.5)	7.7(5.7-9.7) 21.5(18.1-24.9)	9.0(7.8-10.2) 21.9(20.9-22.9)	22,1(20.5-23.7)	22.2(20.2-24.2)	
Hemoglobin	Concentration	mM/L	(H)	8.2	0.6	9.3(8.1-10.5)	8.7(7.7-9.7)	8.3(7.1-9.5)		8.9	7.8(6.2-9.4)	7.7(5.7-9.7)	9.0(7.8-10.2)	6.8		
Hen	Method ²		(G)	×	×	×	2	×		×	X	X	×	×		
	Adjusted		(F)	7.38	7.39	7.43	7.39	7.42		7.38	7.42	7.42	7.39	7.38	7.37	7,38
Hd	Observed		(E)	7.38	7.39	7.42(7.39-7.44)	7.39(7.34-7.44)	7.42(7.40-7.44)		CpH 7.38	7.42(7.34-7.50)	7.42(7.36-7.48)	7.39(7.34-7.44)	7.38(7.34-7.42)	7.37(7.31-7.43)	7.38(7.37-7.39)
	Method		(<u>O</u>)	СрН	CpH	ç	G, R	G 2		CpH	G,	G, R	CpH	СрН	CpH	СрН
Handling	Jo .	Blood	(C)	3122	3122	11?11	4231	2311,	4231	3122	4231	4231	3122	3122	3122	3121
No.	and	Sex	(B)	110	350	50€	36€	100		140	229	270	120	100	1060	180
	Age	7	(¥)	8-15 yr	16-48 yr	18-29 yr	18-39 yr	21-52 yr		6 48-76 yr 140	50-77 yr	50-81 yr	Adult	Adult	11 Adult	Adult
		1		7	7	3	4	S		9	2	00	6	10	11	12

because of conversion of a small amount of unidentified inactive CO-combining compound to an active form when the blood stands 1/2 to 2 hours. Most older determinations of hemoglobin by saturation with oxygen or carbon monoxide in a tonometer may give results 1-2% high because of drainage errors, and also determinations of oxygen saturation with O2 are thus too low by 1-3%. [15] /3/ Method: gasometric, manometric Van Slyke (later 1 factor) [16], /4/ Cal-11/ Values for pH adjusted to temperature of 370C in accordance with Lines 10, 11, and 12-16, Part I. /2/ Oxygen capacity of hemoglobin: Gasometric culated from whole blood CO2 content (cf Part I, Line 6). /5/ Calculated by method in Part I, Line 7. /6/ At 38°C. /7/ Not calculated; actual value. Singer, R. B., and Hastings, A. B.

1942. [9] Lambertsen, C. J., Emmel, G. L., Cooper, D. Y., Loeschke, H. H., and Kough, R. H., Fed. Proc. 9:73, 1950. [10] Cournand, A., Riley, R. L., Breed, E. S., Baldwin, E. de F., and Richards, D. W., Jr., J. Clin. Invest. 24:106, 1945. [11] Comroe, J. H., Jr., and Greifenstein, F., unpublished. [12] Dill, D. B., Edwards, H. T., and Consolazio, W. V., J. Biol. Chem. 118:635, 1937. [13] Dill, D. B., Wilson, J. W., Hall, F. G., and Robinson, S. 2] Dole, M. W., "The Glass Electrode," New York, 1941. [3] Comroe, J. H., Jr., and Walker, P., Am. J. Physiol. 152:365, 1948. [4] Drabkin, D. L., 1926-27. [7] Robinson, S., Arbeitsphysiologie 10:251, 1938. [8] Gibbs, E. L., Lennox, W. G., Nims, L. F., and Gibbs, F. A., J. Biol. Chem. 144:325, and Austin, J. H., J. Biol. Chem. 98:719, 1932. [5] Drabkin, D. L., and Austin, J. H., Jr., ibid 112:51, 1935-36. [6] Eisenman, A. J., ibid 71:611, ibid 136:449, 1940. [14] D'Elseaux, F. C., Blackwood, F. C., Palmer, L. E., and Sloman, K. G., ibid 144:529, 1942. [15] Roughton, F. J., Am. J. References: [1] Peters, J. P., and Van Slyke, D. D., "Quantitative Clinical Chemistry," vol II, 1st ed., Baltimore: Williams and Wilkins Co., 1932. Physiol. 142:708, 1944. [16] Van Slyke, D. D., and Sendroy, J., Jr., J. Biol. Chem. 73:127, 1927.

Part III: VENOUS BLOOD

Hemoglobin concentration assumed to be 20 mM/L RBC; one mM (single Fe-atom structure, molecular weight 16,500) combines with 22.4 ml of O2, STP tube. Storage (at room temperature): (1) under oil; (2) over mercury; (chilled to less than 50C): (3) under oil; (4) in syringe. Centrifugation: (1) no centrif-= gasometric, manometric Van Slyke (later i factor) [7]; V = gasometric, volumetric Van Slyke [1]. Values in parentheses are ranges, estimate "b" of the electrode, serum or plasma [3]; P = colorimetric, plasma [4]; S = colorimetric, serum [5]; O = gasometric, manometric Van Slyke (original i factor) [6]; sample, and centrifugation. Anticoagulant: (1) none used (serum sample); (2) dry potassium oxalate; (3) mixture of dry oxalate and fluoride; (4) heparin in ugation; (2) oil tube; (3) special stoppered tube; (4) tube, under paraffin. Abbreviations: C = calculated; G = glass electrode, whole blood [2]; H = hydrogen 0.9% NaCl. Drawing of blood: (1) oiled syringe; (2) syringe with dry anticoagulant; (3) syringe with dead space filled with heparin-saline solution; (4) oil when saturated. Handling of blood [1]: The four digits in the code number refer, successively, to anticoagulant, method of drawing blood, storage of 95% range (cf Introduction).

,	Pressure5 Reference		(M)	œ	6	10	11		10	12	13	14	15	16	17
COS	Pressure5	mm Hg	(L)	37.7	45.6	44.4	45.7		46.0			54.6	51.0		
CO ₂ Content	Plasma	mW/L	(K)	23.6(19.7-27.5)7	27.3(24.5-30.1)	28.3(23.7-32.9)	28.610		27.8(27.0-28.6)	27.72	30.8(26.6-35.0)12	30.9(27.7-34.1)13	29.5(26.4-32.6)	23.7(20.7-26.7)14	24.014
	Method		(J)	0	-		н		ч	П	-	0		>	
Oxygen	Saturation4	%	(I)	87			72					55		20	89
Hemoglobin	Adiusted Concentration 2, 3	mM/L	(H)	10.3			8.3					9.3		9.5	8.8
	Adjusted		(2)	7,375	7,380	7.385	7.390		7.360	7.380	7,385	7,330	7,340		
Hď	Ohaerved		(F)	7.400(7.322-7.478)6	7.405(7.355-7.455)6	7.710(7.660-7.760)9	7.390(7.370-7.410)		7.685(7.665-7.705)9		7.410(7.356-7.464)6	7.585(7.513-7.657)9	7.675(7.607-7.753)9		
	Method		(E)	S	I	S	Ö		S	O		۵,	S		
Handling	Jo	Blood	(<u>Q</u>)	1112	1112	1112	3331,	4241	1112	11?2	3124	2113	1112	1412	2211
	Blood		(3)	J	A		Z		A	A	A	A	A	A	A
No.	and	Sex	(B)	400, 9	3058	60°	10 ♂		49	÷8	70,	21 ♂	740	270	€00
	Age		(A)	1-9 da	16-34 yr	20-39 yr	\$ 21-52 yr		22-31 yr	Young adult 89	Adult	Adult	Adult	0 Adult	Adult
				-	2	3	4		S	9	2	00	6	10	11

ration with O2 [1]. /3/ Oxygen capacity of hemoglobin: Gasometric determinations of hemoglobin by saturation with oxygen or carbon monoxide in a tonometer may give results 1-2% high because of drainage errors, and also because of conversion of a small amount of unidentifled inactive CO-combining com-Henderson-Hasselbalch equation (cf Part 1, Line 5). /6/ At 38°C. /7/ Whole blood CO2 content = 19.1 mM/L. /8/ Postpartum, 1-7 months. /9/ At 20°C. /1/ Values for pH adjusted to temperature of 370C in accordance with Lines 10, 11, and 12-16, Part I. /2/ Method: gasometric Van Slyke, tonometer satu-/10/ Calculated from whole blood CO2 content of 24.0 (22.8-25.2) mM/L. /11/ Derived from interpolated CO2 dissociation curve [19]. /12/ Whole blood pound to an active form when the blood stands 1/2 to 2 hours. Most older determinations of oxygen saturation with O2 are thus too low by 1-3%. [18] 14/ Method: gasometric, manometric apparatus [1], except for Line 10. /5/ CO2 pressure at 37°C calculated from adjusted pH and CO2 content by the CO2 content = 26.2(22.4-30.0) mM/L. /13/ Whole blood CO2 content = 26.1(23.5-28.7) mM/L. /14/ Values given are for whole blood CO2 content.

Contributors: Singer, R. B., and Hastings, A. B.

Am. J. Dis. Child. 44:31, 1932. [9] Nice, M., Mull, J. W., Muntwyler, E., and Myers, V. C., Am. J. Obst. 32:375, 1936. [10] Cullen, G. E., and Earle, H. W., ibid 57:533, 1923. [15] Earle, I. P., and Cullen, G. E., ibid 83:539, 1929. [16] Goldschmidt, S., and Light, A. B., Am. J. Physiol. 73:127, 1925. [17] Lennox, W. G., Arch. Int. M. 46:630, 1930. [18] Roughton, F. J., Am. J. Physiol. 142:708, 1944. [19] Eisenman, A. J., J. Biol. Chem. 71:611, 1945. [12] Kydd, D. M., J. Biol. Chem. 91:63, 1931. [13] Van Slyke, D. D., and Sendroy, J., Jr., ibid 79:781, 1928. [14] Cullen, G. E., and Robinson, I. P., J. Biol. Chem. 83:545, 1929. [11] Cournand, A., Riley, R. L., Breed, E. S., Baldwin, E. de F., and Richards, D. W., Jr., J. Clin. Invest. 24:106, Slyke, D. D., and Neill, J. M., ibid 61:523, 1924. [7] Van Slyke, D. D., and Sendroy, J., Jr., ibid 73:127, 1927. [8] Marples, E., and Lippard, V. W., 2] Dole, M. W., "The Glass Electrode," New York, 1941. [3] Van Slyke, D. D., Hastings, A. B., Murray, C. D., and Sendroy, J., Jr., J. Biol. Chem. 65:701, 1925. [4] Cullen, G. E., ibid 52:501, 1922. [5] Myers, V. C., Muntwyler, E., Binns, D., and Danielson, W. H., ibid 102:19, 1933. [6] Van References: [1] Peters, J. P., and Van Slyke, D. D., "Quantitative Clinical Chemistry," vol II, 1st ed., Baltimore: Williams and Wilkins Co., 1932. 1926-27.

78. ACID-BASE BALANCE OF BLOOD: MAN (Continued)

Definitions of acid, base, and buffer base given on Page 95, Table 80, Part 1.

Part IV: CUTANEOUS BLOOD

Cutaneous blood equivalent to arterial in acid-base properties [1]. Blood from fingertip of warmed hand, collected and analyzed by microtechnique of Shock and Hastings [2]. Values in parentheses are ranges, estimate "b" of the 95% range (cf Introduction).

	No.		BBC Wolumo	CO2 Content	int	200	Buffer	
Age	and	pH¹	or votatile	Whole Blood	Plasma ²	CO2 Fressure	Base4	Reference
	Sex		0/	mM/L	mM/L	mm ng	mEq/L	
(A)	(B)	(C)	(D)	(E)	(F)	(9)	(H)	(1)
1 4-6 da5	270,9	7.420(7.314-7.526)	50.8(50.7-50.9)	18.2(14.8-21.6)	22.8	34.2(26,8-41.6)	47.1	
2 4-6 da6	180,9	7.380(7.262-7.498)	50.1(50.0-50.2)	15.3(10.7-19.9)	19.0	31.1(22.3-39.9)	43.1	, ~
3 17-22 yr	123♂	7.415(7.350-7.480)	46.6(44.4-48.8)	22.9(20.5-25.3)	28.0	41.2(34.1-48.3)	50.5	4
4 18-28 yr7	390	7.415(7.362-7.468)	47.5(41.8-53.2)	22.3(19.9-24.7)	27.4	40.3(33.0-47.6)	50.1	ۍ د
5 18-28 yr8	80,	7.370(7.324-7.416)	46.6(42.4-50.8)	21.9(21.1-22.7)	26.8	43.5(37.9-49.1)	48.1	. 40
6 18-28 yr7	179	7.430(7.380-7.480)	41.0(35.2-46.8)	21.9(19.1-24.7)	26.1	37.1(32.5-41.7)	48.4	, (
7 18-28 yr8	\$2	7.390(7.360-7.420)	38.0(35.0-41.0)	21.9(19.9-23.9)	26.0	40.4(37.5-43.3)	46.9	, LC1
8 40-49 yr	100	7.400(7.360-7.440)	47.8(34.4-61.2)	22.6(19.4-25.8)	27.8	42.2(34.0-50.4)	50.0	9
9 50-59 yr	260	7.395(7.323-7.467)	44.1(36.9-51.3)	22.2(18.6-25.8)	26.8	41.2(32.2-50.2)	48.7	9
10 60-69 yr	540	7.395(7.348-7.442)	44.8(38.7-50.9)	22.3(18.0-26.6)	27.0	41.5(32.7-50.3)	49.0	9
11 70-79 yr	450	7.385(7.312-7.458)	43.4(37.1-49.7)	22.3(19.4-25.2)	26.8	42.0(34.7-49.3)	48.5	9
12 80-89 yr	170	7.385(7.307-7.463)	41.5(35.7-47.3)	22.2(17.8-26.6)	26.4	41.5(33.1-49.9)	47.9	9

lated from Henderson-Hasselbalch equation with constants from Part I, Lines 4 and 5. /4/ Calculated by method in Part I, Line 7. /5/ Breast-fed infants. /6/ Infants on evaporated milk formula. /7/ Subjects seated and at rest; samples drawn at any time of day without control of previous activity. /8/ Subjects /1/ Observed at 38°C but adjusted to 37°C by adding 0.015 (cf Part 1, Line 10). /2/ Calculated from whole blood CO2 content (cf Part 1, Line 6). /3/ Calcustudied by successive daily samples drawn before breakfast and after one-half hour of physical rest.

Contributors: Singer, R. B., and Hastings, A. B.

References: [1] Singer, R. B., Shohl, J., and Bluemle, D. B., Clin. Chem. 1:287, 1955. [2] Shock, N. W., and Hastings, A. B., J. Biol. Chem. 104:565, 1934. [3] Singer, R. B., unpublished. [4] Hamilton, J. A., and Shock, N. W., Am. J. Psychol. 48:467, 1936. [5] Shock, N. W., and Hastings, A. B., J. Biol. Chem. 104:585, 1934. [6] Shock, N. W., and Yiengst, M. J., J. Geront. 5:1, 1950.

Part V: SUMMARY: BLOOD, ADULTS

Values in parentheses are ranges, estimate "b" of the 95% range (cf Introduction).

	lood	ase	_		521	(20)		531	511
	Whole Blood	Buffer Base	m.F.o./I.	(K)	48 4/46	10:11		50 1/47	48.0(45-
	CO,	Pressure	mm Hø	(I)	41 6(35-47)	/ 11 - CC \ 2 - 11		41 3(34-48) 50 1(47-53)	38.1(33-43) 48.0(45-51)
		ma	vol %	(1)	60 0/56-6414	66.0(58-73)	61 2(56-71)	(1, 00)=:10	
	ntent	Plasma	mM/L	(H)	49.5(45-53) 26 9(25-29)4 60 0(56-64)4 41 6(35-47) 48 4(46-52)	54 4(47-62) 29 6(26-33) 66 0(58-73)	27.5(25-32) (61.2(56-71)		
	CO ₂ Content		vol %	(5)	49.5(45-53)	54 4(47-62)		50.5(45-56)	48.8(43-55)
		Whole Blood	mM/L	(F)	22.2(20-24)	24.4(21-28)	()	22.7(20-25)	7.42(7.36-7.48) 40.1(34-46) 21.9(19.5-24.5) 48.8(43-55)
	Hematocrit	Value	%	(E)				46.9(42-52)	40.1(34-46)
	-	Colonimetric	7 11000	(Q)				7.41(7.35-7.47) 46.9(42-52) 22.7(20-25)	7.42(7.36-7.48)
	Hd	Blood or	Plasma	(B) (C)	7.39(7.34-7.44)	118-125 7.35(7.28-7.42)	7.38(7.31-7.45)		
	No.	pure	Sex	(B)	153-2770	118-125♂	42\$	180 ♂	249
		Blood		(A)	Arterial2, 3	Venous		Cutaneous	
-					-	7	3	4	5

/1/ Sitting position. /2/ Hemoglobin content (recumbent position) = 8.95(7.7-10.3) mM/L or 15.0(13-17) g/100 ml. /3/ RBC CO₂ content (calculated, in part, from whole blood CO₂ content) = 16.4(14.5-18.5) mM/L or 36.5(32-41) vol %. /4/ Calculated, in part, from whole blood CO₂ content.

Contributors: Singer, R. B., and Hastings, A. B.

Part VI: PHYSIOLOGICAL VARIABILITY

B = basal; 1/2 H-R = 1/2 hour rest; B-R = bed rest; S-R = short rest; U = uncontrolled; P-I = premature infant; F-I = full-term infant; N-C = normal children; Representative control values given for arterial, cutaneous, or venous blood, and for alveolar CO2 pressure. Conditions underlined are the factors varied. Control value of reference series is not always the same as the control value in table. Abbreviations: R = reclining; S = sitting; St = standing; Sp = supine; A-P = to age of puberty; Sl = sleeping; S-D = standard deviation; B-M = before menstruation; F-M = after menstruation; A-C = antecubital; I-J = internal Change from control value due to physiological variable indicated by +, -, or 0, with actual value for amount of change given where data are available. ingular; E-J = external jugular; F = femoral; D-H = dorsal hand; A = arterial; C = cutaneous; V = venous.

	Reference	(P)		B-F,H-M,a b;N,O,1	B-D,J-M,O	B-D,J-M,O,	B-D,J-M,O, 2;H,I,4	B-D,G,H, J-M,5;1,6	B-D,G,J-M,	a,b;1,6 B-D,G,J-M,	a, b;1,6 B-D,G,J-M,	a, b; 1, 6 B-D, G, J-M,	B-H,J-M,7;	B-F,H-M,8	B-F,H-M,9;	N,O,1	B-F,H-M,9; N,O,1	B-F,H-M,9 B-F,H-M,	10 B-M,10;N, O,11
r Air	pCO2 mm Hg	(0)		42.9	8.0-	-2.7	-3.7						-2.4		42.9		-2.1		+6.2
Alveolar Air	Subjects no.	(N)		40									507		408	0	328		89
Calc	(BB)p mEq/L	(M)		48.4	+	+0.24	+0.44	α0 1	•	1	,	1	-2	-2	48.1		-1,2	+2.0	0
Adineted	pCO ₂ mm Hg	(L)		41.6	-0.8	-2.7	-3.7	4-	1	1	ı	ı	-2.4	-1.5	43.5		-3.1	-3.2	80 +
	Blood CO ₂ mM/L	(K)		22.2	ć	٥-	6-	9-	1	ŀ	1	1	- 1	-0.4	21.9		0	+0.4	+2
	Adjusted pH	(J)		7.39	6	¢	٥.	-0.09	٥-	6-	٥.	٥-	0	+0.02	7.37		+0.02	+0.04	-0.03
	Hb mM/L	(3)		9.01		+0.33	+0.6	-0.55	+1.8	-0.6	-1.9	-1.5	96.0-	-0.8	9.33		-1.73	+0.23	41
	Subjects no.	(H)		259		45	162	12					1.1	41	00		7	39	
	Other	(5)	Arterial Blood					P-I	F-1	F-1	F-1	N-C	A-P		Cutaneous Blood				SI
tion	Activity	(F)	Arte	В) had	Н.	Н			В	1/2 H-R	Cutar 1/2 H-R		1/2 H-R	U B-R	
Conditions of Observation	Time	(E)		AM				Day	Day	Day	Day	Day	Day	Day	8-9 AM		8-9 AM	9 AM-5 PM 10 AM-4 PM	12 PM-6 AM B-R
ondition	Sex	(D)		٥	of or 9	o' or 9	o' or 9	o'or o	of or 9	0'0r9	of or 9	o' or 9	dor 9 Day	ס	0)	0+1	ל ל	ď
0	Age	(C)		15-50 yr	Adult	Adult	Adult	3-45 da	0-13 da	2-13 wk	3 mo-2 yr	2-6 yr	8-15 yr	50-81 yr	16-28 vr	75 02 04	16-28 yr	16-28 yr Adult	Adult
	Posture	(B)		Sp	21	ωI	St	Sp	Sp	Sp	Sp	Sp	Sp	Sp	S	2	S	Sp	Sp
Control	or Factor J	(A)		1 Control	Posture			Age							Control		Sex	Time of day	
				-	2	3	4,	50	٥	7	00	6	10		12		13	15	16

mM/L. /4/ Calculated from the change in hemoglobin concentration by the formula $\Delta(BB)_b = 0.6\Delta(Hb)$, for average pCO2 and pH. /5/ Change assumed from /1/ Value for 153 subjects. /2/ For hemoglobin only. /3/ Calculated from hematocrit value, assuming hemoglobin concentration in the RBC to be 20 known variation of hemoglobin with age. 16/ Change for subjects 6-14 yr old. 17/ Average age = 11½ yr. 18/ Posture of subjects, supine; activity,

78. ACID-BASE BALANCE OF BLOOD: MAN (Concluded)

Definitions of acid, base, and buffer base given on Page 95, Table 80, Part I.

Part VI: PHYSIOLOGICAL VARIABILITY (Concluded)

B = basal; 1/2 H-R = 1/2 hour rest; B-R = bed rest; S-R = short rest; U = uncontrolled; P-I = premature infant; F-I = full-term infant; N-C = normal children; Representative control values given for arterial, cutaneous, or venous blood, and for alveolar CO2 pressure. Conditions underlined are the factors varied Control value of reference series is not always the same as the control value in table. Abbreviations: R = reclining; S = sitting; St = standing; Sp = suplne; A-P = to age of puberty; Sl = sleeping; S-D = standard deviation; B-M = before menstruation; F-M = after menstruation; A-C = antecubital; 1-J = internal Change from control value due to physiological variable indicated by +, -, or 0, with actual value for amount of change given where data are available. jugular; E-J = external jugular; F = femoral; D-H = dorsal hand; A = arterial; C = cutaneous; V = venous.

lanter O		10	Conditiono	ne of Observation	ation					Whole			Alveolar Air	r Air	
Control		ز	OTITOUG		atton.				A 11 A 12	7	Adjusted Calc.	Calc.			
or							Subjects		Adjusted Blood	D0012	pCO ₂	_	Subjects	pCO ₂	Subjects pCO ₂ Reference
Factor	Posture	Age	Sex	Time	Activity	Other	no.	mw/L	hd	202 M / I	mm Hg mEq/L	mEq/L	no.	mm Hg	
Varied										7/11/11		1000	(10.1)	100	101
(A)	(B)	(C)	<u>Q</u>	(E)	(王)	(O)	(H)	Ξ	(5)	(K)	(1)	(IMI)	(N)	5	(1)
					Jutaneous	Cutaneous Blood (concluded)	ded)			1			_		
Day to	S	16-28 yr	ď	8-9 AM	1/2 H-R S-D9	S-D9	00	+1	±0.0410 ±1.010 ±4.710	±1.010	±4.710	#			B-M,9
dav	S	16-28 vr	OH	8-9 AM	1/2 H-R S-D9	S-D9	7	+1	+0.0710	±1,710	±4.810	#	c		B-M,9
vari-	Sp	27 yr	O+	AM	S-R	8-10 da B-M			+0.03	711	-4.7	ı	100	-4.7	B-H,J-O,
ability					Ç				-	211	. 2 7		18	-2.7	12 R-H.J-O.
	Sp	27 yr	O+	8 AM	۲-۲	1-13 da r-ivi			10.01		;		4		12
					Ve	Venous Blood									
Control	Sp	116-50 vr11	0	Day	1/2 H-R A-C	A-C	09	68%12	7.36	23.9	50	49			B-M,13
Vein	Sp	18-50 vr	0	Day	1/2 H-R 1-J	1-7	09	-5%12	1	+0.8	+				B-L,13
nsed	Sp	16-50 yr	ď	Day	1/2 H-R E-J	E-J	40	+19%12	+	-0.7	1	0			B-M,13
3	d.S.	16-50 vr	ъ	Day	1/2 H-R F	Ĺ		+2%12	0	+0.1	+	0			B-M,13
	ř c	20-50 vrll	. 0	Day	1/2 H-R D-H	р-н	33	+18%12	+	-1.4	-	0			B-M,14
Temper-		20-50 vr11	0	Day	1/2 H-R	1/2 H-R A-C, 28°C	15	+5%12	+	-0.3	1	0			B-M,14
o time		20-50 vrll	ъ	Dav	1/2 H-R	1/2 H-R A-C, 230C	15	-4%12	1	+0.2	+	0			B-M,14
7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7		Adult	ď	Day	1/2 H-R	1/2 H-R D-H, 45°C	4	+30%12	+0.03	-2.2	σο 1	0			B-M,15
				,											

subjects. /10/ Standard deviation of the distribution of the group of standard deviations about the standard deviation: Lines 17 and 18, Column J = ±0.02; Lines 17 and 18, Column K = ±0.2; Line 17, Column L = ±0.7; Line 18, Column L = ±1.0. /11/ Possibly negative change. /12/ Oxygen saturation. /8/ Posture of subjects, supine; activity, basal. /9/ Values in Lines 17 and 18, Columns I-M, are group means of the standard deviation values for all

Contributors: (a) Singer, R. B., and Hastings, A. B.

References: [1] Shock, N. W., Am. J. Physiol. 133:610, 1941. [2] Rahn, H., in "Methods in Medical Research," (Comroe, J. H., Jr., ed.), vol II, p 223. Chicago: Yearbook Publishers, 1950. [3] Maxfield, M. E., Bazett, H. C., and Chambers, C. C., Am. J. Physiol. 133:128, 1941. [4] Waterfield, R. L., J. Physiol., Lond. 72:110, 1931. [5] Wilson, J. L., Reardon, H. S., and Murayama, M., Pediatrics, Springf. 1:581, 1948. [6] Drabkin, D. L., unpublished. [7] Robinson, S., Arbeitsphysiologie 10:251, 1938. [8] Comroe, J. H., Jr., and Greifenstein, F., unpublished.

79. ACID-BASE BALANCE OF BLOOD: VERTEBRATES

means of Henderson-Hasselbalch equation; value of pK'₁ increases 0.005 per ^OC decrease in temperature, and fCO₂ is assumed to increase proportionately as it does in pure water. The following values of pK'₁ and fCO₂ were used at temperatures other than 38°C: 5°, 6.26 and 0.0864; 10°, 6.24 and 0.0697; 20°, 6.19 and 0.0434; 34°, 6.12 and 0.0357; 40°, 6.09 and 0.0313; 42°, 6.08 and 0.0303. Abbreviations: A = arterial; H = heart; M = mixed pH adjusted to body temperature by applying correction of -0.015 per OC temperature difference (cf Table 78, Part I, Line 10). CO2 pressure calculated by arterial and venous; V = venous. Values in parentheses are ranges, estimate "b" or "c" of the 95% range (cf Introduction).

ar	מז וכו זמן מווח גבווסחם)		conorda.	Whole Blood	000		hole Blood	70	Plasma	Plasma	COTO		
	Animal	Body	Body Temp Blood	Ω	Hemo-RBC	RBC	00	CO ₂ Pressure	Na+	CI-	Н2О	Pro-	Reference
		<u>ن</u>		•	mM/L		mM/L	mm Hg	mEq/L	mEq/L	g/L	g/L	
	(A)	(B)	(C)	(D)	(E)	(F)	(B)	(H)	(I)	(3)	(K	3	(M)
							Ma	Mammals					
7	Man, adult male	37	A	7.39(7.33-7.45)b	9.0	45	27.0(25-29)b	42(36-47)b	42(36-47)b 138(132-144)b 102(97-108)b	102(97-108)b	940	89	B-D,G-J,1;E,K,L,2
2	Cat	38.6	M	7.35(7.24-7.40)c			20.4(17-24)b	36	153(150-156)b	153(150-156)b 120(117-123)b	941		B,3;C-K,4
3	Anesthetized	38.6	>	7.28(7.18-7.35) ^C	6.8	40	21.8(19-25)c	45(34-52)C		108(105-111)c	942	92	B,3;C,D,G-K,5;E,F,6;L,7
4		38.5	A	(7,35-7,50) ²	7.0	40					930	83	B.C.3:D.8:E.F.9:K.a:L.7
5	Dog	38.9	А	7.36(7.31-7.42)c	0.6	46	21.4(17-24)c	38	147(140-154)b	147(140-154)b 114(108-119)b	941	29	B.10; C.D.G.H.10-12; E.F.6;
	D												1-K,13;L,7
9	Dolphin		H	7,38		4.	30.9		153(149-155)c 110(105-115)c	110(105-115)c		7.8	C-L,14
7	Guinea pig	38.6	Н, А	7.35(7.17-7.55)c	8.7	45	22.0(16-26) ^{c3}	40(19-59)c	141(138-144)C	22.0(16-26) ^{C3} 40(19-59) ^C 141(138-144) ^C 104(100-108) ^C	954	47	B-D,G,H,16;E,F,6;I,J,15;K,a;
	Hamster												ì
00		38	И, V	7.39(7.37-7.44)C	8.4	46	37.3(35-39) ^C	59(54-61) ^C	144(140-151)c	59(54-61)° 144(140-151)° 106(103-108)° 945	945		B-D,G,H,17;E,F,9;I,J,15;K,a
6	Hibernating	5	H. V				42.4(35-50)c	32(26-42)C					B-H.17
10	H	37.8	>	(7.20-7.55) ^C	6.8	33	28.1(24-32)c	47	135	96	931	89	B-D,3;E,F,9;G,18;H,a;l-K,19;
													L,7
11	Rabbit	39.4	A	7.35(7.21-7.57) ^C	7.2		22.8(13-33) ^{c3}	40(22-51) ^C	22.8(13-33)c3 40(22-51)c 140(139-142)c 102(99-105)c	102(99-105)c	944		B,C,3,16;D,G,H,16,20;E,F,1,J,
12		39 6	НА	7 3217 30-7 361C		42	18 0/11-26103	33/20-481C	18 0(11-26)C3 33(20-48)C 138(122-144)C 104(84-110)C	104/84-1101C		62	B-M 2)
4 -	44	20.0	4 7 ° 7 ° V	7 35/7 26 7 441b	0	744	24 07 0 29 th	42	133(122-133) 134(34-113)	d(511-10)	0.46	7 0	D-16.5 D C 1 22 23.E E 6.V
13		7000	4	(**.)-07:))66:)	7.0	*		٠ ۲	-(cc1-cc1)**1	-(711-66)701	0 7 6	00	D, 10; C, D, G-3, 24, 23; E, F, 9; N, 22; L, 7
14		38.0	А	7.38(7.31-7.45)b			20.8(14-28)b	34	135(130-140)b 102(97-107)b	102(97-107)b			B-J,24
15	Sheep	39.1	>	7.44(7.32-7.54) ^C	9.7	32	26.2(21-28)c	38	153(146-161) ^C 103(98-109) ^C	103(98-109)c	947	57	B,3;C,D,G-J,25;E,F,9;K,a;L,7
16	Sq		I	7.43(7.38-7.52)c		53	20.5(18-23)c5						B-G,26
17	Hibernating	10	H	7.10(7.01-7.20) ^C		58	38.6(33-40) ^C	5					B-G,26
	-						20	S					
00	Chicken	41.7	>	7.54(7.45-7.63)c	6,8	32	23.0(21-26) ^c	92	154(148-161) ^C	154(148-161)c 117(109-120)c 960	096	36	B,C,3;D,27;E,F,9;G,28;H,K,a; I,J,15;L,7
							Re	Reptiles					
19	Alligator7	2		7.74	4.2	25	36.1	15		110	958	41	B-J, L, 29; K, a
20		92			4.3	22	23.5(15-40) ^c	38	154(146-162)C 107(83-128)C	107(83-128)c	952	20	B-J,L,30;K,a
21		34	_	_	5.4		19.8			105	954	46	B-J, L, 29; K, a
22		97	H, M	7.26(6.93-7.63)c	4.2	87			157(139-186)c	157(139-186)c 127(113-133)c	958	41	B-J,L,31;K,a
23	Iguana, black	56	H, M	7.22(7.05-7.42)c	3.6	35			159(158-163)c	159(158-163)c 133(128-137)c	076	89	B-J, L, 32; K, a
24	Iguana, common	92	H, M	7.48(7.38-7.57) ^C	4.2	30	24.4(15-33)c	27	157(142-165)c	157(142-165)c 118(110-124)c	952	20	B-J, L, 32; K, a
1	10 1 10 1 10	-			7	1 - 1	4					1-1	10 / October 1

/1/ Homoiothermic, body temperature relatively independent of environmental temperature except in hibernating animals. /2/ Venous blood. /3/ Calculated temperature. When temperature is decreased, pH and CO2 solubility coefficient increase, and oxygen dissociation curve is shifted to left. /7/ The alligator base balance from one laboratory series to another. /5/ Values for whole blood. /6/ Poikilothermic, body temperature closely dependent on environmental from whole blood CO2 content, pH and hemoglobin by means of nomogram of Singer and Hastings [41]. /4/ The rat sometimes varies significantly in acidshows a marked variation, between individuals and within the same individual at different seasons, and a prolonged and extreme "alkaline tIde" following meals [42].

79. ACID-BASE BALANCE OF BLOOD: VERTEBRATES (Concluded)

means of Henderson-Hasselbalch equation; value of pK'₁ increases 0.005 per ^oC decrease in temperature, and fCO₂ is assumed to increase proportionately as it does in pure water. The following values of pK'₁ and fCO₂ were used at temperatures other than 38°C: 5°, 6.26 and 0.0864; 10°, 6.24 and 0.0697; 20°, 6.19 and 0.0508; 26°, 6.16 and 0.0434; 34°, 6.12 and 0.037; 40°, 6.09 and 0.0313; 42°, 6.08 and 0.0303. Abbreviations: A = arterial; H = heart; M = mixed pH adjusted to body temperature by applying correction of -0.015 per OC temperature difference (cf Table 78, Part 1, Line 10). CO2 pressure calculated by arterial and venous; V = venous. Values in parentheses are ranges, estimate "b" or "c" of the 95% range (cf Introduction).

		Reference	(M)		1 22	46 B-L,33	B-J,34		35,137, 37, 137, 107, 104, 107, 106, 107, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10	J,37	B-K,38	254(219-289)c 255(230-285)c 967 27 B-H,L,39;1,J,40;K,a	B-K,38	20 Trant When temperature is decreased, pH and	•
		H2O tein g/L g/L	(K)		1	47			42			27		nen te	
		H20 g/L	(K)			_			957		951	196	955	×	
		CI- mEq/L	(3)	(0)		130(122-143) ^C	92(80-100)c		107/06-12110	- 121-06101	147	255(230-285)c	140	1 temperature	t in the second second
Plasma		Na ⁺ mEq/L	(1)	1	(p.	156(143-169)c 130(122-143)c	125(114-135)c 92(80-100)c		3/661 761/000	130(126-137)		254(219-289)C		- tuo ou ou in ou	n environment
		CO ₂ Pressure mm Hg	1	=	Reptiles (concluded)			Eigh6	Tier	22	vo		0.05	7.0	dependent o
		Hemo-RBC CO ₂ Content globin Vol mM/L		(5)	Reptile	J171 617 /	28 0.0(3-10)° 25 24 4(18-32)C	1 2 2 1 2 2 2 3		17.7(14-22) ^C	75.0	39 13,55	5.5	35 9.55	ature closely
		RBC Vol		(F)		000	97	67		31		39	07	35	nper
	poo	Hemo-RBC globin Vol		(E) (F)						6.4	,		2.7 20 3.5		body ter
	Whole Blood	Hd		(D)			7.25(7.12-7.50) ^C	7.65(7.50-8.10)		20 H, V 7.39(7.33-7.45)c 6.4 31 17.7(14-22)c 22			7.82		Poikilothermic.
		lood		(2)	5		I	7		I, V		_		7	141
		Body Temp Blood oC		(5)	(a)			26		20 F		15	10.4 A	15	Plond.
		Animal			(A)		25 Snake	26 Turtle		27 Carp			29 Skate	Tront	TT CONT
							25	26		27		28	53	30	3

75/ Values for whole blood. /6/ Poikilothermic, body temperature closely dependent on CO₂ solubility coefficient increase, and oxygen dissociation curve is shifted to left.

W. M., ibid 167:665, 1951. [23] Cooke, R. E., Coughlin, F. R., Jr., and Segar, W. E., J. Clin. Invest. 31:1006, 1952. [24] Smith, P. K., and Smith, A. H., [37] Vars, H. M., ibid 105:135, 1934. [38] Ferguson, J. K., and Black, E. C., Biol. Bull. 80:139, 1941. [39] Dill, D. B., Edwards, H. T., and Florkin, M., ibid 62:23, 1932. [40] Hartman, F. A., Lewis, L. A., Brownell, K. A., Hernandez, T., and Walther, R. F., Physiol. Zool. 14:476, 1941. [41] Singer, R. B., and Hastings, A. B., Medicine, Balt. 27:223, 1948. [42] Coulson, R. A., Hernandez, T., and Dessauer, H. C., Proc. Soc. Exp. Biol. 74:866, 1950. Auvergnat, R., and Lecondat, M., C. rend. Acad. sc. 215:92, 1942. [36] Field, J. B., Elvehjem, C. A., and Juday, C, J. Biol. Chem. 148:261, 1943. Inc., 1947. [4] Yannet, H., J. Biol. Chem. 136:265, 1940. [5] Wallace, W. M., and Hastings, A. B., ibid 144:637, 1942. [6] Albritton, E. C., "Standard Values in Blood," Philadelphia: W. B. Saunders Co., 1952 (Table 42). [7] Albritton, E. C., ibid (Table 72). [8] Krapf, W., Jahrber. Vet. Med. 67:326, 1940. [9] Albritton, E. C., "Standard Values in Blood," Philadelphia: W. B. Saunders Co., 1952 (Table 43). [10] Dill, D. B., Edwards, H. T., Florkin, M., and Campbell, R. W., J. Biol. Chem. 95:143, 1932. [11] Bennett, M. A., ibid 69:675, 1926. [12] Harkins, H. N., and Hastings, A. B., ibid 90:565, 1931. [13] Mellors, R. C., Muntwyler, E., and Mantz, F. R., ibid 144:773, 1942. [14] Eichelberger, L., Fletcher, E. S., Jr., Geiling, E. M., and Vos, References: [1] Albritton, E. C., "Standard Values in Blood," Philadelphia: W. B. Saunders Co., 1952 (Table 97). [2] Dill, D. B., Wilson, J. W., Hall, F. G., and Robinson, S., J. Biol. Chem. 136:449, 1940. [3] Dukes, H. H., "Physiology of Domestic Animals," 6th ed., Ithaca: Comstock Publishing Co.. C. P., and Hastings, A. B., Am. J. Physiol. 167:633, 1951. [18] Ijichi, N., J. Jap. Soc. Vet. Sc. 1:76, 1922. [19] Van Slyke, D. D., Hastings, A. B., Murray, C. D., and Sendroy, J., Jr., J. Blol. Chem. 65:701, 1925. [20] Young, I. M., Am. J. Physiol. 170:434, 1952. [21] Cole, W. H., Allison, J. B., Murray, C. D., and Sendroy, J. A., and Leathem, J. H., ibid 141:165, 1944. [22] Cotlove, E., Holiday, M. A., Schwartz, R., and Wallace, B. J., Jr., ibid 133:145, 1940. [15] Hernandez, T., and Coulson, R. A., unpublished. [16] Hawkins, J. A., J. Biol. Chem. 61:147, 1924. [17] Lyman. J. Biol. Chem. 107:673, 1934. [25] Denton, D. A., Wynn, V., McDonald, I. R., and Simon, S., Acta med. scand. 140:(suppl.)261, 1951. [26] Stormont, [28] Ackerson, C. W., Blish, M. J., and Mussehl, F. E., J. Biol. Chem. 63:75, 1925. [29] Dill, D. B., and Edwards, H. T., J. Cellul. Physiol. 6:243, 32] Hernandez, T., and Coulson, R. A., ibid 76:175, 1951. [33] Dessauer, H. C., and Fox, W., unpublished. [34] Williams, J. K., unpublished. R. T., Foster, M. A., and Pfeiffer, C., Proc. Soc. Exp. Biol. 42:56, 1939. [27] Johnson, E. P., and Bell, W. B., J. Infect. Dis. 58:342, 1936. 1935. [30] Coulson, R. A., Hernandez, T., and Brazda, F. G., Proc. Soc. Exp. Biol. 73:203, 1950. [31] Dessauer, H. C., ibid 80:742, 1952. Contributors: (a) Singer, R. B., (b) Irvin, J. L., (c) Hernandez, T.

80. ACID-BASE IMBALANCE OF BLOOD: MAN

Part 1: DEFINITIONS

For a thorough consideration of the physicochemical laws, the physiological regulations, and the pathological states pertaining to acid-base disturbances in man, refer to the classic work of Henderson [1], Peters and Van Slyke [2], and to material of more recent date [3-6]. Definitions apply to Tables 78-80.

	Term	Definition
	(A)	(B)
-	Acid	A chemical compound capable of dissociating in solution to form H ⁺ ions and negatively charged ions (anions), e.g., HCl (strong acid), H2CO ₃ (weak acid).
7	Base	A chemical compound capable of neutralizing an acid or dissociating in solution to form OH ⁻ ions and positively charged ions (cations), e.g., NaOH (strong base), NH4OH (weak base), NaHCO ₃ (buffer salt, neutralizes strong acids). This definition
		avoids the undesirable past usage, in acid-base literature, of "base" as synonynous with "cation", and also the more modern but confusing Bronsted definition of base as an H ⁺ acceptor (e.g., the anion HCO3 ⁻ would be called a "base") [7].
m	3 Buffer base	Biological buffer salts capable of neutralizing strong acids; in bloodthe appropriate fraction of total cation and equivalent buffer anions, chiefly bicarbonate, hemoglobinate, and proteinate.
4	4 Acidosis	An abnormal condition caused by the accumulation in the body of an excess of acid, or the loss from the body of base [2].
2	5 Alkalosis	An abnormal condition caused by the accumulation in the body of an excess of base, or the loss from the body of acid [2].
9	6 Respiratory factor	If the acid concerned in the disturbance is H ₂ CO ₃ , the acidosis or alkalosis may be called "respiratory." The best index for this factor is the CO ₂ pressure, pCO ₂ of arterial or cutaneous blood, which is normally equal to the pCO ₂ of alveolar air.
		It can be calculated from plasma pH and total CO2 by the Henderson-Hasselbalch equation (Page 86, Table 78, Line 5), or
		measured directly. Venous pCO2 is less desirable because of variability of arterio-venous difference of 2-10 mm or
7	Metabolic factor	If a base or some acid other than H2CO3 is concerned in the disturbance, the acidosis or alkalosis may be called "metabolic."
		A satisfactory quantitative index for this factor is the whole blood builer base concentration if 19, or the prasma breatbonate concentration is not satisfactory because it also varies with pCO ₂ ,
		the respiratory factor [1, 2, 5]. The plasma CO2 combining power, still widely used, is even less satisfactory because it
		does not measure directly any variable in blood or plasma [2, 5, 8]. Builer base can be calculated from pri, total CO2, hemoglobin, and plasma protein (Page 86, Table 78, Line 7), or taken from a nomogram [5].
00	Compensation	In blood, pCO ₂ and buffer base can be regarded as independent variables sufficient to define the state of acid-base balance. The pH and total CO ₂ or bicarbonate, usually the variables determined, are better regarded as dependent variables. A
		primary disturbance in one factor, pCO2 or buffer base, usually results in compensation, one manifestation of which is a
		change in the other factor in such a way that the pH is returned toward, but not necessarily to, the normal range (Page 98, Part IV).

Contributor: Singer, R. B.

References: [1] Henderson, L. J., "Blood, A Study in General Physiology," New Haven: Yale Univ. Press, 1928. [2] Peters, J. P., and Van Slyke, D. D., "Quantitative Clinical Chemistry," vol 1, 1st ed., Baltimore: Williams and Wilkins Co., 1931. [3] Shock, N. W., and Hastings, A. B., J. Biol. Chem. 112:239, 1935. [4] Shohl, A. T., "Mineral Metabolism," New York: Reinhold Publishing Co., 1939. [5] Singer, R. B., and Hastings, A. B., Medicine, Balt. 27:223, 1948. [6] Elkinton, J. R., and Danowski, T. S., "The Body Fluids," Baltimore: Williams and Wilkins Co., 1948. [8] Davenport, H. W., "The ABC of Acid-Base Chemistry," Chicago: Univ. of Chicago Press, 1950.

80. ACID-BASE IMBALANCE OF BLOOD: MAN (Continued) Part II: NORMAL IONIC PATTERNS, ARTERIAL BLOOD

Buffer base = the appropriate fraction of total cation and its equivalent amount, the labile fraction of total anions, i.e., proteinate, bicarbonate, oxyhemomale, based on the literature. X = undetermined anion residue. "HbO2" includes such other RBC buffer anions as organic phosphate. Whole blood pll = Diagram is Included at this point for use in conjunction with classification of acid-base disturbances (Part III on facing page). Values shown are for adult plasma pH. pCO2 = CO2 partial pressure or tension. B+ = mEq total cation (Na+, K+, etc.) in one liter blood, on basis of hematocrit value of 45% RBC. globinate, organic phosphate, and other RBC buffer anions.

80. ACID-BASE IMBALANCE OF BLOOD: MAN (Continued)

Part III: CLASSIFICATION

Ranges for acid-base variables, as reported in the literature or inferred from related observations, for adult arterial or cutaneous blood. See also normal values (Pages 88 and 90, Table 78, Parts II and IV) and Acid-Base Pathways (Page 98, Part IV). Limits given are approximate; designation underlined is the best index for existence of the given condition.

		Buffer Basel	CO2 Pressure	Bicarbonate2	Hd
	Condition	mEq/L	mm Hg	mEq/L	at 37°C
	(A)	(B)	(0)	(Q)	(E)
~	Normal, arterial or cutaneous blood	46-52	35-45	24-28	7.35-7.45
2	Metabolic acidosis (acid excess or base deficit)	Always low 20-46	Usually low 15-35	Usually low 4-24	Usually low 6.8-7.35
3	3 Respiratory acidosis (H2CO ₃ excess)	Normal or high 46-70	Always high 45-100+	Usually high 28-45	Usually low 7.0-7.35
4	Metabolic alkalosis (base excess or acid deficit)	Always high 52-75	Normal or high 35-55	Usually high 28-50	Usually high 7.45-7.65
'n	Respiratory alkalosis (H2CO3 deficit)	Normal or low 40-52	Always low 10-35	Usually low 15-24	Usually high 7.45-7.70
9	Mixed acidosis (combination Lines 2 and 3)	Always low 25-45	Always high 45-100	Variable 10-35	Always low 6.8-7.35
7	7 Mixed alkalosis (combination Lines 4 and 5)	Always high 52-70	Always low 15-35	Variable 20-45	Always high
00	Mixed "hypercapnia" (combination Lines 3 and 4)	Always high 52-75	Always high 45-100	Always high 30-50	Variable 7.3-7.6
6	Mixed "hypocapnia" (combination Lines 2 and 5)	Always low 20-46	Always low 10-35	Always low 4-22	Variable 7.0-7.6

11/ Buffer base for whole blood of normal hemoglobin concentration = 15 g/100 ml. A decrease in buffer base of whole blood is almost always accompanied by a decrease in plasma or extracellular Na+ relative to Cl- + X-, e.g., decrease in (Na+)p, increase in (Cl-)p or (X-)p, or any appropriate combination. An increase in buffer base of whole blood is accompanied by an increase in Na+ relative to Cl- + X-, e.g., increase in (Na+)p, decrease in (Cl-)p, or any appropriate combination. See normal values in diagram on facing page. /2/ Comprises about 90-98% of total CO₂ in plasma, average 95%.

Contributor: Singer, R. B.

References: [1] Peters, J. P., and Van Slyke, D. D., "Quantitative Clinical Chemistry," vol 1, 1st ed., Baltimore: Williams and Wilkins Co., 1931. [2] Singer, R. B., and Hastings, A. B., Medicine, Balt. 27:223, 1948.

Part IV: PATHWAYS

Any point on this acid-base diagram [1] gives simultaneously occurring values of four variables: (1) whole blood buffer base (BB)_b, the metabolic factor in the disturbance; (2) CO_2 pressure (pCO₂), the respiratory factor; (3) plasma CO_2 content; and (4) pH. The scale of (BB)_b is strictly accurate only for oxygenated human blood at 37°C having a hematocrit value of 45% or hemoglobin concentration of 15 g/100 ml. The width of the buffer base bar corresponds to the "normal" range of arterial pCO₂ selected, namely, 35-45 mm Hg. Similarly, the width of the pCO₂ bar is the normal range for (BB)_b, from 46-52 mEq/L. The heavy arrows represent typical average pathways of the four principal types of acid-base disturbance (Part II). They are based on observations of the contributor and colleagues [1-4], but are representative of similar clinical data in the literature. In metabolic acidosis, respiratory compensation is almost always present [2]; in metabolic alkalosis, respiratory compensation is frequently absent, especially under clinical conditions [3, 4]. In acute, experimental, respiratory disturbances the pathways are in the horizontal pCO₂ bar, with virtually no change in (BB)_b [5]. The four mixed types of acid-base disturbance are not shown on the diagram, but the possible areas may be located from the classification in Part III. Examples of these disturbances are mixed acidosis in thoracic surgery under ether anesthesia [6], mixed alkalosis in many dyspneic patients with congestive heart failure [7], mixed hypercapnia in some cases of cor pulmonale [4], and mixed hypocapnia in severe salicylate intoxication [2].

Contributor: Singer, R. B.

References: [1] Singer, R. B., Am. J. M. Sc. 221:199, 1951. [2] Singer, R. B., Medicine, Balt. 33:1, 1954. [3] Singer, R. B., Deering, R. C., and Clark, J. K., J. Clin. Invest. 35:245, 1956. [4] Singer, R. B., unpublished. [5] Shock, N. W., and Hastings, A. B., 112:239, 1935. [6] Beecher, H. K., and Murphy, A. J., J. Thorac. Surg. 19:50, 1950. [7] Squires, R. D., Singer, R. B., Moffitt, G. R., Jr., and Elkinton, J. R., Circulation, N. Y. 4:097, 1951.

81. ERYTHROCYTE AND HEMOGLOBIN VALUES: MAN

Values in parentheses are ranges, estimate "b" of the 95% range (cf Introduction).

		C	Velue	Reference
V	ariable(A)	Sex (B)	Value (C)	(D)
Inno	· · · · · · · · · · · · · · · · · · ·	(B)	5.4(4.6-6.2)	1, 2
RBC count, million	s/cu mm blood		The state of the s	1, 2
		9	4.8(4.2-5.4)	
		9,5	5.1	1,2
RBC packed volume	(hematocrit),	ď	47 (40 - 54) 2	2, 3
m1/100 ml blood		\$	42(37-47)2	2, 3
		9,5	44.5	2, 3
Blood hemoglobin c	oncentration,	ď	16.3(14.5-18.1)	4
g/100 ml blood		₽	14.5(12.3-16.7)	4
		Q, Š	15.4	4
RBC hemoglobin co	ncentration,	Q. Č	33.5(30-40)2	1,2
RBC hemoglobin co	ntent uud	d	29(25-34)	2
	птетт, дрв	Ŷ.	29(24-33)	2
		9.5	29(23-35)	2
DDC an		Q Q	87(70-94)2	2
RBC, cu μ			87(74-98)2	2
		9		2
		9.5	87	
RBC circulating vo	lume, ml/kg	ď	28.3(20.3-36.3)	5
body wt		Ď	24.2(19.0-29.4)	5
		Q, Ô	26.3	5
RBC specific gravi	ty ³	d	1.093(1.089-1.097)	6,7
RBC mass, µµg4		ď	95(76-103)	6, j
RBC iron content,	5 μμg	95	0.10(0.08-0.12)	2, 8, 9
RBC life span, da6		9.5	120(108-130)	10
RBC and Hb replac		Qð	0.83	1,2,11
RBC (intracellular)	l pH	d	7,24(7.21-7.26)	12
RBC spherocytic in		95	0.27	1, 2
RBC charge, milliv	rolto 7	95	-16.8	13
RBC electrophoreti	/OILS	95	1.31 x 10-4	13
sq cm/volt sec7		<u> </u>		
RBC diameter, µ	Dry	9.5	7.5(7.2-7.8)8	1,14
	Plasma	9.5	8.4(7.4-9.4)	15
RBC thickness, µ	Dry	9	2.0(1.7-2.2)9	1,2
	Plasma	ं ♀	2.4	15
RBC surface area.	Dry	95	135(129-146)10	2, h
sq µ	Plasma	σ δ	163	15
sq μ RBC sedimen-	Westergren method	0	(0-15)	16
tation rate,	"Cater gren memod	Q Q	(0-20)	16
The state of the s	Wintrobe method	ď	(0-9)	17
mm/hr	wintrobe method		(0-15)	17
	0.0	\$		18
	Cutler method	ď	(0-8)	
		\$	(0-10)	18
RBC fragility,	Doland and Worthley			
% NaCl	method			
solution	Initial	9.5	0.47(0.48-0.46)	19
	Final	9.5	0.27(0.30-0.24)	19
	Giffin and Sanford			
	method			
	Initial	₫ ₽	(0.44-0.42)	20
	Final	9.0	(0.34-0.32)	20
	Parpart method	*	(0,010,000)	
	Mean Mean	ď	0.43(0.54-0.32)	21
	Wean		0.43(0.34-0.32)	6.4

/1/ Centrifuged at 2000 G or over (= 3000 rpm) for 10 min after attaining constant packed cell volume [2]. /2/ Heparin or other isotonic anticoagulant. When anticoagulant = 2 mg K oxalate/ml blood, mean and 95% range for Column C, Line 4 = 45(40-50); Line 5 = 41(36-45); Line 10, σ = 35(30-40), ρ = 34(30-40); Line 14 = 82(70-94); Line 15 = 86(74-97), [2] /3/ Specific gravity of RBC at 25°C referred to water at ρ C [6]. /4/ Calculated from volume (16C) and specific gravity (20C), [6,j] /5/ Calculated from Hb content (13C), using 0.339 as % Fe in Hb [2,8,9]. /6/ Use of radioactive chromium 51; other methods in essential agreement, [10] /7/ M/15 phosphate buffer at pH 7.4 [13]. /8/ Diffraction, or by 500 or more measurements with micrometer eyepiece. Range = range of means. [1,14] /9/ Calculated from RBC volume (16C) and dry diameter (29C) by formula t = ρ V/ ρ Calculated from RBC volume (16C) and dry thickness (31C) by formula A = ρ Car (r+t) [2,h].

81. ERYTHROCYTE AND HEMOGLOBIN VALUES: MAN (Concluded)

Contributors: (a) Bethell, F. H., (b) Carlsen, E., (c) Collier, H. B., (d) Dole, V. P., (e) Ebaugh, F. G., Jr., (f) Ferguson, J. H., (g) Gram, H. C., (h) Guest, G. M., (i) Hirschboeck, J. S., (j) Osgood, E. E., (k) Ponder, E., (l) Riser, W. H., Jr., (m) Van Slyke, D. D.

References: [1] Bethell, F. H., "Clinical Laboratory Diagnosis and Essentials of Hematology," Ann Arbor, Mich.: The Edwards Letter Shop, 1948. [2] Osgood, E. E., Arch. Int. M. 56:849, 1935. [3] Ponder, E. in "Medical Physics," (Glasser, Otto, ed.), p 597, Chicago: Year Book Publishers, 1944. [4] Drabkin, D. L., Physiol. Rev. 31:345, 1951. [5] Huff, R. L., and Feller, D. D., J. Clin. Invest. 35:1, 1956. [6] Van Slyke, D. D., et al, J. Biol. Chem. 183:305, 1950. [7] Ebaugh, F. G., Jr., Levine, P., and Emerson, C. P., J. Laborat. Clin. M. 46:409, 1955. [8] Drabkin, D. L., Am. J. M. Sc. 209:268, 1945. [9] Grinstein, M., and Moore, C. V., J. Clin. Invest. 28:505, 1949. [10] Ebaugh, F. G., Jr., Rodman, G. P., Jr., and Peterson, R. E., unpublished. [11] Callender, S. T., Powell, E. O., and Witts, L. J., J. Path. Bact., Lond. 57:129, 1945. [12] Gram, H. C., Am. J. M. Sc. 168:521, 1924. [13] Abramson, H. A., J. Gen. Physiol. 12:711, 1929. [14] Donelson, E. G., et al, Am. J. Physiol. 128:382, 1940. [15] Ponder, E., "Hemolysis and Related Phenomena," New York: Grune and Stratton, 1948. [16] Westergren, A., Am. Rev. Tuberc. 14:94, 1926. [17] Wintrobe, M. M., and Landsberg, J. W., Am. J. M. Sc. 189:102, 1935. [18] Cutler, J. W., ibid 183:643, 1932. [19] Doland, G. A., and Worthley, K., J. Laborat. Clin. M. 20:1122, 1935. [20] Giffin, H. Z., and Sanford, A. H., ibid 4:465, 1919. [21] Parpart, A. K., et al, J. Clin. Invest. 26:636, 1947.

82. ERYTHROCYTE AND HEMOGLOBIN VALUES IN PREGNANCY AND POSTPARTUM: MAN Values in parentheses are ranges, estimate "b" of the 95% range (cf Introduction).

		RBC Count	RBC Packed Volume	Blood Hb	RBC Hb	RBC Hb	RBC Volume
	Period	millions/cu mm blood	(Hematocrit)	Concentration	Concentration	Content	
		millions/eu miu biood	ml/100 ml blood	g/100 ml blood	g/100 ml RBC	µµg	си и
	(A)	(B)_	(C)	(D)	(E)	(F)	(G)
S	Second trimester						
1	4th mo	4.5(3.8-5.2)	40(35-45)	12,8(11.4-15.0)	32	28.4	89
2	5th mo	4.3(3.7-5.0)	39(34-44)	12.2(10.8-14.6)	31	28.4	91
3	6th mo	4.0(3.5-4.8)	37(32-42)	11.4(10.2-14.0)	31	28.5	92
7	Third trimester						
4	7th mo	4.0(3.5-4.8)	37(32-42)	11.4(10.2-14.0)	31	28.5	92
5	8th mo	4.1(3.5-4.8)	37.5(33-43)	11.6(10.4-14.2)	31	28.3	91
ь	9th mo	4.2(3.7-5.0)	37.5(33-43)	12.0(10.8-14.4)	32	28.5	89
7 1	During labor	4.4(4.0-5.0)	39(34-44)	12.6(11.2-15.0)	32	28.6	89
F	Postpartum						
8	10 da	4.5(4.0-5.0)	40(35-45)	12.8(11.4-15.4)	32	28.4	89
9	42 da	4.8(4.2-5.4)	42.5(37-47)	13.8(12.0-16.0)	32.5	28.7	89

Contributor: Bethell, F. H.

Reference: Bethell, F. H., Gardiner, S. H., and Mackinnon, F., Ann. Int. M. 13:91, 1939.

83. ERYTHROCYTE AND HEMOGLOBIN VALUES IN FETUS, NEWBORN, AND ADULT FEMALE: MAMMALS Values given for adult female are not necessarily those of the mother. Values in parentheses are ranges and conform, unless otherwise specified, to estimate "c" of the 95% range (cf Introduction).

Stage of Development	RBC Count millions/cumm blood	RBC Packed Volume (Hematocrit) ml/100 ml blood	Blood Hb Concentration g/100 mlblood	RBC Hb Content µµg	RBC Volume	Reference
(A)	(B)	(C)	(D)	(E)	(F)	(G)
			Man			
Fetus at fraction of term!						
0.3	1.1(0.3-2.2)	27(23-33)	9.3(8.0-10.9)	63(47-97)	191(134-285)	B-F,1
0.4	2.8(2.3-3.5)	33(29-44)	10.7(6.0-13.1)	40(35-48)	131(113-150)	B-F,1
0.5	2.8(2.2-3.5)	36(30-41)	11.5(8.7-14.6)	42(38-51)	129(116-140)	B-F,I
0.6	3.5(2.9-4.1)	44(36-52)	13.6(11.0-14.7)	39(33-45)	125(116-136)	B-F,I
Newborn	4.8(3.8-6.0)2	51.3(41-61)2	17.9(13.0-22.0)2	37.5(32-43)	113(90-124)	B, D-F, 2; C, 3
Adult female	4.8(4.2-5.4)b	42(37-47)b	14.5(12.3-16.7)b	29(24-33)b	87(74-98)b	B,C,E,F,4;D,5
			Cat			
Fetus at fraction of term ³						
0.6	2.22	28.0	7.9	36	134	B-F,6,7
0.7	3.12(2.61-3.78)	30.5(26-36)	9.1(7.5-10.7)	28(24-38)	99(94-103)	B-F,6,7

^{/1/} Gestation period = 280 da. /2/ Cord or venous blood; capillary blood values may increase as much as 20% during first week after birth. [14] /3/ Gestation period = 60 da.

83. ERYTHROCYTE AND HEMOGLOBIN VALUES IN FETUS, NEWBORN, AND ADULT FEMALE: MAMMALS (Continued)

Values given for adult female are not necessarily those of the mother. Values in parentheses are ranges and conform, unless otherwise specified, to estimate "c" of the 95% range (cf Introduction).

	Stage of	RBC Count	RBC Packed Volume	Blood Hb Concentration	RBC Hb Content	RBC Volume	Pofonenco
	Development	blood	(Hematocrit) m1/100 m1blood	g/100 m1 blood	ина п	си μ	Reference
	(A)	(B)	(C)	(D)	(E)	(F)	(G)
				at (concluded)			
9	0.8	3.80(3.24-4.25)	34.3(30-41)	10.1(9.3-11.2)	27(23-30)	91(81-97)	B-F,6,7
10	Newborn, 3-12 da	5.70(5.16-6.14)	39.3(35-48)	12.4(9.6-15.1)	22(19-26)	68(65-78)	B-F,6,7
11	Adult female	6.6	34.2	11.8	18	51	B-F,6,7
				Cow			
	Fetus at fraction of term ¹						
12	0.3	3.9(3.7-4.1)	37.7(34-40)	8.5(7.7-9.1)	21.3(20.5-22.0)	93(91-97)	B-F,8
13	0.4	4.8(4.5-5.3)	43.0(40-47)	10.9(10.3-11.4)	21.1(20.0-21.6)		B-F.8
			1				
14	0.5	4.8(3.8-5.5)	36.7(28-45)	8.5(6.9-9.7)	18.6(17.5-20.2)		B-F,8
15	0.6	5.5(4.4-6.4)	40.4(32-50)	9.6(7.7-11.2)	17.5(17.4-17.6)	74(71-77)	B-F,8
16	0.7	5.2(4.2-6.2)	37.0(32-44)	9.7(8.3-12.1)	18.6(16.5-19.6)	71(69-75)	B-F,8
17	0.8	5.9(5.4-8.0)	39.7(35-47)	9.8(8.8-11.5)	15.0(14.3-16.2)	57(58-63)	B-F,8
18	0.9	6.1(5.9-6.2)	31.0(30-32)	8.4(8.3-8.5)	13.9(13.4-14.3)		B-F,8
19	Fetus at term ⁴	6.8(6.0-7.8)	35.9(32-42)	9.6(8.5-10.8)	14.1(13.7-14.5)		B-F,8
20	Adult female	8.05(6.1-10.7)	38.6(31-54)	12.9(9.2-18.3)	15.7(14.2-18.5)	50(47-54)	B-F,8
				Goat	~	A	
	Fetus at fraction						
	of term ⁵						
٠.							
21	0.3		19	4.2			C, D, 9
22	0.5		31(29-33)	7.1(5.2-9.1)			C,D,9
23	0.6		40	10.1			C,D,9
24	0.7		22	9.0			C,D,9
25	0.8		32	10.4			
							C,D,9
26	0.9		28.5(28-29)	8.9(8.2-9.6)			C, D, 9
27	Fetus at term ⁶		27	9.4			C,D,9
28	Newborn,		33(29-36)	11.0(9.9-12.4)			C,D,9
	24-48 hr						
29	Adult female		50	12.6			C,D,9
27	Addit female		30			L	C,D,7
				Pig			
	Fetus at fraction						
	of term ⁷						
30	0.2	0.25(0.1-0.5)	6.6(3.6-10.6)			244(204-361)	B, C, F, 6,7
31	0.3	0.63(0.2-1.3)	10.3(4.2-20.0)	3.3(1.5-4.9)	56(38-87)	173(131-278)	
32	0.4	2.5(0.68-3.9)		6.9(2.6-10.6)	27(19-40)	100(80-149)	
33	0.5	2.9(2.0-4.0)	27.4(23-35)	6.8(4.9-11.2)	23(17-29)	94(84-114)	B-F,6,7
34	0.6	3.0(2.1-4.0)	30.3(19.1-38.0)		27(21-35)	101(85~112)	B-F,6,7
35	0.7	4.0(3.0-4.4)	31.0(29-34)	7.0(6.5-9.6)	25(19-31)	101(95-107)	B-F,6,7
36	0.8	3.9(3.0-4.4)	32.4(29-36)	8.7(7.6-9.6)	22(20-28)	80(77-96)	B-F,6,7
37	0.9	4.16(4.0-4.3)	34.5(33-36)	9.3(8.8-9.7)	22.5(22-23)	83(83-83)	B-F,6,7
		0(1.0-4.5)	3 1.3(33-30)	7.3(0.0-7.1)	00.3(02-23)	03(03-03)	
2.0	Newborn						B-F,6,7
38	1-12 hr	5.72(5.51-5.91)	39.6(39-40)	[11.8(11.8-12.0)	21(20-22)	69(68-71)	B-F,6,7
39	1-10 da	3.9(2.62-5.26)	25.0(18-36)	8.1(5.4-10.1)	20(16-22)	64(59-69)	B-F,6,7
40	Adult female	6.93	40.8	13.8	21	59	B-F,6,7
	3011 13111410			Rabbit	1		1-1-
-	E-4			nabbit			
	Fetus at fraction						
	of term ⁸						
41	0.6	1.9(1.6-2.0)	22.3(21-23)	7.3(7.1-7.7)	44(35-46)	120(113-133)	B-F,6,7
42	0.7	2.9(2.1-3.4)		9.6(7.7-11.1)	35(27-48)	122(108-154)	
43	0.8	2.8(2.3-3.1)	'	8.8(10.1-11.0)	36(31-47)		
		, ,	32.0(28-37)		, ,	113(99-123)	
44	0.9	3.7(2.9-4.3)	30.5(24-34)	10.0(8.5-11.3)	28(26-30)	82(79-84)	B-F,6,7
	Newborn						
45	2-18 hr	4.8(3.3-5.5)	44.1(32-50),	14.2(11.0-15.7)	30(27-34)	94(90-100)	B-F,6,7
46	24-48 hr	5.2(4.4-5.8)	50.0(43-59)	15.6(13.7-18.1)	33(27-34)	97(89-102)	B-F,6,7
47	Adult female						
4 (Adult Temale	6.29	39.8	12.8	21	64	B-F,6,7

^{/1/} Gestation period = 280 da. /4/ Probably by caesarian section. /5/ Gestation period = 147 da. /6/ Caesarian section. /7/ Gestation period = 114 da. /8/ Gestation period = 31 da.

83. ERYTHROCYTE AND HEMOGLOBIN VALUES IN FETUS, NEWBORN, AND ADULT FEMALE: MAMMALS (Concluded)

Values given for adult female are not necessarily those of the mother. Values in parentheses are ranges and conform, unless otherwise specified, to estimate "c" of the 95% range (cf Introduction).

	Stage of Development	RBC Count millions/cu mm blood	m1/100 m1blood	Blood Hb Concentration g/100 mlblood	RBC Hb Content µµg	RBC Volume	Reference
	(A)	(B)	(C)	(D)	(E)	(F)	(G)
		7		Rat	}		
	Fetus at fraction						
	of term ⁹						
48	0.6			5.1(5.0-5.3)			D,10
49	0.7			7.6(6.1-9.2)			D,10
50	0.8	0.98(0.70-1.20)		8.5(7.5-9.3)	52	160	B,C,11;D,10;E,F,7
51	0.9	1.8(1.5-2.1)	40.1(40.0-40.2)	8.2(7.4-9.1)	32.5(31-34)	159(157-160)	B,C,11;D,10;E,F,7
	Newborn						
52	1-7 da	2.0(1.4-2.9)	25.0(18.2-31.0)	8.3(6.3-10.5)	43(31-60)	126(96-172)	B-F,7
53	8-14 da	2.2(1.6-2.8)	20.6(15.1-28.0)	6.6(4.6-9.0)	31(24-36)	92(77-110)	B-F,7
54	Adult female	6.6	39.4	12.8	20	61	B-F,7
				Sheep			
	Fetus at fraction						
	of term ¹⁰						
55	0.2			4.0(2.8-4.8)			D,12
56	0.3			6.9(4.6-8.4)			D,12
57	0.4	1.83(1.58-2.09)	27(25-29)	8.3(6.4-11.2)	40.5	151(119-184)	B,C,E,F,d;D,12
58	0.5			9.2(7.9-10.3)			D,12
59	0.6	5.1	37	10.7(8.7-12.8)	20.5	73	B,C,E,F,d;D,12
60	0.7			11.2(8.8-13.4)			D,12
61	0.8	8.1	41.5	11.9(10.2-13.6)	13.1	48	B, C, E, F, d; D, 12
62	0.9	9.9(8.3-11.8)	49(41.54)	12.6(8.5-17.0)	12.8(12.3-13.1)	49(43-55)	B,C,E,F,d;D,12
63	Adult female	11.6	34	11.0	13	30	B-F,13

/9/ Gestation period = 21 da. /10/ Gestation period = 147 da.

Contributors: (a) Barron, D. H., (b) Bethell, F. H., (c) Osgood, E. E., (d) Young, I. M.

References: [1] Wintrobe, M. M., "Clinical Hematology," Philadelphia: Lea and Febiger, 1946. [2] Guest, G. M., Brown, E. W., and Wing, M., Am. J. Dis. Child. 56:529, 1938. [3] Waugh, T. R., Merchant, F. T., and Maugham, G. B., Am. J. M. Sc. 198:646, 1939. [4] Osgood, E. E., Arch. Int. M. 56:849, 1935. [5] Drabkin, D. L., Physiol. Rev. 31:345, 1951. [6] Wintrobe, M. M., and Shumacher, H. B., J. Clin. Invest. 14:837, 1935. [7] Wintrobe, M. M., and Shumacher, H. B., Am. J. Anat. 58:313, 1935. [8] Von Desēo, D., Pflügers Arch. 221:327, 321, 1929. [9] Elliott, R. H., Hall, F. G., and Huggett, A. St. G., J. Physiol., Lond. 82:160, 1934. [10] Nicholas, J. S., Am. J. Physiol. 83:499, 1927. [11] Kindred, J. E., and Corey, E. L., Anat. Rec. 47:213, 1930. [12] Barcroft, J., "Researches on Prenatal Life," Oxford: Blackwell, 1947. [13] Ponder, E., "The Mammalian Red Cell and Properties of Hemolytic Systems," Berlin: Gebrüder Bernträger, 1934. [14] Smith, C. A., "The Physiology of the Newborn Infant," Springfield, Ill.: C. C. Thomas, 1950.

84. ERYTHROCYTE AND HEMOGLOBIN VALUES FROM BIRTH TO MATURITY: MAN

Values are smoothed means from plotted curves. Values in parentheses are ranges and conform, unless otherwise specified, to estimate "c" of the 95% range (cf Introduction).

	Age	RBC Count	RBC Packed Volume (Hematocrit) m1/100 ml blood	Blood Hb Concentration g/100 ml blood	RBC Hb Concentration g/100 ml RBC		
	(A)	(B)	(C)	(D)	(E)	(F)	(G)
1	At birth1	5.7(4.8-7.1)	56.6	21.5(18.0-27.0)	38.0	38	106
2	First da	5.6(4.7-7.0)	56.1	21.2(17.7-26.5)	37.8	38	106
3	End 1st wk	5.3(4.5-6.4)	52.7	19.6(16.2-25.5)	37.2	37	101
4	End 2nd wk	5.1(4.3-6.0)	49.6	18.0(14.5-24.2)	36.3	35	96
5	End 3rd wk	4.9(4.1-6.0)	46.6	16.6(13.2-23.0)	35.6	34	93
U	End 4th wk	4.7(3.9-5.9)	44.6	15,6(12.0-21.8)	35.0	33	91
7	End 2nd mo	4.5(3.8-5.8)	38.9	13.3(10.8-18.0)	34.2	30	85
8	End 4th mo	4.5(3.8-5.3)	36.5	12.4(10.2-15.0)	34.0	27	79

/1/ Cord clamped after placental separation, averages 560,000 more RBC/cu mm and 2.6g/100 ml more hemoglobin during first week of life than cord clamped immediately after birth. In newborn, heel blood (capillary) higher in RBC and hemoglobin than blood from superior sagittal sinus.

84. ERYTHROCYTE AND HEMOGLOBIN VALUES FROM BIRTH TO MATURITY: MAN (Concluded) Values are smoothed means from plotted curves. Values in parentheses are ranges and conform, unless otherwise specified, to estimate "c" of the 95% range (cf Introduction).

	Age	RBC Count millions/cu mm blood	RBC Packed Volume (Hematocrit) m1/100 m1 blood	Blood Hb Concentration g/100 ml blood	RBC Hb Concentration g/100 ml RBC	RBC Hb Content µµg	RBC Volume cu µ
	(A)	(B)	(C)	(D)	(E)	_(F)	(G)
9	End 6th mo	4.6(3.9-5.3)	36.2	12.3(10.0-15.0)	34.0	27	78
10	End 8th mo	4.6(4.0-5.4)	35.8	12.1(9.8-15.0)	33.8	26	77
11	End 10th mo	4.6(4.0-5.5)	35.5	11.9(8.4-14.9)	33.5	26	77
12	End 12th mo	4.6(4.0-5.5)	35.2	11.6(9.0-14.6)	33.0	25	77
13	End 2nd yr	4.7(3.8-5.4)	35.5	11.7 (9.2-15.5)	33.0	25	78
14	End 4th yr	4.7(3.8-5.4)	37.1	12.6(9.6-15.5)	34.0	27	80
15	End 6th yr	4.7(3.8-5.4)	37.9	12.7(10.0-15.5)	33.5	27	80
16	End 8th yr	4.7(3.8-5.4)	38.9	12.9(10.3-15.5)	33.2	27	80
17	End 10th yr	4.8(3.8-5.4)	39.0	13.0(10.7-15.5)	33.3	27	80
18	End 12th yr	4.8(3.8-5.4)	39.6	13.4(11.0-16.5)	33.8	28	81
	14 yr and over ²						
19	Male	5.4(4.6-6.2)b	47.0	16.3(14.5-18.1)b	33.5	29	87
20	Female	4.8(4.2-5.4)b	42.0	14.5(12.3-16.7)b	33.5	29	87
21	Average (19 and 20)	5.1	44.5	15.4	33.5	29	87

/2/ See Table 81.

Contributors: (a) Bethell, F. H., (b) De Marsh, Q. B., (c) Diggs, L. W., (d) Glaser, K., (e) Guest, G. M., (f) Mayerson, H. S., (g) Osgood, E. E., (h) Washburn, A. H., (i) Windle, W. F., (j) Wintrobe, M. M. Reference: Albritton, E. C., "Standard Values in Blood," Philadelphia: W. B. Saunders Co., 1952 (Table 38).

85. ERYTHROCYTE O₂ CONSUMPTION: VERTEBRATES

Values are expressed as µl/mg dry weight/hr and are calculated on the basis of water content of cells being 70% by weight. Chem = chemical, mano = manometric, B = blood, C = cells, D = defibrinated, W-R = washed, buffy coat removed, W-C = washed cells of whole blood, Sus = suspension of RBC, R = Ringer, S = isotonic saline.

		Temp. of		В	lood		Q_{O_2}	
	Animal	Measurement	Method	or	Cells	ln	In Ringer	Reference
		°C	ļ	Sample	Condition	Serum	or Saline	
	(A)	(B)	(C)	(D)	(E)	(F)_	(G)	(H)
1	Man	37	Chem	В	D		0.015 R	1
2		37	Mano	В	D	0.018	0.017 R	2
3		37	Mano	C	W-R		0.042 R	3
4		37	Mano	C	W-C		0.060 R	4
5	Rabbit	37	Chem	В	D		0.049 R	1
Ь		25	Chem	В	D	0.220	R	5
7		38	Mano	В	D	0.064	0.028 R	6
8		37	Mano	В	D	0.062		7
9		37	Mano	C	Sus		0.024 R	4
10	Chicken	25	Chem	В	D	0.260		5
11		38	Mano	В	D	0.350	0,210 R	6
12		37	Mano	C	W-C		0.180 R	4
13	Goose	39	Chem	В	D	0.670	0.440 R	1
14		25	Chem	В	D	0.250		5
15		37	Mano	В	D	0.720	0.400 R	8
16	Alligator, American	25	Mano	С	D	0.113	0.067 S	6
17	Snake, garter	25	Mano	С	W-C	0.154	0.081 S	6
18	Snake, water	25	Mano	C	W-C	0.173	0.083 S	6
19	Turtle	2.5	Mano	С	W-C		0.060 R	4
20	Turtle, Blanding's	25	Mano	С	W-C	0.096	0.067 S	6
21	Turtle, box	25	Mano	C	W-C	0.158	0.081 S	6
22	Turtle, snapper	25	Mano	С	W-C	0.119	0.075 S	6
23	Frog, bull	25	Mano	С	W-C	0.111	0.051 S	6
24	Fish, puffer	20	Mano	С	W-C	0.227		6
25	Fish, sea robin	20	Mano	С	W-C		0.075 S	6
26	Toadfish	20	Mano	С	W-C	0.112		6

Contributors: (a) Hunter, F. R., (b) Ponder, E. References: [1] Warburg, O., Zschr. physiol. Chem. <u>59</u>:112, 1909. [2] Harrop, G. A., and Barron, E. S., J. Exp. M. 48:207, 1928. [3] Damble, K., Zschr. ges. exp. Med. 86:594, 1933. [4] Ramsey, R., and Warren, C. O., Jr., Quart. J. Exp. Physiol. 20:213, 1930. [5] Roche, J., and Siegler-Soru, E., Arch. internat. physiol. 31:413, 1929. [6] Tipton, S. R., J. Cellul. Physiol. 3:313, 1933. [7] Nagelein, E., Biochem. Zschr. 158:121, 1925. [8] Horn, Z., ibid 226:297, 1930.

86. ERYTHROCYTE AND HEMOGLOBIN VALUES: VERTEBRATES Values in parentheses are ranges and conform, unless otherwise specified, to estimate "c" of the 95% range (cf Introduction).

Reference	(1)		3, E, 1, 2; C, 2, 3: D, 4: F.G.	2;H,1,5														0 0			x (01	œ «	χ,	10		œ	œ	80		∞		o o		11		œ	80	
RBC Diameter1 (Dry Film)	(H)		7.5(7.2-7.8) ^b B, E, 1, 2; C, 2,	7.5(7.2-7.8)b		(2.0-7.0)			7.0(6.2-8.0) 7		6.4(1.0-1.3) 1 5.6(5.4-5.8)bo	7.0.0 - F.C)0.0 F		6.0	(6 5-7 5)		_		~	10,	8.0	× 6.0	7.2	6.9	[c./ x c.c]	1	[23.2 x 12.1]	[18.1 x 10.3]	[16.0 × 9.5]		[19.6 x 11.0]		1 1 X 1 Z]		[19 × 9]		36.3]	[24.8 x 15.3]	
RBC Volume	(B)		87(70-94)b	87(74-98)b	72.0	57(51-63)	81.4(70-91)	50(47-54)	66(59-68)	19.3	77(71-83)			49(48-51)	47(40-51)	(2,00-08)	31(36 - 03)	31(30-32)	61.1(59-63)		127(120-137)		160(145-174)	131.0			450.0	267(266-268)	324,5(266-383)		465.0	6 7 6	200.0	300.0	442.0		3287(2750-3823) 13,857(13,200-14,513) [62.5 x	670(625-716)	
RBC Hb Content	(F)		29(25-34)b	29(24-33)b		14(12-16)	24.5(20-27)		21-25)		26.0(24.5-27.5)	0.03		16/15 5-16 51	21(10,0-10,0)	21(17-23)	17(15-19)	11.0	21.5(21-22)		36.6(33-41)	52.1(32-71)	45.5(40-51)	40.0			123.0	82.0	95.5(74-119)		131.0		0.4.0	65.0	91.0		3287(2750-3823)	179(174-184)	
RBC Hb Concentration g/100 ml RBC	(E)	mals	33.5(27-40)b	33.5(30-40)b z		_	29-34)				1-35)		35.0	102				34-35)	0		7-30)		28-29)		23.5		27.0	31.0	29.5(28-31)		28.0			0.82	20.6	15	(72	27(26-28)	
Blood Hb Concentration g/100 ml blood	(D)	Mar	16.3(14.5-18.1)b	14.5(12.3-16.7)b	13.0(11.0-15.2)	11.2(7.0-15.5)	12.3(6.5-15.1)	11.5(8.7-14.5) ^b	14.8(11.0-18.0)	10.5(8.8-11.4)	14.4(11.0-16.5)	16.0(2.0-30.0) ²	11.1(8-14) ^U	12.0(10-10)	4.0(10-19)	11.9(8.0-15.0)	14.8(12.0-17.5)	10.9(10.0-11.8)	13.7(13.2-14.2)		10.3(7.3-12.9)	14.8(9-21)	12.7(11.9-13.4)	12.8	11.2	Rep	8.2	8.5(5.8-11.3)	5 6(3.7-7.5)		10.0		6.2	7.0	7.2(6.1-9.1)b	Ame	9.4(7.7-11.0)	7.8(7.4-8.2)	
RBC Packed Volume (Hematocrit)	(C)		47(40-54)b	42(37-47)b		40(28-52)	_			(9.1			33.4(28-42) ^U	2(76-	_	_	_		39.0(38.0-40.0)	- 1	24.0-43.3)	_	(43.1-46.2)		38.0		30.0	28(19-37)	18 7(13 3-24 1)		35.5			22.1	25(21-271b		40(39-41)	29.3(26.6-32.0) 7.8(7.4-8.2)	
RBC Count millions/cu mm			5.4(4.6-6.2)b	4.8(4.2-5.4)b		6.5-9.5)		8.1(6.1-10.7)		6.	2	0 .	2)0					3(9.4-11.1)	6.4		2.0-3.2)		(2.6-3.0)		2,3		0.67	1.05(0.71-1.39)	0 57/0 50-0 63)		0.77			0.74	0 65		0.03	0.44(0.43-0.45)	
Animal	(A)		Man, o	Man. 9	o, domestic		Chimpanzee			_	ig	er		y, rnesus		bit			Swine		Chicken	Duck ²		Pigeon			Alligator (Alligator	mississippiensis) Snake, garter (Eutania	Sirtalis)	ntortrix)			ater	Sistudo	carolina)		Congo snake (Amphiuma	means) Frog, bull (Rana	catesbeiana)
			-	2		4	ιΩ	-	7	00	_	01	[]	71	13	14	15	16	17		18	19	20	21	22		23	24	7	ì	92		27	82	20	ì	30	31	

		2	~		2			3		8							13	13		3	3	3	12	
[40.5 x 21.0] 8	[52.8 x 28.2] 8	12.2 x 9.0] 8	[19.1 x 13.8] 13		61 [2.61 x 7.22]	[13.0 x 8.0] 8	[10.3 x 7.7] 8	[13.3 x 9.6] 13	[26.4 x 18.3] 8	14.3	[12.5 x 8.3] 8	[10.3 x 7.2] 8	[11.4 x 8.1] 8	[12.4 x 9.5] 8	[116 × 8 9] 8		[10.4 x 7.3] 1	[10.9 x 7.0] 1	[24.3 x 13.9] 8	[21.9 x 15.6] 13	[23.7 x 14.4] 13	[20.6 x 14.3] 13		[9.0 x 14.0] 8
7425.0	10,070.0	311(278-340) 186(159-201)	541.0	6 6 6	820.0	156(141-170)	117.7(107-138)	241.0	1530(1470-1560)	710.0	146(140-152)	112.5(104-121)	143(133-153)	213,5(200-227)	175/167-183)		130.0	91.0	778(646-910)	727	823	612	314(284-348)	200.5(184-217)
2010.0	2160.0	72(63-78) 38(35-40)				36.5(35-38)	26.7(26-28)		318.3(303-330)		37.5(36-39)	26(25-27)	30(28-32)	46.0	33 5(30-37)	22.2(20-21)			148.5(125-172)				75(61-82)	60.5(55-66)
27.0	22.0	33.5				23.5(22-25)	22.7(19-25)		21.0		26.0	23.5(21-26)	21.0	21.5(20-23)	100.00	(02-01)61			19.5(19-20)				31.2	30.0
13.3	4.6	10.5(9,4-12.4) 5.9(5.2-6.4)	4.6		3,8	9.0(8.0-10.0)	3.2(2.1-4.2)	4.3	1.6(4.0-5.7)	œ œ	14.9(14.5-15.2)	8.2(6.7-9.7)	7.8(7.4-8.1)	4.4(4.0-4.8)	16 7 0 277	3.0(3.0-6.2)	6.2	10.5	1.4(0.9-1.8)	3.6	4.5	3.0	8.5(6.2-11.5)	6.4(4.6-8.1)
1 10.64	21.4	31.3(21-40)	23.3		18.9	37.9(36.0-39.8)	14.6(8.4-18.2)	16.8	22.2(19.3-27.6) 4.6(4.0-5.7)	23.5	57.5(56-59)	35.3(32.7-37.8)	37.4(35.8-39.0)	20.2(19.8-20.6) 4.4(4.0-4.8)	(6) 6 7 7 6 7 7 6 7 7 6 7 7 6 7 7 6 7 7 7 6 7	17:45-0:47)4:67	22.2	34.0	7.2(4.7-9.6)	20.02	24.0	19.0	27.2(22-36)	21.3(15.4-27.2) 6.4(4.6-8.1)
0.07	0.05	0.84(0.65-1.13)	0,46		0.24	2.48	1.23(0.78-1.61)	1.09	0.15(0.12-0.19)	0.33	3.94(3.68-4.20)	3.17(2.70-3.63)	2.64(2.34-2.93)	0.95(0.87-1.03)		1.69(1.34-2.04)	1.93	3.75	0.09(0.07-0.11)	0.27	0.36	0.30	1.01(0.74-1.50)	1.10(0.71-1.48)
(Crypto-	pranchus alleghaniensis) Mud puppy (Necturus 0 maculatus)	nus carpio)	Callarias) Dogfish, smooth		iney (Squalus	on (Anguilla	rostrata) Flounder, rusty	(Limanda ferruginea) Goosefish (Lophius	piscatorius) Hogfish (Myxine 0	glutinosa) Lamprey (Petromyzon 0	marinus) Mackerel (Scomber 3	scombrus) Perch, white (Morone 3	americana) Pollock (Pollachias 2	virens) Sculpin, daddv (Myoxo- 0	-	Sculpin, longhorn (IVI. 1		strigatus) Shark sucker (Echeneis, 3	naucrates) Skate, common (Raja 0		s) ose (R.	eglanteria) Stingray (Dasyatis	centrourus) Trout (Salvelinus	fontinalis) 55 Wrymouth (Crypta- 1) canthodes maculatus)

/1/ Values in brackets are length x width. /2/ As ducks mature, hematologic values progressively increase.

86. ERYTHROCYTE AND HEMOGLOBIN VALUES: VERTEBRATES (Concluded)

Contributors: (a) Altland, P. D., (b) Bethell, F. H., (c) Cronkite, E. P., (d) Hart, J. S., (e) Kisch, B., (f) McCutcheon, F. H., (g) Musacchia, X. J., (h) Osgood, E. E., (i) Root, R. W., (j) Young, I. M.

References: [1] Bethell, F. H., "Clinical Laboratory Diagnosis and Essentials of Hematology," Ann Arbor, Mich.: The Edwards Letter Shop, 1948. [2] Osgood, E. E., Arch. Int. M. 56:849, 1935. [3] Ponder, E. in "Medical Physics," (Glasser, Otto, ed.), p 597. Chicago: Year Book Publishers, 1944. [4] Drabkin, D. L., Physiol. Rev. 31:345, 1951. [5] Donelson, E. G., et al, Am. J. Physiol. 128:382, 1940. [6] Hafez, E. S., and Anwar, A., Nature, Lond. 174:611, 1954. [7] Albritton, E. C., "Standard Values in Blood," Philadelphia: W. B. Saunders Co., 1952 (values from Table 42). [8] Wintrobe, M. M., Fol. Haemat., Lpz. 51:32, 1934. [9] Fulton, G. P., Joftes, D. L., Kegan, R., and Lutz, B. R., Blood, N. Y. 9:622, 1954. [10] Sturkie, P. D., "Avian Physiology," Ithaca, N. Y.: Comstock, 1954. [11] Altland, P. D., and Parker, M., unpublished. [12] Field, J. B., Elvehjem, C. A., and Juday, C., J. Biol. Chem. 148:261, 1943. [13] Kisch, B., Exp. M. and Surg. 9:125, 1951.

87. ERYTHROCYTE AND HEMOGLOBIN VALUES AT SEA LEVEL AND ALTITUDE: VERTEBRATES

Values are for acclimatized animals. SL = sea level.

_		Altitude	RBC Count	RBC Packed Volume	O ₂ Ca		
	Animal	km	millions/cu mm	(Hematocrit)	vol	%	Reference
		KIII	blood	ml/100 ml blood	Blood	RBC	
	(A)	(B)	(C)	(D)	(E)	(F)	(G)
1	Llama	SL	12.1	27.5	16.1	58.4	1,2
2		SL	11.4	38.6	23.5	61.2	2,3
3		2.8	12.3	28.2	17.1	56.7	2,3
4		5.3	11.0	25.8	14.9	57.8	2,3
5	Rabbit	SL	4.55	35.4	15.6	44.1	2,3
6	Sheep	SL	10.5	35.3	15.9	45.5	2,3
7		4.7	12.05	50.2	18.9	38.8	2,3
8	Vicuna	SL	14.9	30.5	17.5	57.1	1,2
9		4.7	16.6	31.9	18.2	58.5	2, 3
10	Viscacha	3.7	7.12	31.8	14.8	46.6	2,3
11	Huallata	5.3	3.27	59.1	23,6	40.1	2,3
12	Ostrich	3.7	2.18	33.8	13.9	41.2	2, 3

References: [1] Dill, D. B., "Life, Heat, and Altitude," Cambridge: Harvard University Press, 1938.
[2] Prosser, C. L., "Comparative Animal Physiology," Philadelphia: W. B. Saunders Co., 1950. [3] Hall, F. G., Dill, D. B., and Barron, E. S., J. Cellul. Physiol. 8:301, 1936.

88. ERYTHROCYTE AND HEMOGLOBIN VALUES AT SEA LEVEL AND ALTITUDE: MAN

Values are for male residents, unless otherwise indicated. Values in parentheses are ranges and conform, unless otherwise specified, to estimate "c" of the 95% range (cf Introduction). SL = sea level (altitude less than 0.4 km).

	Country	Place	Altitude km	RBC Count millions/cu mm blood	RBC Packed Volume (Hematocrit) m1/100 ml blood	Blood Hb Concentration g/100 ml blood	RBC Hb Content µµg	Refer- ence
	(A)	(B)	(C)	(D)	(E)	(F)	(G)	(H)
1	U. S. A.	Denver, Colorado	1.5	5.42		16.5	30.4	1
2		Kansas	SL	5.11		15.0	29.4	2
3		New Orleans, Louisiana	SL	5.26		15.6	29.7	3
4		New Orleans, Louisiana	SL	5.85		15.9	27.2	4
5		Omaha, Nebraska	SL	4.69		15.0	32.0	5
6		Portland, Oregon	SL	5.42		15.8	29.2	6
7	Argentina	Buenos Aires	SL	5.30		14.8	27.9	7
8		Buenos Aires	SL	5.50		15.4	28.0	8
9		Mina (Aguilar)	4.5	6.46(5.07-9.43)	59.5(50.5-73.6)	19.4(15.7-24.9)	30.0	9
10		Tucuman	0.4	5.31		16.1	30.3	10
11	Canada	Saskatchewan	0.5	5.52		15.6	28.3	11
12	Denmark	Copenhagen	SL	5.07		15.0	29.6	12
13	Germany	Giessen	SL	4.96		16.0	32.3	13
14	Hawaii	Honolulu	SL	5.08		15.1	29.7	14
15	India	Bombay	SL	5.11		15.4	30.1	15
16		Calcutta	SL	5.36		14.8	27.6	16
17	Mexico	Mexico City	2.3	5.39(4.53-6.17)	51.2(45.0-58.5)	17.7(14.4-20.1)	32.9	17,18
18		Mexico City	2.3	5.01(4.27-6.01)1	45.5(41.5-50.0)1	15.2(12.8-17.7)1	j	17
19	Norway	Oslo	SL	5.52		16.2	29.3	19
20	Peru	Lima	SL	5.14		16.0	31.1	20
21		Lima	SL	5.00(4.5-5.6)	45.0(40.0-49.0)	15.1(13.4-16.2)		21
22		Lima	SL	4.87(4.31-5.30)	45.0(41.5-48.5)	15.3(14.0-16.6)		18
23		Morococha	4.5	6.15		20.8	33.8	20
24		Morococha	4.5	6.70(5.30-9.30)	57.0(46.0-71.0)	19.3(17.4-24.0)		21
25		Morococha	4.5	7.88(6.91-8.51)	66.7(58.2-79.2)	22.6(20.7-25.3)		18
26		Oroya	3.7	5.67		18.8	33.2	20
27	South Africa	Johannesburg	1.8	5.99		14.7	24.5	22
28	Switzerland	Zurich	0.5	5.00		15.0	30.0	23

/1/ Female.

Contributors: (a) Dill, D. B., (b) Ebaugh, F. G., Jr.

References: [1] Andresen, M. I., and Mugrage, E. R., Arch. Int. M. 58:136, 1936. [2] Nelson, C. F., and Stoker, R., Fol. haemat., Lpz. 58:333, 1937. [3] Foster, F. C., and Johnson, J. R., Proc. Soc. Exp. Biol. 28:929, 1931. [4] Wintrobe, M. M., and Miller, M. W., Arch. Int. M. 43:96, 1929. [5] Sachs, A., Levine, V. E., and Fabian, A. A., ibid 55:226, 1935. [6] Osgood, E. E., ibid 56:849, 1935. [7] Tenconi, J., C. rend. Soc. biol. 108:133, 1931. [8] Parodi, A. S., Rev. Soc. argent. biol. 6:426, 1930. [9] Chiodi, H., J. Appl. Physiol. 2:431, 1950. [10] Moglia, J. L., and Fonio, O. A., Rev. Soc. argent. biol. 20:581, 1944. [11] Fiddes, J., and Witney, C., Canad. M. Ass. J. 35:654, 1936. [12] Bierring, E., and Sorensen, G., Ugeskr. laeger 98:822, 1936. [13] Horneffer, L., Pflügers Arch. 220:703, 1928. [14] Hamre, C. J., and Au, M. H., J. Laborat. Clin. M. 27:1231, 1942. [15] Sokhey, S. S., Gokhale, S. K., Malandkar, M. A., and Bilimoria, H. S., Indian J. M. Res. 25:505, 1937. [16] Napier, L. E., and Das Gupta, C. R., ibid 23:305, 1935. [17] Merino, C. F., Blood, N. Y. 5:1, 1950. [18] Gill, J. R., and Terán, D. G., ibid 3:660, 1948. [19] Jervell, O., and Waaler, J. H., Norsk mag. laegevid. 95:1141, 1934. [20] Hurtado, A., Merino, C., and Delgado, E., Arch. Int. M. 75:284, 1945. [21] Huff, R. G., Lawrence, J. H., Sini, W. E., Wasserman, L. R., and Hennessy, T. G., Medicine, Balt. 30:197, 1951. [22] Liknaitzky, I., Quart. J. Exp. Physiol. 24:161, 1934. [23] Burgi, K., Schweiz, med. Wschr. 63:662, 685, 1933.

89. PHYSICAL, CHEMICAL, AND BIOLOGICAL PROPERTIES: PYRROLE PIGMENTS AND RELATED COMPOUNDS

Part I: PORPHYRINS

and hemoglobins are of type III only; free porphyrins are predominately of type III; small quantities of type I occur in physiological condition, great quantities These pigments are derived from porphin (A) by substitution of the nuclear hydrogen atoms. There are four stereoisomers called "etioporphyrins" (I. III. IV) which are used as the basis for classifying naturally occurring porphyrins. The natural porphyrins correspond to etioporphyrins I and III; chlorophylls in some pathological states. Substituent groups: A = (-CH₂·COOH); B = (-CHO); M = (-CH₃); P = (-CH₂·CH₂·COOH); V = (-CH:CH₂).

13,14,23,25,26 1-3, 8-11, 5-7;1,1-15-17;1, C-H, 12, 15-17;1, Reference A, B, a; C, A, a; B, 14; C-H, 12, A, a;B, 14; 3,8-10 E, 1-3, 12, 13, 52 14, 15, 12, 15, 18-24 3 -C-CH2CH2COOH 1-4 in congenital erythropoietic porphyria vitro and in vivo. In urine of man in Porphyrin Precursor more in some diseases, much more acute hepatic porphyria of man and Traces in normal urine, somewhat hepatic porphyrla and of animals in experimental porphyria of animals, experimental porphyria; some also (Porphobilinogen) feathers of the Turaco bird, is Cu Formed from porphobilinogen, in Precursor of heme biosynthesis; in of man and animals. In mollusk shells and epidermal plant cells. complex of uroporphyrin I or III. By-product of heme biosynthesis. By-product of heme biosynthesis. in lead poisoning. Turacin, in (See Line 1) Occurrence in Nature HOOC-H2C-Cin urine and liver. (IV) Z 410.5 410.5 IV Soret 4059 (H) 408 408 Spectral Characteristics, Amaximum in mu4, 5 (C) 504 501 504 501 Uroporphyrin III (C40H38O16N4) 111 (E) Porphobilinogen (C10H14O4N2) Uroporphyrin I (C40H38O16N4 539 536 539 536 Etioporphyrins (E) 11 553.5 560.5 560.5 553.5 570.5 570.5 5526 597(577) 597(577) 9 612 612 chloroform 626 chloroform 626 A; P; A; P MP me. est. = 2930C; 0.1 N NaOH A; P; A; P; P; A MP me, est, = 2640C; 0.1 N NaOH Solvent Acetic-HCl 0,5 N HC1 0.5 N HC1 2.5 N HCl 25% HC1 <u>0</u> 25% HC1 Ester in Ester in Substituents in Positions | Physical and Chemical 165-170°C, decom-HCl No. me. est. = 78; COOH No. = 8. HCl No. me. est. = 78; COOH No. = 8. MP hydrochloride = position; COOH No. Properties 2, 3 = 2; colorless. Porphin (B) βН 1:2:3:4:5:6:7:8 Porphin Д. Д. A Б ď A P Ą 1 A !

				လိ	proporphyr	Coproporphyrin I (C36H38O8N4)	OgN4)				12
4	4 M P M P	MPM	M'P'M'P MP me. est. = 250- 2580C; HCl No. me.	0.1 N NaOH 25% HC1	617.5	565.5-568.5 538.5 504 551	538.5		406	By-product of heme biosynthesis. Traces widespread in animals,	A, a; B, 23; C-H, 12,
		. .	est. = 1.5; HCl No. f.a. = 0.1; COOH	0.5 N HCl Ether/acetic	591 624	548 5 6 8	529	495	40110	plants, microorganisms. In feces, urine, erythrocytes, bile, yeast,	15, 16, 36-38; I.
		·	No. = 4.	Ester in				-		root nodules. Larger amounts in	12, 15, 23
				chloroform 622.5		568	533	499	405	porphyrias and porphyrinurias.	27-30
				Copi	roporphyrin	Coproporphyrin III (C36H38O8N4)	OgN4)				12
70	M P M P	MPPPI	M; P P M MP me. est. = 150-	0.1 N NaOH		565.5-568.5 538.5 504	538.5			Often together with coproporphyrin I,	A, a; B, 23,
			160°C, remelts at		(575)	551		•	406	predominant in lead and other toxic	39;C-H,
			me est = 1.5: HCl	Ether/acetic	571 624	568	529	495	10	porphyrinarias, in central nervous system, in birds' feathers and	16,36-
			No. f.a. = 0.1; COOF	COOH Ester in						hedgehog spines, and in bacteria.	39;1, 15,
				chloroform 622.5		568	533	499	405		16,23,
		-		Pro	toporphyrin	Protoporphyrin IX (C34H34O4N4	04N4)				12
9	A IM I A I M 9	MIPIPI	'M'P'P'M MP me. est. = 230-	0.1 N NaOH	642	591	540	Indis-	Ĭ	Component of hemoglobin, myoglobin,	A, a; B, 40;
)			232°C; HC1 No. me.		5(582)	557		timet 411		catalase, cytochrome-b, and some	C-H, 15,
			est. = 5.5; HCl No.	5% HC1					40711	peroxidases. Free in erythrocytes,	16,41;1,
			f.a. = 2.5; COOH No.	. Ether/acetic		576	537	205		feces, chloroma, Harderian glands	12, 16, 23,
			= 2.	Chloroform	630.5	578-57412	541	507		of rodents, birds' eggshells, earth-	42,43
										worms, echinoderms, and protozoa. As Mg complex in mutants of alga	
										Chlorella,	
				Chlorocruoroporphyrin (Spirographis) (C33H32O5N4	porphyrin (Spirographis	(C3:	H3205	N4)		12,40
7	M B M V	MPP	7 M; B; M; V; M; P; P; M MP me. est. = 278-	20% HC1	615.2	564.3					A, a; B, 12-
		 	285°C; HC1 No. f.a.	Ether /acetic	643	581	555	514.5		pigment of Sabellid worms. Not found as free northwrin	40;C-H,
			2.	chloroform 644		584	558.5 518.5	518.5			1,45
				Porphyri	n a (cytopor	Porphyrin a (cytoporphyrin) (C47H60O6N4)?	O09H	6N4)?			46-49
00	Pr	, 3M, 2P,	HCl No. f.a. = 158;	25% HC1		564.5(528)	1			Component of cytochrome oxidase	A,47-49; B,
	one long alkyl side chain, one double	lkyl side double	COOH NO. = 2.	Chloroform	646	584.5	563.5 520		418.5	and \underline{a}_1 . Not found as free porphyrin,	48;1,47,
	bond in side chain	le chain									50, 51
1:								The state of	10000		d 42 44 000

in reference structural formula). /2/ All porphyrins show a strongly red fluorescence in Wood's light, both in acid and alkaline solutions and in many neutral solutions. /3/ Abbreviations: est. = ester; f.a. = free acid; me. = methyl; MP = melting point. /4/ \(\text{ maximum in m} = \text{wave length of maximum absorption} \) /1/ Letters in the columns refer to substituents (abbreviated as per code) appearing in the position indicated by column number (numbers correspond to those parentheses are weak bands. /6/ Ehrlich aldehyde dye, E $_{1 \text{ cm}}^{1\%} = 708$. /7/ Ehrlich aldehyde dye, E $_{1 \text{ cm}}^{1\%} = 1136$. /8/ Approximate. /9/ E $_{1 \text{ cm}}^{1\%} = 6500$. E 1% = extinction coefficients of 1% solutions of 1 cm thickness. /5/ Free porphyrin and its ester give the same bands in the same solvent; figures in the same solvent; figures in the same solvents figures figures in the same solvents figures fi $10/E_1^{-1\%} = 6670$, $/11/E_1^{-1\%} = 4900$, /12/ The second band is asymmetric, and its position depends on the concentration of the solution.

Contributors: (a) Lemberg, R., (b) Rossi-Fanelli, A., (c) Schmid, R.

References: [1] Westall, R. G., Nature, Lond. 170:614, 1952. [2] Cookson, G. H., and Rimington, C., ibid 171:875, 1953. [3] Cookson, G. H., and Rimington, C., Biochem. J., Lond. 57:476, 1954. [4] Granick, S., and Bogorad, L., J. Am. Chem. Soc. 75:3610, 1953. [5] Waldenström, J., and

89. PHYSICAL, CHEMICAL, AND BIOLOGICAL PROPERTIES: PYRROLE PIGMENTS AND RELATED COMPOUNDS (Continued)

Part I: PORPHYRINS (Concluded)

Lond. 28:79, 1950. [23] Lemberg, R., Progress in the Chemistry of Organic Natural Products. Vienna 11:299, 1954. [24] Goodwin, R. H., Koski, V. M., Owens, Vahlquist, B., Zschr. physiol. Chem. 260:189, 1939. [6] Watson, C. J., and Schwartz, S., Proc. Soc. Exp. Biol. 47:393, 1941. [7] Rimington, C., Krol, S., Biochem. J., Lond. 63:80, 388, 1956. [12] Fischer, H., and Orth, H., "Die Chemie des Pyrrols," Band II, 1. Hälfte, Leipzig: Akademische Verlagsgesellschaft, 937. [13] Macdonald, S. F., and Stedmann, R. J., J. Am. Chem. Soc. 75:3040, 1953. [14] Nicholas, R. E., and Rimington, C., Biochem. J., Lond. 55:109, Porphyrins," London: Hilger and Watts Ltd., 1954. [17] Rimington, C., and Sveinsson, S. L., Scand. J. Clin. and Lab. Invest. 2:209, 1950. [18] Lockwood, 955. [50] Lemberg, R., Bloomfield, B., Caiger, P., and Lockwood, W. H., Austral, J. Exp. Biol. 33:435, 1955. [51] Kiese, M., and Kurz, H., Biochem. 48] Lemberg, R., and Stewart, M., Austral. J. Exp. Biol. 33:451, 1955. [49] Warburg, O.; Gewitz, H. S., and Völker, W., Zschr. Naturforsch. 10b:541, L. Science 121:878, 1955. [35] Lascelles, J. Biochem. J., Lond. 62:78, 1956. [36] Dresel, E. I., Rimington, C., and Tooth, B. E., Scand. J. Clin. and Lab. Invest. 8:73, 1956. [37] With, T. K., ibid 7:193, 1955. [38] Rimington, C., Information Sheet J., 2000/73101, London: Hilger and Watts Ltd., 1955. Granick, S., J. Biol, Chem. 172:717, 1948. [44] Lemberg, R., and Falk, J. E., Biochem. J., Lond. 49:674, 1951. [45] Fox, H. M., Proc. Roy. Soc., W. H., and Bloomfield, B., Austral, J. Exp. Biol. 32:733, 1954. [19] Falk, J. E., Biochem. Sympos. No. 12, Cambridge University Press, 1954. [20] With, 32] Rimington, C., Proc. Roy. Soc. Lond. B 127:106, 1939. [33] Bogorad, L., and Granick, S., Proc. Nat. Acad. Sc. U. S. 39:1176, 1953. [34] Bogorad, Acta med, scand, 143:161, 177, 1952. [30] Lemberg, R., Australas, Ann. M. 4:5, 1955. [31] Neuberger, A., and Muir, H. M., Nature, Lond, 165:948, 1950. Biochem. J., Lond. 59:37, 1955. [10] Falk, J. E., Dresel, E. l., and Rimington, C., Nature, Lond. 172:292, 1953. [11] Dresel, E. I., and Falk, J. E., I. K., and Petersen, H. C., Lancet, Lond. 2:1148, 1954. [21] Comfort, A., Biochem. J., Lond. 44:111, 1948. [22] Comfort, A., Proc. Malacological Soc., O. von H., Am. J. Bot. 38:629, 1951. [25] Watson, C. J., and Berg, M., J. Biol. Chem. 214:537, 1955. [26] Falk, E. J., and Benson, A., Biochem. J., Lond. 55:101, 1953. [27] Watson, C. J., Lancet, Lond. 1:539, 1951. [28] Watson, C. J., Trans. Ass. Am. Physicians 64:345, 1951. [29] Rimington, C., and Tooth, B., Scand, J. Clin, and Lab. Invest. 8:251, 1956. [8] Schmid, R., and Schwartz, S., Proc. Soc. Exp. Biol. 81:685, 1952. [9] Goldberg, A., Grinstein, M., and Wintrobe, M. M., J. Biol. Chem. 172:459, 1948, [42] Rudzinska, M. A., and Granick, S., Proc. Soc. Exp. Biol. 83:525, 1953, 1953. [15] Lemberg, R., and Legge, J. W., "Hematin Compounds and Bile Pigments," New York: Interscience Publishers, 1949. [16] Vannotti, A., ond. B 99:199, 1926. [46] Rawlinson, W. A., and Hale, J. II., Biochem. J., Lond. 45:247, 1949. [47] Lemberg, R., Nature, Lond, 172:619, 1953. Jope, E. M., and O'Brien, J. R., Biochem. J., Lond. 39:239, 1945. [40] Lemberg, R., and Parker, J., Austral, J. Exp. Biol. 30:163, 1952. Zschr. 325:299, 1954. [52] Schmid, R., Hanson, B., and Schwartz, S., Proc. Soc. Exp. Biol., 79:459, 1952. 39] 43

Part II: IRON PORPHYRINS

	Reference	(F)		A,1,2;B-C	a;D,2;E,	1-4										A,1,2;B,C,	E,a;D,2			
	Remarks	(E)		Prosthetic group of methemogenin,	catalase, horseradish peroxidase.	Produced by atmospheric oxidation	of heme or neutralization of hemin.	As alteration product of hemoglobin	in the leech, in malarial parasites,	and produced by certain bacteria.	In blood extravasations and in the	plasma in pathological conditions	(hematinemia); present as met-	hemalbumin in urine, bile, and	feces in pathological conditions.	Prosthetic group of hemoglobin, myo- A,1,2;B,C,	hemoglobin, and ferrocyto-	chrome-b. Combines with nitroge-	nous bases to form hemochromes	(hemochromogens).
	Spectral Characteristics Amaximum in mµ²	(D)	Heme Compounds	10% NaOH: 580(10.5)	Alcoholic NaHCO3: 590	402.5(79.5)	"Acid hematin" in ether: 650	Stoke's reagent produces hemochrome	bands.							Phosphate buffer pll 7.0: 575-550(5.5)	415[8]			
The state of the s	Physical and Chemical Properties1	(C)		Soluble in alkali;	slightly soluble in	ether.										Soluble in alkali; Fe	removed by dilute	HCl in glacial	acetic acid.	
	General Nature	(B)		Fe+++ complex of	protoporphyrin;	moderately	stable.									Fe ⁺⁺ complex of	protoporphyrin;	easily auto-	oxidized to	hematin.
	Substance	(A)		Hematin (hydroxy-	hemin)	(C34H35O5N4Fe)	and anhydrides									leme (protoheme IX) Fe++ complex of	(C34H32O4N4Fe)			

als A,1,2;B, bod. C,E,a; D,2				a3, A,6-8;B, C,a;D, 7;E,6	erte- A,2,9;B, D,2;C, a;E,2, a;E,2, ne t t
Not found in nature. Hemin crystals are used for identification of blood	Found in plasma under conditions of rapid hemolysis as pathological product.	The term "hemochromogen" or "hemochrome" is used generically for compounds of heme with nitrogenous bases or proteins. All have characteristic spectra, but band positions may differ by 10-20 mm with different N-compounds.	Chlorocruoroheme (Fe ^{+†}) is the prosthetic group of chlorocruorin.	Prosthetic group of cytochromes a3, a, and a1 but not a2.	Oz carrier in red corpuscles of vertebrates and some invertebrates; free in plasma of some invertebrates. In root nodules of plants, protozoa, and some yeasts and bacteria. Species-specific; some species contain more than one hemoglobin. In man, fetal Hb (HbF) differs from normal adult (HbA); several genetic alleles to HbA are known: S, B, C, D, E, F.
630-635 540 510 400[s] 400[s] (131-151) me by pyridine +	623 540 500 570 530 hed by dithionate	558(31-35) 526(16.2)	5.88	587 430 603 423	555(12.9-13.6) 430[s] (118-134)
Acetic acid: 630-635 540 510 400[s] Alcohol HCI: 400[s] (131-151) dithionite. dithionite.	Fe+++; 623 540 500 Fe++; 570 Absorption band abolished by dithiorate (cf sulfhemoglobin).		Pyridine hemochrome:	Pyridine hemochrome: (no β-band) CO-heme: Hemoglobin Compounds	
Brown-black crystals Acetic acic sintering at 240°C, melting at 300°C; soluble in dilute alkali, pyridine, organic bases; slightly soluble in dilutionit chloroform; insoluble in water.	Soluble in water like serum albumin.	Soluble in dilute pyridine, alkali, and pyridine- glacial acetic acid.	Same as hemin (above), Pyridine hemochrome:	Soluble in organic solvents (except light petroleum), dilute alkali.	Easily soluble in water, less in strong phosphate buffer or ammonium sulfate solution; red-purple color.
Crystalline chlo- ride of hema- tin; stable.	Compound of hematin with serum albumin, probably by electrostatic linkages. Iron is in Fe+++ state.		Chlorohemin of chlorocruoro- porphyrin (spirographis porphyrin).	Chlorohemin of porphyrin- <u>a</u> .	Four hemes bound to globin; MW 67,000; iron in Fe ⁺⁺ state. Some invertebrate hemoglobins (erythrocruo- rins) have a far higher MW and lower
3 Hemin (chlorohemin) (C ₃₄ H ₃₂ O ₄ N ₄ FeCI)	(ferrihemalbumin)	Compound of chrome (hemo-chromogen) (C ₃₄ H ₃₂ O ₄ N ₄ Fe)(C ₅ H ₅ N) ₂ -bound to Iron by coording to Iron by coordinate to Iron	Chlorocruorohemin (Spirographis hemin) (C33H30O5N4FeCI)	cytohemin) (C47H58O6N4FeC1)?	Hemoglobin (Hb)

/1/ MW = molecular weight; E_0' = oxidation-reduction potential. /2/ λ maximum in m_{μ} = wave length of maximum absorption; figures in parentheses are $E_{\mu}M$, i.e., extinction coefficients of millimolar solutions of 1 cm thickness; [s] = Soret band.

89. PHYSICAL, CHEMICAL, AND BIOLOGICAL PROPERTIES: PYRROLE PIGMENTS AND RELATED COMPOUNDS (Continued)

Part II: IRON PORPHYRINS (Continued)

Reference	(F)			A,2,9;B, C,E,a; D,2	A,D,2;B,
Remarks	(E)		G, H, I, J. Also involved in CO ₂ transport.	Predominant in arterial blood, mixed with Hb in venous blood; 1 g Hb binds 1.34 ml O ₂ at 0°C, 760 mm Hg and contains 0.335% iron.	Found in blood in CO poisoning, in small percentage in normal blood. Stable to reducing agents.
Chemical Spectral Characteristics	(D)	Hemoglobin Compounds (continued)		577(15.1-16.2) 540-542 (14.2-15.3) 412-415 [s] (125-128.5)	568-572 (13.7-15.0) 538-540 (14.1-15.3) 418[s] (154)
Physical and Chemical Properties1	(C)	Hemogle		Bright red color, yellow in very dilute solution (cf HbCO).	Bright red; pink in very dilute solution (cf HbO ₂).
General Nature	(B)		isoelectric point than mammalian hemoglobin.	Compound with one O ₂ reversibly bound per heme; available physiologically; iron in Fe ⁺⁺ state. At low pO ₂ intermediates between (Hb) ₄ (O ₂) ₄ and (Hb) ₄ (O ₂) ₃ or (Hb) ₄ (O ₂), exist, which cause the O ₂ dissociation curve to be sigmoid (cf myohemoglo-hine)	nd of Hb sibly to heme to heme tissociable ht; iron tt state. ty of Hb approx- ly 400 x or O ₂ : nediate en nediate en at very
Substance	(A)		Hemoglobin (Hb) (concluded)	Oxyhemoglobin (HbO ₂)	Oarboxyhemoglobin (HbCO)

-	11 Methemoglobin (MetHb)	Iron in Fe ⁺⁺⁺ state. MetHb forms com- pounds with CN', F', N ₃ . NO, H ₂ O ₂ .	Brown to brown-red color.	"Acid MetHb": 630(3.7-3.8) 500(9.5) 500(9.5) 405-407 [s] (134-154) Alkaline MetHb: 577(9.5) 540(9.7) 510 [s] (c) fematinj, the 630 band of "acid MetHb" disappears on addition of Na ₂ CO ₃ or cyanide and on addition of dithionite.	Small amounts normally present in blood. Larger amounts formed by auto-oxidation of HbO ₂ , particularly at low pH, and by oxidation with ferricyanide, nitrite, chlorate; formed in circulating blood by aromatic amines and nitro compounds, sulfonamides, and some poisons. Erythrocytes possess mechanisms for reduction of MetHb to Hb, which do not function in idiopapathic familial methemoglobinemia.	A,B,D,2; C,a;E, 2,14,15
22	(HbS)	Formed by treatment of HbO ₂ solutions with H ₂ S; solution still contains Hb. Globin and prosthetic group of unknown strucure which can be retrans-formed into protoheme.	Purplish-green color.	Fe ⁺⁺ : 620(11-13) FeCO: 616(16) Band stable in presence of dithionite (cf methemalbumin and methemoglobin), Na ₂ CO ₃ , and cyanide. NaOH + dithionite = protohemo- chrome (cf choleglobin).	Pathological product in erythrocytes, formed by the action of intestinal H2S on HbO2, catalyzed by aromatic amines, e.g., phenacetin; also found in septicemias. Red corpuscles containing sulfhemoglobin appear to have a normal life span.	A, E, 2; B-D, a
13 C	Choleglobin	Formed by coupled oxidation of Hb with ascorbic acid. Globin + prosthetic group derived from protoheme by oxidation (probably mixture of choleheme with intact C ₃₄ ring and verdoheme with an oxygen atom replacing one methene bridge).	Green color; solubility Fe ⁺⁺ : similar to that of Hb, but more easily Na+d denatured. (cf	Fe ⁺⁺ ; 629 FeCO: 628 Na+dithionite = cholehemochrome: 619 (cf sulfhemoglobin)	May be an intermediate formation of bile pigments from hemoglobin. Formed by the action of some bacteria on hemoglobin ("viridans effect"). Found in erythrocytes after phenylhydrazine administration.	A,2,16, 17;B,D, E,2;C, a
4- X	Myohemoglobin (MHb) or Myoglobin (Mb)	Heme + globin (different from globin in Hb); contains one heme only at MW of 18,500.	MbCO (of horse) is more soluble than HbCO in strong phosphate buffer or ammonium sulfate solution. Alkali	Fe++: 435 Mb differs from Hb particularly in the position of the a-band of myooxyhemoglobin, 582 mg and myo-carboxyhemoglobin, 579 mg	O ₂ carrier between oxyhemoglobin and intracellular respiratory enzymes; O ₂ store under certain conditions. In red muscles of vertebrates, particularly diving animals, also in some invertebrate	A,2,14,18; B,19;C, a;D,14, 20,21; E,2,14, 22-25

/1/ MW = molecular weight; E_0' = oxidation-reduction potential. /2/ λ maximum in m_{μ} = wave length of maximum absorption; figures in parentheses are E_{mM}^{mM} i.e., extinction coefficients of millimolar solutions of 1 cm thickness; [s] = Soret band,

89. PHYSICAL, CHEMICAL, AND BIOLOGICAL PROPERTIES: PYRROLE PIGMENTS AND RELATED COMPOUNDS (Continued)

Part II: IRON PORPHYRINS (Continued)

(F)		23,24,	A,D,2;B, C, E,a	A,2, 26-29; B,2, 28-32; C,33;D, 2:E,2, 27-29, 34-37
(E)		muscles. Species-specific, but more than one kind may be present in muscles of one and the same species. Pathologically in urine of crush injury victims and in certain diseases of man and horse.	Blood pigments of some annelids (Polychaeta), e.g., Spirographis, a marine worm. Free in plasma.	Decomposes H ₂ O ₂ to H ₂ O and O ₂ , but also acts as peroxidase on certain substrates, e.g., alcohol. Present in all aerobic cells, highly concentrated in some animal tissues (red cells, liver) and in some bacteria, absent in some strict anaerobes and in a few facultative anaerobes. Catalytic activity inhibited by cyanide, H ₂ S, hydroxylamine, azide, and other compounds.
(D)	obin Compounds (concluded)		Fe ⁺⁺ ; 574 (broad band) FeO ₂ : 604 FeCO: 600	
(D)	Hemogl	resistance greater than that of Hb.	c	Compound of pro- MW = 225,000-250,000 tohematin (iron in Fe ⁺⁺⁺ state) with protein apoenzyme. Iron is not reduced by apoenzyme has been dithionite, but is reduced by apoenzyme has been azide. Liver contain chole- and verdohem- atin. Combines with H ₂ O ₂ , the green "primary" Complex being active.
(B)		O2 affinity greater than that of Hb; O2 dissociation curve hyperbolic; Fe++ more readily oxidized to Fe+++ by O2 than in Hb. Derivatives similar to those of Hb.	Globin of high MW and low isoelectric point + several groups of chlo- rocruoroheme.	Compound of pro- tohematin (iron in Fe+++ state) with protein apoenzyme. Iron is not reduced by dithionite, but is reduced by H2O2 in the presence of azide. Liver catalases often contain chole- and verdohem- atin. Combines with H2O2, the green "primary" complex being active.
(A)			15 Chlorocruorin (Ch)	16 Catalase
	(E)	(B) (C) Hemoglobin Compounds (concluded)	(B) (C) Hemoglobin Compounds (concluded) O2 affinity resistance greater preater than that of Hb. O2 affinity that of Hb. D5 affinity that of Hb. Curve hyper- bolic; Fe ⁺⁺ more readily oxidized to Fe ⁺⁺ fran that of Hb. D6 crush injury victims and in certain diseases of man and horse. D6 crush injury victims and in certain diseases of man and horse similar to those of Hb.	Myohemoglobin (Mb) are a sistance greater (concluded) (Myohemoglobin (Mb) (concluded) (Myohemoglobin (Mb) (Myoglobin (Myoglob

A, 2, 26, 27; B, 2, 17, 38, 44; C, a; D, E, 2	C, D, aj E, 32, 48
Catalyzes the oxidation by H ₂ O ₂ of a farge variety of subtrates, e.g., phenols and polyphenols, aromatic amines, cytochrome-c, ascorbic acid, indole acetic acid. With some substrates, e.g., dihydroxyfumaric acid, the enzyme can act as oxidase. Widespread in plants and present in some animal tissues. Lactoperoxidase occurs in milk, myeloperoxidase in leucocytes. 500(11.4) 412 [s] (109) 645 (weak) 600(3.5) 625(6.5) 570(11.0) 475(65-80)	ts -io- -ind ++
645(12) 583 548 410 [s] (125) 594 (weak) 558 640 (weak) 600(7.6) 500(11.4) 412 [s] (109) 645 (weak) 600 566 566 570(11.0) 495 (weak) 435 (weak) 435 (weak) 445 (weak)	23 - 200 (lute to 25 - 200 (lu
rradish print: H: H: Peroxida H: H: H: H: H: H: H: H: H: H: H: H: H:	FeCO of <u>a</u> 3 + <u>a</u> . FeCO of <u>a</u> 3: Fe++ of <u>a</u> 1: Fe++ of <u>a</u> 2: Fe+++ of <u>a</u> 2:
O W W W	bound to particulate matter; soluble only as complex with cholate, desoxycholate, digitonin, and similar compounds.
Prosthetic group, (1) in horse- radish, yeast cytochrome-c, and other plant peroxidases = protohematin which can be reversibly split from apoen- zyme, iron in Fe+++ state; (2) in lactoper- oxidase = hem- atin of a ke- tonylporphyrin firmly bound to apoenzyme; (3) in myelo- peroxidase = hematin simi- lar to chole- hematin simi- lar to chole- hematin simi- lar to chole- hematin firmly bound to apoen- zyme. Iron is reduced to Fe++ by dithio- nite. The red "secondary" complex prob- ably contain- ing ferryl iron (FeO)++ is active.	heme-a (cyto-heme, No. 7), a3 and a1 react with O2 and CO, a does not. a3 and a have not been separated yet. Prosthetic group of a2
	type a a a a a a a a a a a a a a a a a a a

/1/ MW = molecular weight; $E_0' = oxidation$ -reduction potential. /2/ λ maximum in m μ = wave length of maximum absorption; figures in parentheses are $E_1 m M$ i.e., extinction coefficients of millimolar solutions of 1 cm thickness; [s] = Soret band.

89. PHYSICAL, CHEMICAL, AND BIOLOGICAL PROPERTIES: PYRROLE PIGMENTS AND RELATED COMPOUNDS (Continued)

Part II: IRON PORPHYRINS (Continued)

Reference	(F)			A,2,45;B, 49,50,90- 91;C,49 93;D,a; P,3;D,a; E,12,13,65;66	A,2,45,53,	54,67-	75, 94- 96:B.2.	76-81;	C, 82-	85;D,a;	E,12,13,	94-96		
Remarks	(E)		contain the cytochrome $\frac{a_2}{a_3} + \frac{a_1}{a_3}$ system.	Cytochrome-b2 is the lactic dehydrog- A,2,45;B, enase of yeast. The role of cyto-chromes b and b1 is not yet fully understood; they probably act as electron carriers between enzymeactivated substrates or flavoprochromes b3, b5, and b7 may react directly with O2 or with still unknown oxidases. A protoheme compound acts as terminal oxidase in a Micrococcus and perhaps in other bacteria. Helicorubin and cytochrome-b of snails belong to this class.	Most animal and plant cells contain	cytochrome-c in their mitochondria	as essential electron carrier. Also found in veasts and many aerobic	bacteria, while other related cyto-	chromes of type c are found in	photosynthetic and anaerobic	bacteria. Some, e.g., c3, c4, c5,	cytochrome a ₃ + a system. Cyto-	chrome-f is present in chloroplasts	and is probably essential for photosynthesis. Cytochrome-c2 is found
Spectral Characteristics	(G)	Hematin Enzymes (Continued)			Fe++ cytochrome-c: 550(26-28)	522(15.5-16.9)	415 sj (143) 345	Fe+++ cytochrome-c: 565 (indistinct)		407 [s] (112)	346	C1: 552	<u>f</u> :	<u>c2</u> : 550-552 520-523
Physical and Chemical Properties ¹	(0)	Hema		1		12,000-13,000; water	soluble, resistant to			oxidizable and does		0.25 volts. Several	species-specific	cytochromes c (pig and ox heart,
General Nature	(B)		quite different, iron complex of dihydropor-phyrin (chlorin) without formyl side chain.	+2	Prosthetic group	of cytochrome-	c is a deriva-	toheme, with	thioether	bridges	between CH(CH2)-	side chains of	the porphyrin	and cysteine groups in the
Substance	(A)		Cytochromes of type a a a a a a a a a concluded)		mes of	type c	υ I	7	- 27	[C ₃	0	and other bacterial	cytochromes	

90,

in photosynthetic bacteria and is active in their photochemical reaction mechanism. Cytochrome-ca is found in the anaerobic sulfate reducer, Desulfovibrio desulfu-	ricans, and cytochromes c ₄ and c ₅ , in Azobacter vinelandii. Cytochrome c ₁ accompanies cytochrome condicate characteristics cytochrome condicate characteristics cytochrome condicate characteristics characteristics.	chrome-c and is also lound in plant microsomes.			
553 525 419 551 522	416 555				
:51	:55:				
penguin, fish, yeast) have been crystal- lized. Cytochrome-f, MW~ 110,000; Eo (pH 7,	Ag salts. A 30°C) = 0.365 volts. similar linkage Cytochrome-c3, MW appears to be approximately 12 sno has with mine.	12,500 but with two heme groups; E ₀ (pH 7, 30oC) = -0.20 volts.			
protein, pro- viding a firm linkage which can, however, be broken by	Ag salts. A similar linkage appears to be	cytochromes <u>cz</u> and <u>f</u> . While the other bac-	terial cyto- chromes have bands in the region of cyto-	chrome-c, their structure has not yet been estab- lished. They	may belong to cytochrome-b or to a new class between cytochromes b and c.

11/ MW = molecular weight; Eb = oxidation-reduction potential. /2/ A maximum in mp = wave length of maximum absorption; figures in parentheses are $E_{\rm rm}^{\rm mM}$, i.e., extinction coefficients of millimolar solutions of 1 cm thickness; [s] = Soret band,

References: [1] Fischer, H., and Orth, H., "Die Chemie des Pyrrols," Band II, 1. Hälfte, Leipzig: Akademische Verlagsgesellschaft. 1937. [2] Lemberg, 6] Lemberg, R., ibid 172:619, 1953. [7] Lemberg, R., and Stewart, M., Austral. J. Exp. Blol. 33:451, 1955. [8] Warburg, O., and Gewitz, H. S., Zschr. R., and Legge, J. W., "Hematin Compounds and Bile Pigments," New York: Interscience Publishers, 1949. [3] Fulton, J. D., and Rimington, C., J. Gen. obysiol. Chem. 288:1, 1951. [9] Roughton, F. J., and Kendrew, J. C., ed. "Haemoglobin, a Symposium on a Conference Held at Cambridge in June 1948 in Microb., Lond. 8:157, 1953. [4] Schwabacher, H., Lucas, O. R., and Rimington, C., ibid 1:109, 1947. [5] Fairley, H. N., Nature, Lond. 139:588, 1937. Italo-Franco-Elvetiche-C.N.R. 43, 1955. [19] Boardman, N. K., and Adair, G. S., Nature, Lond. 177:1078, 1956. [20] Bywaters, E. G., et al, Biochem. 14] Bénard, H., Gajdos, A., and Tissier, M., "Hémoglobine et Pigments apparentées," Paris: Masson & Cie., 1949. [15] Recknagel, K., and Hörlein, H., Die Medizinische, Stuttgart, No. 14, 463, 1954. [16] Lemberg, R., Reviews of Pure and Applied Chemistry, Royal Australian Chemical Institute 6:1, Lemberg, R., Enzymologia, Haag 13:302, 1949 [31] Chance, B., and Fergusson, R. R., in "Symposium on the Mechanism of Enzyme Action" (McElroy, W. D., and Glass, B., ed.), p 385, Baltimore: Johns Hopkins Press, 1954. [32] Chance, B., ibid, p 399. [33] Jensen, J., J. Bact., Balt. 73:324, 1957. Action" (Sumner, J. B., and Myrback, K., ed.), vol. II, pt. 1, p 397, New York: Academic Press, 1951. [27] Chance, B., ibid, p 428. [28] Keilin, D., Memory of Sir Joseph Barcroft," London: Butterworth Scientific Publications, 1949. [10] Keilin, D., and Tissières, A., Nature, Lond. 172:390, 393, 1953. J., Lond. 35:1164, 1941. [21] De Duve, C., Acta chem. scand. 2:264, 1948. [22] Lewis, U. J., and Schweigert, B. S., J. Biol. Chem. 214:647, 1955. [23] Rossi-Fanelli, A., and Antonini, E., Arch. Biochem., N. Y. 65:587, 1956. [24] Jonxis, J. P., and Wadman, S. K., Nature, Lond. 169:884, 1952. 25] Singer, K., Angelopoulos, B., and Ramot, B., J. Laborat Clin. M. 46:952, 1955. [26] Theorell, H., in "Enzymes: Chemistry and Mechanism of and Hartree, E. F., Nature, Lond. 173:720, 1952. [29] Keilin, D., and Hartree, E. F., Biochem. J., Lond. 60:310, 1955. [30] Foulkes, E. C., and 1956. [17] Foulkes, E. C., Lemberg, R., and Purdom, P., Proc. Roy. Soc., Lond. B 138:386, 1951. [18] Rossi-Fanelli, A., Giornate Biochimiche Keilin, D., and Ryley, J. F., ibid 172:451, 1953. [12] Smith, L., Bact. Rev., Balt. 18:106, 1954. [13] Kamen, M. D., ibid 19:250, 1955. Contributors: (a) Lemberg, R., (b) Rossi-Fanelli, A., (c) Schmid, R.

89, PHYSICAL, CHEMICAL, AND BIOLOGICAL PROPERTIES: PYRROLE PIGMENTS AND RELATED COMPOUNDS (Continued)

Part II: IRON PORPHYRINS (Concluded)

42] George, P., J. Biol. Chem. 200:413, 1953. [43] George, P., Biochem. J., Lond. 54:267, 1953. [44] George, P., and Irvine, D. H., ibid 60:596, 1955. 34] Laser, H., Biochem. J., Lond. 61:122, 1955. [35] Chance, B., Arch. Biochem., N. Y. 41:404, 1952. [36] Herbert, D., and Pinsent, A. J., Biochem. E., and Okunuki, K., Proc. Imp. Acad., Tokyo 16:299, 1940. [68] Keilin, D., and Hartree, E. F., Nature, Lond. 176:200, 1955; [69] Elsden, J. R., Kamen, M. D., and Vernon, L. P., J. Am. Chem. Soc. 75:6347, 1953. [70] Postgate, R., Biochim. biophys. acta 18:427, 1955. [71] Postgate, R., J. Gen. Microb., Lond. 14:545, 1956. [72] Postgate, R., ibid 15:186, 1956. [73] Tissières, A., Biochem. J., Lond. 64:582, 1956. [74] Tissières, A., and Burris, R. H., Biochim. biophys. acta 20:436, 1956. [75] Davenport, H. E., and Hill, R., Proc. Roy. Soc., Lond. B 139:327, 1952. [76] Ehrenberg, A., and Theorell, H., Acta chem. scand. 9:1193, 1955. [78] Paul, K. G., ibid 5:379, 1951. [80] Newton, J. W., and Kamen, M. D., Biochim. biophys. acta 21:71, 1956. [81] Newton, J. W., and Kamen, M. D., Arch. Biochem., N. Y. 58:246, 1955. [82] Bodo, G., Nature, Lond. 176:830, 1955. [83] Hagihara, B., et al, ibid 178:629, 630, 631, 1956. et al, J. Biochem., Japan 40:527, 1953. [65] Smith, L., J. Biol. Chem. 215:847, 1955. [66] Keilin, J., Biochem. J., Lond. 64:663, 1956. [67] Yakushiji, Blochem., N. Y. 66:463, 1956. [51] Hill, R., and Scarisbrick, R., New Phytologist 56:98, 1951. [52] Hill, R., and Hartree, E. F., Ann. Rev. Plant Physiol. 4:115, 1953. [53] Hill, R., Nature, Lond. 174:501, 1954. [54] Martin, E. M., and Morton, R. K., ibid 176:115, 1955. [55] Kun, E., Proc. Soc. Exp. Biol. 77:441, 1951. [56] Yoshikawa, H., J. Biochem., Japan 38:1, 1951. [57] Strittmatter, C. F., and Ball, E. G., Proc. Nat. Acad. Sc. U. S. 38:19, 1952. [58] Strittmatter, C. F., and Velick, S. F., J. Biol. Chem. 221:235, 1956. [60] Bailie, M., and Morton, R. K., Nature, Lond. 176:111, 1955. [61] Chance, B., and Williams, G. R., J. Biol. Chem. 209:945, 1954. 1957. [92] Garfinkel, D., Arch. Biochem., N. Y. 71:111, 1957. [93] Bendall, D. S., and Hill, R., New Phytologist 55:206, 1956. [94] Ball, E. G., and Cooper, O., J. Biol. Chem. 226:755, 1957. [95] Chance, B., and Smith, L., Nature, Lond. 175:803, 1955. [96] Ishimoto, M., et al, J. Biochem., Tokyo 44:413, 1957. J., Lond. 43:193, 1948. [37] Chance, B., Science 112:202, 1952. [38] Maehly, A. C., Arch. Biochem., N. Y. 56:567, 1955. [39] Morell, D. B., Austral. Pappenheimer, A. M., and Williams, C. M., ibid 209:915, 1954. [63] Chance, B., and Pappenheimer, A. M., ibid 209:931, 1954. [64] Egami, F., biophys, acta 21:518, 1956. [87] Vernon, L. P., and Kamen, M. D., J. Biol. Chem. 211:643, 1954. [88] Kamen, M. D., and Vernon, L. P., ibid 211:663, 1954. [89] Duysens, L. N., Nature, Lond, 173:692, 1954. [90] Appleby, C. A., thesis, Melbourne, 1957. [91] Yamashita, H., et al, Nature, Lond, 179:959. [45] Paul, K. G., in "The Enzymes: Chemistry and Mechanism of Action," (Sumner, J. B., and Myrback, K., ed.) vol. II, pt. 1, p 357, New York:
Academic Press, 1951, [46] Barrett, J., and Lemberg, R., Nature, Lond. 173:213, 1954. [47] Barrett, J., Biochem. J., Lond. 64:626, 1956.
[48] Chance, B., Science 120:767, 1954. [49] Appleby, C. A., and Morton, R. K., Nature, Lond. 173:749, 1954. [50] Boeri, E., and Tosi, L., Arch. 84] Hagihara, B., et al, ibid 179:249, 1956. [85] Kuby, S., et al, Acta chem. scand. 10:148, 1956. [86] Kamen, M. D., and Takeda, Y., Biochim. L. Exp. Biol. 31:567, 1953. [40] Morell, D. B., Biochem. J., Lond. 56:683, 1954. [41] Chance, B., Arch. Biochem., N. Y. 41:416, 425, 1952.

the nuclear H atoms 1, 2, 3, 4, 5, 6, 7, 8. While formula (A) describes the bilirubinoids as linear tetrapyrrolic chains with terminal hydroxyl groups, their structure is more correctly described as that of a tetrapyrrolic ring closed by a hydrogen bond between oxygen atoms (N>CO·HOC \leq N). All natural members are derived from Fischer's protoporphyrin IX by fission at the a-methene link. They are therefore known as Billrubinoids IX-a. These are derivatives of the tetrapyrrolic structure (A) formed by varying degrees of oxidation, and substitution of

The main reactions are as follows:

- P = Pentdyopent reaction: given by most bile pigments, hemalin compounds and dipyrryl methenes. D = Diazo reaction: depending on the splitting of the molecule at a central - CH2- group. E = Ehrlich reaction: characteristic of bilanes.
- S = Schlesinger reaction: given by dipyrryl methenes. F = Ferric chloride reaction: given by all except trienes and more highly oxidized pigments, and except tetrahydromesobilane and -bilene.

Substituent groups: E = (-CH₂CH₃); H, H₂ = hydrogen; M = (-CH₃); OH = hydroxyl; P = (-CH₂·CH₂·COOH); V = (-CH₁·CH₂) + = positive reaction; (+) = non-characteristic reaction; - = negative reaction.

Reference	(H)	A,1-4; B-D,F; a,E,4; G,1-9	A.1,2,10, 11;B,C, F,G,a; D,12;E,	A,G,7,12; B,C,E, F,a;D, 12	; acet. = ester; pyr. = absorption; rrcobilin" ment type
Remarks	(D)	Traces in normal, more in pathological urine, bile, and feces. Distinguished from 2 (below) by F reaction or by violet pigment (bands at 665, 600,	NaOH-CusO ₄ . Main excretory product of hemoglobin in most vertebrates. Distinguished from 1 (above) by negative F reaction, or NaOH-CusO ₄ reaction (only one band at 530-500 mu).	passages and in the intestine during ingestion of broad spectrum antibiotics (tetracyclines).	totropic form $A_N \subset C_0$, and a ring $A_N \subset C_0$ in the form $A_N \subset C_0$. /2/ Abbreviations: ac. a = acetic acid; acet. = H H H H H H H H H H H H H H H H H H
Reactions G D E P S F	(F)	+ + + + + + + + + + + + + + + + + + + +	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	+	CO. /2/ Abbr CO. /2/ Abbr ne); dil. = dilut = methyl; or. maximum in m /4/ The nome counds (1-6), n
Spectral Characteristics λ maximum in mμ ^{2, 3}	(E)	1ydrobilanes Red nirment (c. oh)	on treatment with Ehrlich aldehyde: approximately 560 mµ (64.5).	Red pigment (s. chl.) on treatment with Ehrlich aldehyde.	in the form H H H H OH H E H bform; cryst, = crystal(li ; MP = melting point; me rotation at 20°C. (3/ x) plution of 1 cm thickness, and urine. All six comp
Other Physical and Chemical Properties ²	(D)	blianes and Hydrobilanes Cryst.; MP = 1990C; s. al., am.al., chi., pet. eth., dil. alk;	Non-cryst.; MP = 125- 150°C; s. al., am. al., chl., eth., pet. eth., dil. alk.; i. w. [a] ²⁰ ₀ = -17°	Cryst. needles from eth. ac.; MP = 142-1750C; s. chl., eth. acet., bz., glac., ac.a., al., dil. alk.; sl. s. eth. ac., pet. eth.; i. w. [a]20 = +740	c, and a ring, e; chl. = chlore i; i. = insoluble a]20 = optical f millimolar sc occur in feces ne bilenes (4-6
Number of Pyrrole Nuclei in Chromophor, and Color	(C)	Colorless	Coloriess	Colorless	ic form H, H, bz. = benzen l; grn. = green l. = yellow. [. coefficients of urobilinogen, "rotations of th
Substituents in Positions 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 4 5 6 7 7 8 4 6 7 7 7 7 7 7 7 7 7	(B)	M JE JMLP LP M M JE OH	M.H.E.H.M.P. P.M. M.H.E.H. O= H H. H. H. H. H2 H2 H2 H2 H H H H	Unknown	acetone; al. = alcohol; alk. = alkali(ne); am. = amyl; bz. = benzene; chl. = chloroform; cryst. = crystal(line); dil. = dilute; dimeth. = dimethyl; est. = ester; eth. ac. = ethyl acetate; glac. = glacial; grn. = green; i. = insoluble; MP = melting point; me. = methyl; or. = orange; pet. = petroleum; pyr. = pyridine; sl. = slightly; s. = soluble; w. = water; yel. = yellow. [a]20 = optical rotation at 20°C. /3/ X maximum in mm = wave length of maximum absorption; figures in parentheses are E mM, i.e., extinction coefficients of millimolar solution of 1 cm thickness. /4/ The nomenclature is misleading. "Stercobilin" and "urobilin" and "urobilingen," occur in feces and urine. All six compounds (1-6), not only 1 and 4, belong to pigment type 1X-a. 1-, d-, and i- (inactive) refer to the optical rotations of the bilenes (4-6), but these three compounds are not stereochemical isomers.
Substance	(A)	Mesobilane4 (mesobiliru- binogen; i-ur obilinogen; urobilinogen IX-a)	2 Tetrahydro- mesobilane4 (stercobilin- ogen; 1-uro- bilinogen) (C ₃₃ H ₄₈ O ₆ N ₄)	d-Urobilinogen4 Unknown (C ₃₃ N ₄₂ O ₆ N ₄)?	acetone; al. = alcoho eth. = ether; eth. ac. pyridine; sl. = slighi figures in parenthes and "stercobilinoger IX-a. 1-, d-, and i

from 5 (below) by positive position in alcohol-HCl in F and P reactions, optireversion spectroscope. (above). Distinguished cal inactivity and band Oxidation product of 1 Remarks 9 89. PHYSICAL, CHEMICAL, AND BIOLOGICAL PROPERTIES: PYRROLE PIGMENTS Part III: BILIRUBINOIDS AND RELATED DIPYRRYL COMPOUNDS (Continued) Spectral Characteristics | Reactions | Amaximum in mµ2, 3 | G|D|E|P|S|F (F) 452(25.1) Alcohol-HCl: 490(50.1) 330(3.6) 375(7.4) AND RELATED COMPOUNDS (Continued) Dioxane-HCl: 495.2 in me. al.: 509.5 (<u>a</u> Bilenes and Hydrobilenes Zn complex Dioxane: and Chemical Properties² yel. cryst.; s. al., am. Physical al., chl., dil. alk.; 1900C6; 177°C5; 162°C5; 1990C6; Reddish-Other HCl = MP = <u>(D</u> MP= HCl = Chromophor, and Color Number of Nuclei in Pyrrole (C) Yellow Substituents in Positions 1

12	13	4	5	6	7	8	
1	12	13	4	5	6	7	8
2	3	4	5	6	7	8	
3	4	5	6	7	8		
4	5	6	7	8			
5	7	7	1	11	11	1V HOH HI (B)	

(C33H42O6N4)

Mesobilene4 (A)

4

Substance

Reference

C,F,G, a;D,1,

A,1,2;B (H)

E,2,12 12,13;

	A,1,2,10,	11;B,C,	F,G,a;	D,12;E,	1,2,12						A,G,7,12;	B, C, F,	1	12						A,1,2;B,C,	F, G, B;	20,21			
	- Oxidation product of 2	(above). Distinguished	from 4 (above) by negative	F and P reactions, opti-	cal activity (levorotatory),	and band position in	alcohol-HCl.					(above) in infected bile	and in reces or parients	treated with tetracyclines.						_	of hemoglobin and other	gallstones, bile feces of	newborn, hemorrhagic	infarcts (hematoidin).	"Indirect bilirubin"
-	+1-1-1-1-										+							-		1 + 1 + 1 + 1 + 1					
	Dioxane: 456(33.0)	Dioxane-HCl: 492.7	236°C; HCl Alcohol-HCl: 488(55.0)	372(8.5)	Zn complex	in al.: 506.5	Cu complex	in al.: 515	[2] 20 free: 320	D HCl: -3800	Dioxane-HCl: 495.2	20 HCI: +5000	ı						es	form:	OH: 420				
j. w.	Or. cryst.; Die		236°C; HC1 A16	= 1620C; s.			dil. alk.; Cu				Oryel. Die	cryst.; MP [a]20 HCl:	= 1 (40 C;	HCl =	165°C; s.	eth. ac.;	sl. s. me.	al.	Biladienes	MP dimeth. Ch	est. = 198- NaOH:	hot pvr.	hot chl.,	CC14, dil.	
	2 (Yellow									2	Yellow									Orange				
		P4	lin; H. F.H. TH. TH TH TH TH TH TH		O,N,O						4 Unknown	(C33H40O6N4.2H2O)?								M N N N N N N N N N N N N N N N N N N N	(C33H36O6N4) HO 1-2-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	- и и - и 2и и			
	5 Tetrahydro-	mesobilene4	(stercobilin;	l-urobilin)	(C22HA6O6NA)	O.# .					6 d. Urobilin4	C33H40								7 Bilirubin	(C ₃₃ H ₃₆ (_

sl. s. eth.;

	1;B-D, F,a;E, 2;G,3	C,D,F, a;E,2; G,2,4,15	2,14; B-D,F, a,E,2; G,2,4, 15
	A,1;B-D, F,a;E, 2;G,3	, A	A,2,14; B-D, a;E,2 G,2,4 15
in serum of hemolytic jaundice is bilirubin combined with serum albumin. "Direct bilirubin" of bile and in serum and urine of other forms of jaundice is bilirubin diglucuronide, free or combined with serum albumin. Reduction with Na/Hg gives mesobilane. S reaction with iodine: 635 rau band of bilipurpurin.	Possibly present in small intestine and bile. Reduction with Na/Hg gives mesobilane. S reaction with iodine: 625 mµ band of mesobilipurpurin.	Prosthetic group of phycoerythrins (chromoproteins of red and some blue algae) which act as efficient photosynthesizers in algal photosynthesis. Similar pigments in fishes and invertebrates.	Prosthetic group of phyco- cyanins (chromoproteins of blue and some red algae) which act as effi- cient photosynthesis. Similar pigments in fishes and invertebrates. In human feces, probably derived from mesobilane.
	+ + + + +	Sgrn yel. flu- orescence	S red fluores- cence
	425(61.4)	605(weak) 557(weak) 497 560 495 630(weak)	570-575 598 625-629 575(weak)
	Chloroform:	HCI/chloro- form: 5% HCI: Zn complex in al.:	Chloroform: 5% HCl: Zn complex in al.:
alk.; sl. s. ac. a., eth. ac.; i.w., al., eth.	MP = 3150C, dimeth. estHCl = 1900C; s. pyr., chl., dil. alk., sl. s. eth. a.C., eth.; i.w.	S. chl., bz., dil. alk.; sl. s. eth.; i. w.	MP·HCl = 165°C; s. chl., bz dil. alk.; sl. s. eth.; i. w.
	2 x 2 Orange	2 or 3	3 Violet
	E OH	E	H H
	ZI, H	Ziji	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
	[A, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	A	Q.1.1.1
	E H	MIP P P M	A , E , H
	H	HO HO H	H ₂
	MH		M H H
	Mesobilirubin M E M P P M C 33H4006N4 H H H H H H H H H	Mesobili- erythrin (mesobili- rhodin) (C33H40O6N4)	Mesobiliviolin M E M P P M C 33H40O6N4) HO
	∞	6	10

figures in parentheses are EncM. i.e., extinction coefficients of millimolar solution of 1 cm thickness, /4/ The nomenclature is misleading. "Stercobilin" and "stercobiling "urobilin" and "urobilingen," occur in feces and urine. All six compounds (1-6), not only 1 and 4, belong the pigment acetone; al. = alcohol; alk, = alkali(ne); am. = amyl; bz. = benzene; chl. = chloroform; cryst. = crystal(line); dil. = dilute; dimeth. = dimethyl; est. = ester; type IX-a. 1-, d-, and i- (inactive) refer to the optical rotations of the bilenes (4-6), but these three compounds are not stereochemical isomers. /5/ According to Watson, C. J., et al [12]. /6/ According to Fischer, H., and Orth, H., [1], and Fischer, H., and Halbach, H., [13].

in the form \(\int_{\text{NJ}} \corr \) /2/ Abbreviations: ac.a. = acetic acid; acet. =

11/ A ring AN may be present in the prototropic form AN CO, and a ring AN in OH

89. PHYSICAL, CHEMICAL, AND BIOLOGICAL PROPERTIES: PYRROLE PIGMENTS AND RELATED COMPOUNDS (Concluded)
Part III: BILIRUBINOIDS AND RELATED DIPYRRYL COMPOUNDS (Concluded)

Reference	(H)		A.D.E.2: B.C.F. a.G.2-4, 15,16	A,D.1.5;B, C,F,a; E,2;G,2, 4,15	A 2.B.D	A, c, B - D, F, G, a; E, 1, 2	A,2,17;B- G,a		A, 2; B-G, a
Remarks	(5)		Intermediate in bilirubin formation from hemoglobin. In green bile of some animals, meconium, egg shells of many birds, placenta of some mammals, hematomas; also in invertebrates. Blue-green stage of Gmelin reaction. S reaction with iodine same as for bilirubin. Biliverdiniron present as prosthetic group of (inactive) liver catalasse.	trienes present in hemo- lymph and integuments of insects and in other invertebrates. S reac- tion with iodine same as for mesobllirubin.			Purple stage of Gmelin reaction and other oxidations of bilirubins and biliverdins.		Final yellow stage of Gmelin A,2;B-G,a reaction and other oxidations of bilirubins, biliverdins, and bilipurpurins.
Reactions G D E P S F	(F)		+ - - - +	1 1 + ,	1 111 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	S reaction slowly red fluores-	S reaction red fluo-		S reaction green fluo- rescence
oectral Characteristics λ maximum in mμ ^{2, 3}	6		640(10.4) 392(25) 680(28) 377(48) / max 675 Amin 500	670(30.9) 363(46.8) 309(17.8)		416(40.5)	635-645		490-495
Spectral Characteristics λ maximum in mμ², 3	(E)	ienes	Me. al.: 5% HCl/me. al.: Aqueous HCl/ al.:	5% HC1/me. al.:	nones	Mesobili- chrysin in NH3/al.:	Zn complex in al.: Zn complex of meso compound:	iones	HCJ/al.: Zn complex in al.:
Other Physical and Chemical Properties ²	(D)	Bilatrienes	MP dimeth. est. = 216- 2330C; s. hot me. al. hot glac. ac. a., dil. alk.; sl. s. eth., chl., dil. HCl; i.w.	MP = 316- 3180C, dimeth. est. = 214- 2320C; s. hot me. al., dil. alk.; sl. s. eth., chl., dil. HCl: i. w.	Biladienones	Mr mesobili- Mesobili- Chrysin = Chrysin 240° C. NH ₃ /al	Resembles biliviolins.	Bilenediones	Resembles urobilins.
Number of Pyrrole Nuclei in Chromophor, and Color	(C)		Blue-green	Green-blue		Yellow	3 Purple		2 Yellow
Substituents in Positions Number of Pyrrole 1 2 3 4 5 6 7 8 Nuclei	(B)			HO OH H H H - H H	- }	inchrysin (C ₃₃ H ₃₄ O ₇ N ₄) HO '	M W W M P M W V HO H H H H H H H H H H		holetelins ⁷ (C ₃₃ H ₃₄ O ₈ N ₄) (HO ₁
Substance	(A)			(mesobilin (mesobili- verdin) (C ₃₃ H ₃₈ O ₆ N ₄)		(C ₃₃ H ₃₄ O ₇ N ₄) and meso- bilichrysin	14 Bilipurpurins ⁷ M (C ₃₃ H ₃₄ O ₇ N ₄) HO and related H compounds		Choletelins ⁷ (C ₃₃ H ₃₄ O ₈ N ₄) and related compounds

	A,2,4,18,	19;B,C,	E,F,a;	D,18,19;	G,3,4																			cid;
	Products of oxidative-	reductive decomposition	of bile pigments and heme	compounds. In feces and	pathological urines; also	obtained from gallstones.	Artifacts, but some pos-	sibly formed in intestine	in vivo.															Abbreviations: ac.a. = acetic a
	1									·								 	 			-	=+	CO. 121
Obilifus No obomotonistic	NO CHAFACTERISCIE	absorption.												Pentdyopents Characteristic absorp-	tion band in NaOH	approximately 525	тр (523-535 тр)	which accounts for	name, "pentdyopent."					ng in the form
Probilifue		cins:	Amor-	phous,	colorless;	s.w.; i.bz.,	pet. eth.;	trans-	formed by	acid into	brown	amorphous	bilifuscins.	Pentdyopents	and pro-	pentdyo-	pents:	Crystal-	line, color-	less; s.w.,	red Na	salts.		CO. and a rin
1 or 2	3 7	Colorless	or	brown																				ic form
Structures not definitely	3		dipyrrylmethanes and their	oxidation and polymeriza-	tion products.		04-6N2)																	11/ A ring ANA may be present in the prototropic form ANA CO. and a ring ANA in the form ANA CO. 12/ Abbreviations: ac.a. = acetic acid;
16 Probilifuscins		(bilileucanes),	bilifuscins,	propentdyo-	pents, and	pentdyopents	$(C_{15-17}H_{18-22}^{O_{4-6}N_2})$																	/ A ring An人
16 Probilifuscin	The state of the s	(bilileucan	bilifuscins	propentdyo	pents, and	pentdyopen	(C ₁₅₋₁₇ H ₁₈																	111 A

pyr. = pyridine; sl. = slightly; s. = soluble; w. = water; yel. = yellow. /3/ λ maximum in mμ = wave length of maximum absorption; figures in parentheses are E. m., i.e., extinction coefficients of millimals solutions. Elem, i.e., extinction coefficients of millimolar solution of 1 cm thickness. /7/ According to the conditions of formation the linkage between rings III and IV may be (R = OH, OCH, NO, or Br) se well se acet. = acetone; al. = alcohol; alk. = alkali(ne); am. = amyl; bz. = benzene; chl. = chloroform; cryst. = crystal(line); dil. = dilute; dimeth. = dimethyl; est. = ester; eth. = ether; eth. ac. = ethyl acetate; glac. = glacial; grn. = green; i. = insoluble; MP = melting point; me. = methyl; or. = orange; pet. = petroleum; as well as ; and ring IV may be (R = OH, OCH3, NO2, or Br), as well as

Contributors: (a) Lemberg, R., (b) Rossi-Fanelli, A., (c) Schmid, R.

18] Von Dobeneck, H. H., Zschr. ges. inn. M. 3:252, 1948. [19] Siedel, W., Stich, W., and Eisenreich, F., Naturwissenschaften 35:316, 1948. [20] Lascelles, References: [1] Fischer, H., and Orth, H., "Die Chemie des Pyrrols," Band II, 1. Hälfte, Leipzig: Akademische Verlagsgesellschaft, 1937. [2] Lemberg, R., and Legge, J. W., "Hematin Compounds and Bile Pigments," New York: Interscience Publishers, 1949. [3] Gray, C. H., "The Bile Pigments," London: 14] Siedel, W., and Moeller, H., ibid 264:64, 1940. [15] Lederer, E., Biol. Rev. Cambridge Philos. Soc. 15:273, 1940. [16] Lemberg, R., Reviews of C. J., Minnesota M. 39:294, 403, 467, 1956. [8] Lemberg, R., Lockwood, W. H., and Wyndham, R. A., Austral. J. Exp. Biol. 16:169, 1938. [9] Legge, J. W., Biochem. J., Lond. 44:105, 1949. [10] Birch, A. J., Chemistry and Industry, p 62, 1955. [11] Gray, C. H., and Nicholson, D. C., Nature, Lond. 179:264, 1957. [12] Watson, C. J., J. Biol. Chem. 218:633, 641, 1956. [13] Fischer, H., and Halbach, H., Zschr. physiol. Chem. 238:59, 1936. Methuen, 1953. [4] With, T. K., "Biology of Bile Pigments," Copenhagen: A. Frost-Hansen, 1954. [5] Watson, C. J., Harvey Lect., Balt. 44:41, 1950. Pure and Applied Chemistry, Royal Australian Chemical Institute 6:1, 1956. [17] Siedel, W., and Grams, E., Zschr. physiol. Chem. 267:49, 1940. 6] Baumgärtel, T., "Physiologie und Pathologie des Bilirubinstoffwechsels als Grundlage der Ikterusforschung," Stuttgart: G. Thieme, 1950. J., Biochem. J., Lond. 66:65, 1957. [21] Schmid, R., J. Biol. Chem. 229:881, 1957.

90. PHYSICAL, CHEMICAL, AND BIOLOGICAL PROPERTIES: CYTOCHROMES OF ANIMALS AND HIGHER PLANTS

The cytochromes of animals and higher plants are intracellular chromoproteins which are entirely associated with lipoprotein structural elements of the cytoplasm. The prosthetic group contains coordinated iron which may undergo alternate oxidation and reduction.

Source		0					
Pigments of micro 189 Pigments of micr	3	1		Spectral Chara	acteristics	a street	Reference
Pigments of failor	Source	Cytocar other		Reduced	Oxidized		
Pigments of mito- Pigments of mito- Pigments of mito- Pigments of mito- Pigments of mito- Pigments of mito- Pigments of mito- Pigments of mito- Pigments of mito- Pigments of mito- Pigments of mito- Pigments of the endo- Pigments of mito- Pigments of the endo- Pigments of mito- Pigments o	(A)	(B)	(2)	(D)	(E)	(F)	(B)
Pigments of mito-				al Pigments			
PG		cs		603 452	590-600		B,C,1,2;B,D, 3;B,E,4
Pigments of the endo- December 1970 Pigments of the endo- December 2012 Pigments of the endo- December 3 Pigments of the endo- December 4 Pigm		83		604	290-600	Carbon monoxide-a3 complex, when	B,D,F,3;E,4;
Pigments of the endo- py Ref = protohematin; E'_s = -0.04 volte, 54(20.8) Pigments of the endo- py Ref = hematin-c; Pe = 59(27.8) Pigments of the endo- py Ref = hematin-c; Pe = 59(27.8) Pigments of the endo- py Ref = hematin-c; Pe = 10.25 volts Pigments of the endo- py Ref = hematin-c; Pe = 10.25 volts Pigments of the endo- py Ref = hematin-c; Pe = 10.25 volts Pigments of the endo- py Ref = hematin-c; Pe = 10.25 volts Pigments of the endo- py Ref = hematin-c; Pe = 10.25 volts Pigments of the endo- py Ref = hematin-c; Pe = 10.25 volts Pigments of the endo- py Ref = hematin-c; Pe = 10.25 volts Pigments of the endo- py Ref = hematin-c; Pe = 10.25 volts Pigments of the endo- py Ref = hematin-c; Pe = 10.25 volts Pigments of the endo- py Ref = hematin-c; Pe = 10.25 volts Pigments of the endo- py Ref = hematin-c; Pe = 10.25 volts Pigments of the endo- py Ref = 10.25 volts Pigments of the endo- py Ref = hematin; pe = 10.25 volts Pigments of the endo- py Ref = 10.25 volts Pigments of the endo- py Ref = 10.25 volts Pigments of the endo- py Ref = 10.25 volts Pigments of the endo- py Ref = 10.25 volts Pigments of the endo- py Ref = 10.25 volts Pigments of the endo- py Ref = 10.25 volts Pigments of the endo- py Ref = 10.25 volts Pigments of the endo- py Ref = 10.25 volts Pigments of the endo- py Ref = 10.25 volts Pigments of the endo- py Ref = 10.25 volts Pigments of the endo- py Ref = 10.25 volts Pigments of the endo- py Ref = 10.25 volts Pigments of the endo- py Ref = 10.25 volts Pigments of the endo- py Ref = 10.25 volts Pigments of the endo- py Ref = 10.25 volts Pigments of chloro- Pigment		}		448	418-420	reduced, has absorption bands at 590- 593 mu and at 432 mu.	F, 5
Pigments of the endo- MW = 12,200; PG = hematin-c; Pe = 590(27.8) 530 Data refer to pigment purified from horse B, 190 10,45%; heat stable at neutral BH 10.5-10.8; 190 10,45%; heat stable at neutral BH 10.5-10.8; 190 10,45%; heat stable at neutral BH 10.5-10.8; 190 10,45%; heat stable at neutral BH 10.5-10.8; 190 10,45%; heat stable at neutral BH 10.5-10.8; 190 10,45%; heat stable at neutral BH 10.5-10.8; 190 10,40%; heat stable by plasmic reticulum4 10,40%; heat stable by the non-mitochondrial oxidation of reduced proto 556(25.6) 500-580 dentical with cynochrome-m. Separate B	3	Q		564(20.8)	416		B-D,6,7;C,2;
MW = 12,200; PG = hematin = 2,90		I	,	530			9'E
Pigments of the endo- Pigments of the endo-	4"	o1	MW = 12,200; PG = hematin-c; Fe =	550(27.8)	530	Data refer to pigment purified from horse	m
Pigments of the endo- big 10.255 voits. 15 15 15 15 15 15 15 1			0.45%; heat stable at neutral pH;	250	408	heart. Fe content may be increased by	D,E,12,13;
Pigments of the endo- pigments of the endo-			isoelectric point pH 10.5-10.8;	415	355	enrichment with iron-containing	F,9,10,12,
Pigments of the endo- plasmic reticulum ⁴ Pigments of the endo- plasmic reticulum ⁴ Pigments of the endo- plasmic reticulum ⁴ Pigments of the endo- plasmic reticulum ⁴ Pigments of the endo- plasmic reticulum ⁴ Pigments of the endo- plasmic reticulum ⁴ Pigments of the endo- plasmic reticulum ⁴ Pigments of mito- plasmic reticulum ⁴ Pigments of chloro- plasmic reticulum ⁴ Pigments of mito- plasmic reticulum ⁴ Pigments of chloro- plasmic reticulum ⁴ Pigments of mito- plasmic reticulum ⁴ Pigments of chloro- plasmic reticulum ⁴ Pigments of plasmic reticulum ⁴ Pigments of chloro- plasmic reticulum ⁴ Pigments of chloro- plasmic reticulum ⁴ Pigments of chloro- plasmic reticulum ⁴ Pigments of chloro- plasmic reticulum ⁴ Pigments of chloro- plasmic reticulum ⁴ Pigments of chloro- plasmic reticulum ⁴ Pigments of chloro- plasmic reticulum ⁴ Pigments of chloro- plasmic reticulum ⁴ Pigments of chloro- plasmic reticulum ⁴ Pigments of chloro- plasmic reticulum ⁴ Pigments of chloro- plasmic reticulum ⁴ Pigments of chloro- plasmic reticulum ⁴ Pigments of chloro- plasmic reticulum ⁴ Pigments of chloro- plasmic reticulum ⁴ Pigments of chloro- plasmic reticulum ⁴ Pigments of chloro- plasmic reticulum ⁴ Pigments of chloro- plasmic reticulum ⁴ Pigments of chloro- plasmic reticulum chloro- plasmic reticulum chloro- plasmic reticulum chloro- plasmic reticulum chloro- plasmic reticulum chloro- plasmic reticulum chloro- plasmic reticulum chloro- plasmic reticulum chloro- plasmic reticulum chloro- plasmic reticulum chloro- pl	ı,c		PG = hematin-c	553-554	410	Identical with cytochrome-e.	B,D,14,15;C,
Pigments of the endo- plasmic reticulum4 non-mitochondrial oxidation of plasmic reticulum4 non-mitochondrial oxidation of plasmic reticulum4 non-mitochondrial oxidation of reduced DPN and and of reduced DPN and and and of reduced DPN and and of reduced DPN and and of reduced DPN and and and and and and and and and and		71		522-524			E,14;F,15,
plasmic reticulum ⁴ non-mitochondrial oxidation of 526 413 flavoproteins catalyze the reactions of Treduced DPN and of reduced a 220-340 355-370 DPNH and of TPNH with cytochrome-reduced DPN and of reduced prote 556(22.7) 562 DPNH and of TPNH with cytochrome-reduced DPN and of reduced DPN and of r	-		MW = 16,900; PG = protohematin;	556(25.6)	500-580	Identical with cytochrome-m. Separate	B, D, E, 17; C,
Intracellular pig- ments5 ments6 TPN: Eg. = 0.12 volts. ments6 ments6 MW = 18.500; PG = modified proto- ments6 ments7 ments6 MW = 18.500; PG = modified proto- ments6 ments7 MW = 18.500; PG = modified proto- ments8 MW = 18.500; PG = modified proto- ments6 ments7 Pigments of mito- a As found in animal mitochondria. Presence indicated by cyanide inhibition of respiration, and by shift in spectrum observed with carbon monoxide. by Pigments of the endo- by Pigments of the endo- by Pigments of chloro- by Pigments of chloro-	plasmic reticulum		non-mitochondrial oxidation of	929	413	flavoproteins catalyze the reactions of	17,18;F,18,
Intracelular pig- ments MW = 18,500; PG = modified proto- ments Am neutral pH; isoelectric point			reduced DPN and of reduced	423	355-370	DPNH and of TPNH with cytochrome-	19
Intracellular pig- ments5 ments6 ments6 ments7 ments6 ments7 ments7 ments7 ments7 ments8 ments8 ments1 ments1 ments8 ments1 ments6 ments7 ments8 ments1 ments1 ments1 ments6 ments7 ments7 ments8 ments1 ments1 ments1 ments2 ments2 ments3 ments4 ments1 ments6 ment			TPN; E' _o = 0.12 volts.	320-340		bs in animal tissues.	
Pigments of mito- a As found in animal mitochondria. Presence indicated by chondria formation; Fe = 0.3%, heat stable 526.5 536 brates. Helicorubin is probably a at neutral pH; isoelectric point 422 408 degraded form of cytochrome-h. Figments of mito- a As found in animal mitochondria. Presence indicated by cyanide inhibition of respiration, and by shift in spectrum observed with carbon monoxide. b	-	य।	MW = 18,500; PG = modified proto-	556(22.7)	562	Occurs in land snails and other inverte-	B, C, F, 20, 21;
Pigments of mito- a As found in animal mitochondria. Presence indicated by chondriable as spectroscopic and spectrophotometric observations. b As found in animal mitochondria. Presence indicated by chondriable as spectroscopic and spectrophotometric observations. chondriable b As found in animal mitochondria. Presence indicated by cyanide inhibition of respiration, and by shift in spectrum observed with carbon monoxide. c c c c c c c c c c c c c c c c c c c	ments ⁵		hematin; Fe = 0.33%; heat stable	526.5	536	brates. Helicorubin is probably a	D-E,20
Pigments of mito- a As found in animal mitochondria. Presence indicated by chondria6 chondria6 b As found in animal mitochondria. Presence indicated by cyanide inhibition of respiration, and by shift in spectrum observed with carbon monoxide. c C C C C C pigments of the endo- plasmic reticulum? D D pigments of chloro- b As found in animal mitochondria. Presence indicated by cyanide inhibition of reduced DPN. C pigments of chloro- b As found in animal mitochondria in wheat roots pigments of the endo- plasts8 D D pigments of mitochondria from wheat roots pigments of chloro- b As found in animal mitochondria from wheat roots pigments of chloro- b Arum maculata. pigments of green leaves. pigments of chloro- b Arum maculata. pigments of chloro- b Arum maculata. pigments of green leaves. pigments of chloro- pigments of chloro- b Arum maculata. pigments of chloro- b Arum maculata. pigments of chloro- b Arum maculata. pigments of green leaves. pigments of chloro- b Arum maculata. pigments of green leaves. pigments of chloro- pigments of chlo			at neutral pH; isoelectric point	422	408	degraded form of cytochrome-h.	
Pigments of mito- a				Plant Pigments			
chondria6 ay spectroscopic and spectrophotometric observations. chondria6 by spectroscopic and spectrophotometric observations. cyanide inhibition of respiration, and by shift in spectrum observed with carbon monoxide. c c c c c c c c c c c c c c c c c c c	_		T TORREST TO THE TOTAL PROPERTY OF THE TOTAL	Idile 4 penients			A-F 22-25
chondriab as spectroscopic and spectrophotometric observations. Cyanide inhibition of respiration, and by cyanide inhibition of respiration, and by cyanide inhibition of respiration, and by cyanide inhibition of respiration, and by cyanide inhibition of respiration, and by cyanide inhibition of respiration, and by cyanide inhibition of respiration, and by cyanide inhibition of respiration, and by cyanide inhibition of respiration, and by cyanide inhibition of respiration, and by cyanide inhibition of respiration, and by cyanide inhibition in wheat roots. Pigments of the endo- by drial oxidation of reduced DPN 525 and beet petiole. A pigment with a similar spectrum observed in autolisates of chloro- be rotohematin; $E_0' = -0.06$ volts. 563 Distinguished from cytochrome-by plasts greater stability to organic solvents.		ď	As found in animal mitochondria. Fr	resence indicat	ed by		A-E,22-25,
Pigments of the endo- plasmic reticulum? Pigments of chloro- plasts8 Eg Eg Eg Eg Eg Eg Eg Eg Eg E		PB 3	spectroscopic and spectrophotome	tric observatio	ns.	Role in electron transport interred by	A-E,22-25;
Present in high concentration in wheat roots. Pigments of the endo- plasmic reticulum? Pigments of chloro- p Present in high concentration in wheat roots. Present in high concentration in wheat roots. Arum maculata. S560 Arum maculata. Observed in mitochondria from spadix of Arum maculata. Arum maculata. Observed in mitochondria from wheat roots and of reduced DPN 425 Similar spectrum observed in autolisates of green leaves. Pigments of chloro- p 6 PG = protohematin; E' ₀ = -0.06 volts. S63 Distinguished from cytochrome-b by greater stability to organic solvents.						shift in spectrum observed with carbon	07(17)
Present in high concentration in wheat roots. Pigments of the endo- plasmic reticulum? Pigments of chloro- plasts8 Pigments of chloro- pg PG = protohematin; non-mitochon- plasts8 Present in high concentration in wheat roots Aroum maculata. Aroum maculata. Aroum maculata. Aroum maculata. Observed in mitochondria from spadix of Arum maculata. Aroum maculata. Aroum maculata. Observed in mitochondria from wheat roots and beet petiole. A pigment with a similar spectrum observed in autolisates of green leaves. Distinguished from cytochrome-b by greater stability to organic solvents.						monoxide.	
Present in high concentration in wheat roots. Pigments of the endo-by PG = protohematin; non-mitochon-formula from spadix of drial oxidation of reduced DPN formula from spadix of similar spectrum observed in mutochondria from spadix of drial oxidation of reduced DPN formula from spadix of spanning from wheat roots and of reduced TPN. Pigments of chloro-by PG = protohematin; E'_0 = -0.06 volts. formula from cylochrome-by greater stability to organic solvents.	10	٩١					A-E,22-25
Pigments of the endo- plasmic reticulum? Pigments of chloro- $\frac{c}{b}$ Pigments of chloro-	11	OI					A-E,22-25,27
Pigments of the endo- plasmic reticulum? Pigments of chloro- plasmic reticulum? Pigments of chloro- plasts8 Pigments of chloro- plasts8 Pigments of the endo- plasmic reticulum? Pigments of chloro- plasts8 Pigments	12	2				Present in high concentration in wheat	A-E,22-25,27
Pigments of the endo- plasmic reticulum? Pigments of chloro- plasmic reticulum? Pigments of chloro- plasts8 PG = protohematin; non-mitochon- plasts8 PG = protohematin; non-mitochon- plasmic reticulum? Arial oxidation of reduced DPN plasts8 Pigments of chloro- p						roots.	F,22
Pigments of the endo- plasmic reticulum? Pigments of the endo- plasmic reticulum? Pigments of chloro- Pigments	13	2 <u>q</u>		560		Observed in mitochondria from spadix of	B-F,28
Pigments of the endo- plasmic reticulum? plasmic reticulum? and of reduced TPN. Pigments of chloro- plasts8 PG = protohematin; non-mitochon- plasts8 PG = protohematin; E' ₀ = -0.06 volts.	_			529		Arum maculata.	0 0
Pigments of chloro- Pigments of chloro- plasts8 plasts8 grad of reduced TPN. and of reduced TPN. 425 sates of green leaves. Pigments of chloro- p ₆ PG = protohematin; E' ₀ = -0.06 volts. Sates of green leaves. Distinguished from cytochrome-b by greater stability to organic solvents.	_			559		Observed in microsomes from wheat roots	8,C,25;B,D,
Pigments of chloro- b_6 PG = protohematin; $E_0' = -0.06$ volts. 563 Distinguished from cytochrome- b by greater stability to organic solvents.	pidsmic reticulum		and of reduced TPN.	425		similar spectrum observed in autoli-	62
Pigments of chloro- b_6 PG = protohematin; $E_0' = -0.06$ volts. 563 Distinguished from cytochrome- b by plasts8						sates of green leaves.	
		9 _q		563		Distinguished from cytochrome-b by greater stability to organic solvents.	B-F,30
	222						

in B-F,31;F,32	
Isolated from parsley. Localization in chloroplasts observed in etiolated leaves.	
410	
555 526 421	330
MW = 110,000; PG = hematin- \underline{c} ; heat labile; E_0' = 0.365 volts.	
مدا	
16	

/1/ PG = prosthetic group; MW = molecular weight; Eo = oxidation-reduction potential. /2/ A maximum in mm = wave length of maximum absorption; figures in parentheses are E mm, i.e., extinction coefficients of millimolar solutions of 1 cm thickness. /3/ e.g., from rat liver [33]. /4/ Found in microsomes in parentheses are E m.W. i.e., extinction coefficients of millimolar solutions of 1 cm thickness. /3/ e.g., from rat liver [33], /4/ Found in microsomes [18,19]. /5/ Intracellular localization unknown. /6/ e.g., from wheat roots [22]. /7/ Found in microsomes [25]. /8/ Cytochrome-be and cytochrome-f probably are components of a system for oxidation of reduced lipoic acid formed during photosynthesis. The energy from this oxidation is used for generation of ATP from ADP and inorganic phosphate. [34]

Contributors: Morton, R. K., and Armstrong, J. M.

43:107, 1956. [8] Keilin, D., Proc. Roy. Soc., Lond., B104:206, 1929. [9] Tint, H., and Reiss, W., J. Biol. Chem. 182:385, 397, 1950. [10] Henderson, R. W., and Rawlinson, W. A., Biochem. J., Lond. 62:21, 1956. [11] Keilin, D., and Hartree, E. F., Proc. Roy. Soc., Lond., B122:298, 1937. [12] Keilin, 178:631, 1956. [14] Okunuki, K., and Yakashiji, E., Proc. lmp. Acad., Tokyo 17:263, 1941. [15] Keilin, D., and Hartree, E. F., Nature, Lond. 164:254, 1949. [16] Keilin, D., and Hartree, E. F., ibid 176:200, 1956. [17] Strittmatter, P., and Velick, S. F., J. Biol. Chem. 221:253, 277, 1956. [18] Balue, D., and Slater, E. C., Brit. M. Bull. 9:89, 1953. [13] Hagihara, B., Horio, T., Nozaki, M., Sekuzu, I., Yamashita, J., and Okumuki, K., Nature, Lond. M. J., and Morton, R. K., Nature, Lond. 176:111, 1955. [19] Strittmatter, P., and Ball, E., J. Cellul. Physiol. 43:57, 1954. [20] Keilin, J., Biochem. References: [1] Lemberg, R., Nature, Lond. 172:619, 1953. [2] Ball, E., Biochem. Zschr. 295:262, 1938. [3] Keilin, D., and Hartree, E. F., Proc. Morton, R. K., Nature, Lond. 176:113, 1955. [26] Lundegårdh, H., ibid 169:1088, 1952. [27] Goddard, D. R., Am. J. Bot. 131:270, 1944. [28] Bendall, 31] Davenport, H. E., and Hill, R., Proc. Roy. Soc., Lond., B139:327, 1952. [32] Davenport, H. E., Nature, Lond. 170:1112, 1952. [33] Chance, B., Roy. Soc., Lond., B127:167, 1939. [4] Wainio, W. W., and Cooperstein, S. J., Advances Enzymol., N. Y. 17:347, 1956. [5] Chance, B., J. Biol. Chem. 202:397, 1953. [6] Hübscher, G., Kiese, M., and Nicholas, R., Biochem. Zschr. 325:223, 1954. [7] Sekuzu, I., and Okunuki, K., J. Biochem., Japan Lond. 64:663, 1956. [21] Keilin, J., Nature, Lond. 180:427, 1957. [22] Martin, E. M., and Morton, R. K., Biochem. J., Lond. 65:404, 1957.
 Bhagvat, K., and Hill, R., New Phytologist 50:112, 1951. [24] Hartree, E. F., Advances Enzymol., N. Y. 18:1, 1957. [25] Martin, E. M., and D. S., and Hill, R., New Phytologist 55:206, 1956. [29] Hill, R., and Scarisbrick, R., Ibid 50:98, 1951. [30] Hill, R., Nature, Lond. 174:501, 1954. and Williams, G. R., J. Biol. Chem. 217:395, 1955. [34] Arnon, D. I., Science 122:9, 1955, The cytochromes are part of the terminal oxidation system (oxygen reduced by the hydrogen atoms from various reduction. The energy of the various partial oxidations is used to form adenosine triphosphate (ATP) from adenosine process is known as "oxidative phosphorylation." [1-3] The following schematic drawing shows some of the known oxidized.

/1/Some substrates are activated by DPN-specific, some by TPN-specific dehydrogenases. DPN (diphosphopyridine II, respectively. /2/ Transhydrogenase catalyzes transfer of hydrogen from reduced TPN to DPN. /3/ The dotted from the action of a DPN-specific dehydrogenase. /4/Succinic dehydrogenase, for example, is a typical flavoprotein reduce the flavin prosthetic group of a dehydrogenase directly in the respiratory chain, or /6/ reduce the heme is destroyed by BAL (British Anti-Lewisite, or 1, 2-mercaptopropanol) influences the interaction of cytochrome-b_A. [5]

Contributor: Morton, R. K.

References: [1] Chance, B., and Williams, G. R., J. Biol. Chem. 217:429, 1955. [2] Chance, B., Williams [4] Slater, E. C., Biochem. J., Lond. 45:14, 1949. [5] Potter, V. R., and Reif, A. E., J. Biol. Chem. 194:287.

substrates, thus forming water). Each step, as indicated in the diagram below, involves both oxidation and diphosphate (ADP) and inorganic phosphate (Pi), by coupling with the various phosphorylating enzyme systems. This components of the respiratory chain. Up to three molecules of ATP may be synthesized per molecule of DPNH

nucleotide) and TPN (triphosphopyridine nucleotide) are commonly used abbreviations for Coenzyme I and Coenzyme arrow indicates that reduced DPN arising by transhydrogenase action eventually may pool with reduced DPN formed dehydrogenase of the respiratory chain. /5/ The dotted arrows indicate that the reduced flavoprotein may either prosthetic group of cytochrome b, which is part of the respiratory chain. /7/ Slater has shown that a factor which with cytochrome-c. [4] This may be identical with a factor which is sensitive to low concentrations of Antimycin

G. R., Holmes, W. F., and Higgins, J., ibid <u>217</u>:439, 1955. [3] Slater, E. C., Chem. wbl., Amst. <u>53</u>:180, 1957. 1952.

92. PHYSICAL, CHEMICAL, AND BIOLOGICAL PROPERTIES: BACTERIAL CYTOCHROMES

Cytochromes are characterized by their typical bands in the absorption spectra and these can be distinguished in intact bacteria, Some bacteria contain cytoidentical with the mammalian pigments, even though they serve similar functions. Other bacteria have cytochromes with rather different absorption spectra. chromes with absorption spectra similar to those of cytochromes present in mammalian tissues and yeast. However, the bacterial cytochromes may not be In the bacteria studied, except the anaerobic and photosynthetic, all of the cytochromes are rapidly oxidized in air and reduced when the oxygen in solution is exhausted.

and ce have been observed to occur only in bacteria. Part I: ABSORPTION SPECTRA OF CYTOCHROMES IN INTACT BACTERIA

	Function	(D)	Intermediate in electron transport.	Terminal oxidase.	Alternate terminal oxidase.4	Terminal oxidase.	Unknown.	Intermediate in electron transport.	Intermediate in electron transport.		Intermediate in electron transport.	Intermediate in electron transport.	Not part of respiratory chain; may be	involved in light-induced reactions.	Electron carrier during reduction of	sulfate and related ions.	Intermediate in electron transport.	Intermediate in electron transport.	
Carried Chomostoniction	Specifical Characteristics λ maximum in mμ ²	(0)	605 None ?	590 ? 4403	635 ? ?	605 None 445	612 ? ?	563 535 430		554 521 418		523			553 525 419		551 522 416	555 526 420	250
Cytochromes al, a2, a4, b1, b4, 52, 53, 54, and 55 nave been constitution	Sources		(B)	Micrococcus pyogenes var. albus, bacillus subtilis, barching income	Acetobacter pasteurianum, Azotobacter viteranum,	Escherichia coli, Proteus vulgaris, Aeropacier aci ogcines	Bacillus subtilis, Sarcina lutea	Acetobacter peroxidans	Bacillus subtilis, Sarcina lutea, Micrococcus pyogenes var. andus	Escherichia coli, Proteus vulgaris, Aerobacter aerogenes	Halotolerant bacteria	Micrococcus denitrificans, Pseudomonas aeruginosa, F. demitrificans	Acetobacter pasteurianum, A. suboxydans, bacillus subtilis	Rhodospirillum rubrum, Rhodopseudomonas spnerolues		Desulfovibrio desulfuricans		Azotobacter vinelandii	
	Cyto-	chrome	(A)	- La	2 8	3 22	4 23	5 24	Q 9	7 b1	8 0	2 6	10 5,	11 52		12 53		13 CA	

11 For reduced form. 121 Wave length of maximum absorption. 13/ Approximately. 14/ Varies with growth phase of cells. Azotobacter vinelandii

References: [1] Keilin, D., C. rend. Soc. biol. 97:Appendix 39, 1927. [2] Smith, L., Bact. Rev., Balt. 18:106, 1954. [3] Keilin, D., and Hartree, E. F., Nature, Lond. 164:254, 1949. [4] Chance, B., J. Biol. Chem. 202:383, 1953. [5] Kamen, M. D., Bact. Rev., Balt. 19:250, 1955.

	5
	54
	á
	_
	5
	v
Ω	ē
ı	Œ
5	E
5	ă
¥	-
II.	P
Ü	a
0	c
	-5
7	Ĉ
O	٠,
1	IP
K	2
H	Ξ
嵩	C
Ξ	0.
5	3.
ď	-
回	.5
r-3	q
벅	÷
3	ď
H	2
7	۶
\overline{a}	- 7
Š	3
ľ÷.	_
17	-
F	
2	
1	١.,
<u> </u>	
\sim	ζ.
7	4
-	1
	: [
=	4
+	in the state of th
0	5 .
D	4 .
	-
Part II. PROPERTIES OF SOLUBLE BACTERIAL CYTOCHROMES	

Refer-	ence	(F)	-			1 -7							5,6				
	Remarks	(三)	Appears to be a "c-type" cytochrome; the	preparation is probably a mixture of at	least two pigments.	Intermediate electron carrier in reduc-	tion of nitrate and O ₂ .	"	tion of nitrate and O2; can be oxidized	by pig heart cytochrome-c oxidase.	Intermediate electron carrier in reduc-	tion of nitrate and O2.	Not a part of respiratory chain of R. rub-	rum [7]; not oxidized by mammalian	cytochrome-c oxidase. May be involv-	ed in reactions following illumination.	
Spectral	Characteristics ³	(0)	7 7 1 1	521	518	550-552	521-525	011-011					0 2 2	520	415	i i	
The cytochromes listed below have been isolated itom carried	Physical and Chemical Properties ²		(C)			Not auto-oxidizable: hemin like cytochrome-c;	Fe = 0.45%; IP at acid pH; E' = 0.30 volts.		Not auto	at acid pH; $E_0 = 0.25$ voits.		Pseudomonas Not auto-oxidizable; hemin like cytochrome-c;	$E_0' = 0.32 \text{ volts}.$	Rhodospirillum MW = 13,000; same hemin as cytochrome-c; not	absorbed on ammonium form of amobilities	IRC-50; IP less than that of cytochi one 2,	E ₀ = 0.34 volts.
The cytochro	Source		(B)	Halotolerant	bacteria		rseudomonas		Micrococcus	denitrificans		Pseudomonas	denitrificans	Rhodospirillum	rubrum		
	Cytochrome1		(A)	1 <u>b</u> 4			01		m			4		5 52	1		

Rhodospirillum spheroides				Not oxidized by mammalian cytochrome- c oxidase. May be involved in reac-	
Desulfovibrio MW = 13,000; same hemin as cytochrome-c; no desulfuricans reaction with CO or cyanide; auto-oxidizable; appears to have two hemin groups per molecule; rather stable to heat and fig. Fe = 0.92%; IP	b; same hemin as cytoryith CO or cyanide; aut bhave two hemin group the control of the control o	chrome-c; no to-oxidizable; se per molecule; e = 0.92%; IP	553 525 419	Electron carrier during reduction of sulfate and related ions.	6, 9
Azotobacter MW = 12,000; same hemin as cytochrome-c: vinelandii relatively stable to heat and alkali; denatured in acid; not auto-oxidizable; does not combine with CO or cyanide; Fe = 0.46%; lP at acid pH; E ₀ = 0.32 volts.	5; same hemin as cytoc stable to heat and alka or auto-oxidizable; does r cyanide; Fe = 0.46%; volts.	hrome-c; li; denatured s not combine IP at acid pH;	551(23.8) 522(17.6) 416(157.2)	Part of the bacterial respiratory chain. Not oxidized by oxidases of heart muscle, Escherichia coli, or Acetobacter peroxidans.	10
Azotobacter Not auto-oxidizable; same hemin as cytochrome-c; relatively stable to heat and alkali; denatured in acid; does not combine with CO or cyanide; 1P at acid pH; E ₀ = 0.30 volts.	idizable; same hemin as stable to heat and alkal s not combine with CO or i; E ₀ = 0.30 volts.	cytochrome-c; i; denatured in r cyanide; 1P	555 526 420	Part of the bacterial respiratory chain. Not oxidized by oxidases of heart muscle, Escherichia coli, or Acetobacter peroxidans.	10
Chromatium sp MW = 30,000-38,000; hemin like cytochrome-c; appreciably auto-oxidizable; E ₀ = -0.04 volts	3-38,000; hemin like cyto ly auto-oxidizable; E' ₀ = -	chrome-c; 0.04 volts	552 525 418	Preparation is probably a mixture of two pigments.	=
Chlorobium Two pigments isolated, having protein parts of thiosulfato-different basicity; one is absorbed on Amberlite IRC-50, other is not. Pigment 1: Fe = 0.37%; slowly auto-oxidizable, but does not combine with CO; E ₀ = 0.16 volts.	ts isolated, having protei basicity; one is absorbed ? IRC-50, other is not. Fe = 0.37%; slowly auto-o combine with CO; E ₀ = 0.1	n parts of on xidizable, but 6 volts.	554 523 417		12,13
Chlorobium limicola			553 520 415	Impure mixture.	
Pseudomonas fluorescens			550 520 415	Contains a peroxidase which oxidizes the cytochrome in presence of H ₂ O ₂ . Not reduced by liver TPNH-cyto-chrome-c reductase.	14

/1/ Bacterial cytochrome-c is not identical with that of mammalian tissues. /2/ 1P = isoelectric point; MW = approximate molecular weight; E'_o = oxidation-reduction potential at pH 7. /3/ For reduced pigment. /4/ \lambda maximum in mp = wave length of maximum absorption; figures in parentheses are $E_{1\,\mathrm{cm}}^{mM}$ i.e., extinction coefficients of millimolar solutions of 1 cm thickness.

Contributor: Smith, L.

References: [1] Egaml, F., Itahashi, M., Sato, R., and Mori, T., J. Biochem., Japan 40:527, 1953. [2] Verhoeven, W., and Takeda, Y., in "Symposium on Nitrogen Metabolism," p159, Baltimore: Johns Hopkins Univ. Press, 1956. [3] Kamen, M. D., and Vernon, L. P., Biochim. biophys. acta 17:10, 1955. [4] Kamen, M. D., and Takeda, Y., ibid 21:518, 1956. [5] Elsden, S. R., Kamen, M. D., and Vernon, L. P., J. Am. Chem. Soc. 75:6347, 1953. [6] Vernon, L. P., and Kamen, M. D., J. Biol. Chem. 211:643, 1954. [7] Smith, L., in "Symposium on Photosynthesis," p313, New York: Interscience Publishers, 1957. [8] Postgate, J. R., J. Gen. Microb., Lond. 14:545, 1956. [9] Ishimoto, M., and Koyama, J., Bull. Chem. Soc., Japan 28:231, 1955. [10] Tissières, A., Biochem. J., Lond. 64:582, 1956. [11] Newton, J. W., and Kamen, M. D., Biochem. biophys. acta 21:71, 1956. [12] Kamen, M. D., and Vernon, L. P., J. Bact., Balt. 67:617, 1954. [13] Gibson, J., and Larsen, H., Biochem. J., Lond. 60:xxvii, 1955. [14] Lenhoff, H. M., and Kaplan, N. O., J. Biol. Chem. 220:967, 1956.

93. MAXIMAL BREATHING CAPACITY: CHILDREN AND ADOLESCENTS

Maximal breathing capacities, of seated subjects, were measured in a Benedict-Roth type spirometer (Collins ventilometer) with the soda lime container and valves removed. MBC values have been corrected to BTPS conditions (cf. Page 1); those in parentheses are ranges and conform to estimate "b" of the 95% range (cf. Introduction).

Part I: VS AGE

Age		Males		Females
yr	no.	MBC, L/min	no.	MBC, L/min
(A)	(B)	(C)	(D)	(E)
1 5.0-5.9	4	42(30-54)	12	41(19-63)
2 6.0-6.9	8	45(25-65)	8	53(42-63)
3 7.0-7.9	6	65(53-77)	18	53(33-73)
4 8.0-8.9	7	69(49-89)	19	60(36-85)
5 9.0-9.9	7	73(35-111)	29	67(46-88)
6 10.0-10.9	10	79(43-115)	22	72(49-94)
7 11.0-11.9	6	75(61-89)	28	79(49-109)
8 12.0-12.9	3	109(75-143)	28	96(47-144)
9 13.0-13.9	20	117(67-167)	14	104(67-141)
0 14.0-14.9	72	117(68-166)	19	99(39-160)
1 15.0-15.9	9	129(61-197)	12	105(59-152)
2 16.0-16.9	5	134(108-160)	10	92(56-128)
3 17.0-17.9	4	155(133-177)	12	108(59-157)
4 18.0-18.9			2	123(83-163)

Contributors: (a) Ferris, B. G., Jr., (b) Whittenberger, J. L.

References: [1] Males: Ferris, B. G., Jr., Whittenberger, J. L., and Gallagher, J. R., Pediatrics, Springf. $\underline{9}$:659, 1952. [2] Females: Ferris, B. G., Jr., and Smith, C. W., ibid $\underline{12}$:341, 1953.

Part II: VS STANDING HEIGHT

Subjects measured in stocking feet.

Height		Males		Females
cm	no.	MBC, L/min	no.	MBC, L/min
(A)_	(B)	(C)	(D)	(E)
1 100.0-109.9			4	41(14-69)
2 110.0-119.9	7	44(30-58)	13	47(28-71)
3 120.0-124.9	5	45(21-69)	10	62(29-94)
4 125.0-129.9	4	63(45-81)	15	58(38-77)
5 130.0-134.9	5	69(33-105)	19	62(41-83)
6 135.0-139.9	9	68(30-106)	30	72(50-94)
7 140.0-144.9	9	79(63-95)	19	74(47-100)
8 145.0-149.9	9	82(58-106)	12	78(41-115)
9 150.0-154.9	5	86(48-124)	23	90(48-132)
0 155.0-159.9	12	102(72-132)	38	95(52-137)
1 160.0-164.9	13	115(61-169)	18	103(50-155)
2 165.0-169.9	30	113(66-160)	17	107(51-164)
3 170.0-174.9	29	127(75-179)	6	124(95-153)
4 175.0-179.9	16	129(107-151)		
5 180.0-184.9	8	148(110-186)		

Contributors: (a) Ferris, B. G., Jr., (b) Whittenberger, J. L.

References: [1] Males: Ferris, B. G., Jr., Whittenberger, J. L., and Gallagher, J. R., Pediatrics, Springf. 9:659, 1952. [2] Females: Ferris, B. G., Jr., and Smith, C. W., ibid 12:341, 1953.

93, MAXIMAL BREATHING CAPACITY: CHILDREN AND ADOLESCENTS (Concluded)

Maximal breathing capacities, of seated subjects, were measured in a Benedict-Roth type spirometer (Collins ventilometer) with the sodalime container and valves removed. MBC values have been corrected to BTPS conditions (cf Page 1); those in parentheses are ranges and conform to estimate "b" of the 95% range (cf Introduction).

Part III: VS WEIGHT
Subjects weighed without heavy clothing.

Weight		Males		Females
kg	no.	MBC, L/min	no.	MBC, L/min
(A)	(B)	(C)	(D)	(E)
1 15.0-19.9			6	36(24-48)
2 20.0-24.9	9	46(28-64)	26	53(33-73)
3 25.0-29.9	7	53(21-85)	17	61(41-81)
4 30.0-34.9	12	74(40-108)	29	65(38-92)
5 35.0-39.9	11	71(39-103)	28	78(51-104)
6 40.0-44.9	10	83(61-105)	28	77(43-112)
7 45.0-49.9	15	93(73-113)	24	88(48-127)
8 50.0-54.9	8	110(52-168)	25	98(40-155)
9 55.0-59.9	22	121(85-157)	26	100(45-155)
0 60.0-64.9	29	129 (75-183)	15	106(59-153)
11 65.0-69.9	12	119(65-173)	4	98(51-145)
2 70.0-74.9	12	126(62-190)	3	126(91-161)
3 75.0-79.9	11	122(74-170)	1	132
4 80.0-84.9	3	136(104-168)		

Contributors: (a) Ferris, B. G., Jr., (b) Whittenberger, J. L.

References: [1] Males: Ferris, B. G., Jr., Whittenberger, J. L., and Gallagher, J. R., Pediatrics, Springf. $\underline{9:659}$, 1952. [2] Females: Ferris, B. G., Jr., and Smith, C. W., ibid $\underline{12:341}$, 1953.

Part IV: VS SURFACE AREA
Surface area obtained from DuBois nomogram.

Surface Area		Males		Females
sq m	no.	MBC, L/min	no.	MBC, L/min
(A)	(B)	(C)	(D)	(E)
1 0.60-0.79			9	42(21-63)
2 0.70-0.89	8	46(28-64)		
3 0.80-0.89			18	53(30-76)
4 0.90-0.99	5	48(16-80)	14	60(24-95)
5 1.00-1.09	9	65(35-95)	25	63(39-88)
6 1.10-1.19	9	70(32-108)	30	70(48-92)
7 1.20-1.29	10	79(55-103)	23	76(49-102)
8 1.30-1.39	10	84(62-106)	22	81(43-119)
9 1.40-1.49	11	93(79-107)	24	91(47-135)
.0 1.50-1.59	12	108(52-164)	32	93(44-142)
1 1.60-1.69	22	110(70-150)	24	107(54-160)
2 1.70-1.79	36	130(85-175)	9	121(85-156)
.3 1.80-1.89	12	130(70-190)	3	130(96-164)
4 1.90-1.99	14	125(73-177)		
5 2.00-2.09	3	148(124-172)		

Contributors: (a) Ferris, B. G., Jr., (b) Whittenberger, J. L.

References: [1] Males: Ferris, B. G., Jr., Whittenberger, J. L., and Gallagher, J. R., Pediatrics, Springf. 9:659, 1952. [2] Females: Ferris, B. G., Jr., and Smith, C. W., ibid 12:341, 1953.

94. MAXIMAL BREATHING CAPACITY: MAN

Ventilatory values have generally been corrected to BTPS conditions (cf Page 1). Values in parentheses are ranges and conform to estimate "c" of the 95% range (cf Introduction). Ventilatory data of Shock conform to estimate "b."

	Age	Height	Weight	Surface Area	MBC	Author	Referenc
_	yr	cm	kg	sq m	L/min		
	(A)	(B)	(C)	(D)	(E)	(F)	(G)
. 7	0.1	1240	Male		27	20	,
	8.1	124.8	21.4	0.87	37	Morse	1
	9.5	148.2	41.6	1.31	62		
3	11.5(11.3-11.7)	154.2(146.0-162.5)	42.7(37.3-48.0)	1.37(1.25-1.49)	55(46-63)		
	12.5	153.3	39.9	1.31	91		
	13.4	171.7	58.7	1.69	129		
	14.0	169.5	51.7	1.56	94		
	19.3	172.2	61.6	1.72	144		
	23	165.9	65.4	1.77	172		
	24.3	167.1	62.6	1.71	218		
	30.0	182.3	68.0	1.89	155		
	35.6	174.2	54.2	1.62	106		
	24.5(20-29)	174.3(164.7-183.9)	77.5(39.1-115.9)	1.92(1.53-2.31)	126(55-198)	Shock	2
	34.5(30-39)	176.6(166.2-187.0)	74.2(52.4-96.0)	1.90(1.65-2.15)	114(55-173)		
	44.5(40-49)	173.2(162.8-183.6)	67.8(45.3-90.3)	1.81(1.57-2.05)	101(40-162)		
•	54.5(50-59)	171.3(158.4-184.2)	63.0(46.2-79.8)	1.74(1.49-1.99)	74(21-126)		
	64.5(60-69)	167.8(158.6-177.0)	63.5(44.9-82.1)	1.72(1.48-1.96)	67(14-120)		
	74.5(70-79)	166.9(154.9-178.9)	63.2(36.7-89.7)	1.71(1.36-2.06)	54(14-93)		
- 1	83.1(80-87)	163.9(147.8-180.0)	59.7(39.9-79.5)	1.65(1.34-1.96)	48(4-92)		
- 1	20.9(15.8-25.9)				168(124-212)	Gray	3
- 1	23.3(16.5-30.1)	179.1(167.9-190.3)	71.7(54.5-88.9)		169(130-207)	Matheson	4
ja.	23.5(18.0-29.0)				145(76-214)	Malamos	5
- 4	23.5(21.0-26.0)				166(125-207)	Dripps	6
- L	24.1	178.8	72.7		169(126-208)	Gray	3
- 1	25.5(13.5-37.5)	173.8(156.6-191.0)	66.0(49.4-82.6)	,	126(69-183)	Baldwin	7
	42.7(34.5-50.9)	171.7(157.9-185.5)	64.9(42.5-87.3)	1.76	109(78-141)		
	58.1(43.1-73.1)	168.5(151.1-185.9)	63.0(38.8-87.2)	1.72	103(62-144)	Galdston	8
7	59.6(48.8-70.4)	169.6(153.0-186.2)	63.3(49.1-83.5)	1.72	91(57-124)	Baldwin	7
	/ 2// 2 / 13		Fema	,			
3	6.3(6.2-6.4)	122(121-123)	23.3(23.0-23.6)	0.94(0.90-0.98)	45(35-54)	Morse	1
	7.7(7.6-7.9)	128(128-129)	28.3(25.0-31.6)	1.00(0.95-1.05)	42(35-50)		
- 4	8.3(8.1-8.6)	132(127-137)	30.8(27.9-33.8)	1.07(1.05-1.08)	38(34-42)		
- 1	9.5(9.0-9.9)	140(140-142)	33.8(26.0-42.9)	1.15(1.03-1.27)	48(41-52)		
	10.3(10.1-10.6)	145(144-147)	35.5(29.6-40.4)	1.21(1.11-1.29)	67(49-92)		
3	11.5(11.1-11.8)	151(148-153)	38.0(27.7-46.7)	1.27(1.06-1.44)	63(47-81)		
	12.6(12.2-12.9)	158(141-172)	47.1(36.0-54.0)	1.48(1.26-1.69)	75(43-96)		
- 1	13.4(13.2-13.7)	159(148-165)	53.8(43.0-59.0)	1.54(1.40-1.60)	103(57-150)		
	14.5(14.2-14.9)	165(162-169)	53.7(53.1-54.3)	1.58(1.57-1.60)	127(87-194)		
	15.4(15.2-15.6)	165(160-170)	60.5(53.2-74.4)	1.66(1.54-1.85)	110(89-141)		
3	18.4(18.0-18.8)	168(158-177)	57.5(42.4-65.5)	1.65(1.39-1.82)	120(107-143)		
	20.2(20.0-20.4)	165(161-168)	56.0(47.2-64.9)	1.63(1.50-1.76)	129(122-137)		
1	21.5(21.3-21.7)	159(149-164)	51.8(43.0-59.5)	1.51(1.34-1.63)	110(97-127)		
.	22.2(22.0-22.4)	166(157-174)	64.9(56.3-73.6)	1.72(1.56-1.88)	162(144-180)		
Ш				1.74(1.50-1.98)	132(81-209)		
2	23.4(23.0-23.9)	167(157-175)	65.8(51.1-88.4)				
3	24.4(24.3-24.7)	165.1(158.4-169.3)	59.9(47.6-70.4)	1.64(1.53-1.81)	129(93-181)		
1	24.4(24.3-24.7) 25.4(25.0-25.8)	165.1(158.4-169.3) 163.7(159.5-167.9)	59.9(47.6-70.4) 59.9(59.4-60.4)	1.64(1.53-1.81) 1.66(1.64-1.68)	129(93-181) 109(108-110)		
	24.4(24.3-24.7) 25.4(25.0-25.8) 26.1	165.1(158.4-169.3) 163.7(159.5-167.9) 165.5	59.9(47.6-70.4) 59.9(59.4-60.4) 55.1	1.64(1.53-1.81) 1.66(1.64-1.68) 1.63	129(93-181) 109(108-110) 118		
	24.4(24.3-24.7) 25.4(25.0-25.8) 26.1 28.7(28.5-28.9)	165.1(158.4-169.3) 163.7(159.5-167.9) 165.5 172(171-173)	59.9(47.6-70.4) 59.9(59.4-60.4) 55.1 59.6(56.0-63.1)	1.64(1.53-1.81) 1.66(1.64-1.68) 1.63 1.74(1.71-1.76)	129(93-181) 109(108-110) 118 126(109-144)		
	24.4(24.3-24.7) 25.4(25.0-25.8) 26.1 28.7(28.5-28.9) 29.1	165.1(158.4-169.3) 163.7(159.5-167.9) 165.5 172(171-173) 170.2	59.9(47.6-70.4) 59.9(59.4-60.4) 55.1 59.6(56.0-63.1) 45.6	1.64(1.53-1.81) 1.66(1.64-1.68) 1.63 1.74(1.71-1.76) 1.50	129(93-181) 109(108-110) 118 126(109-144) 101		
3	24.4(24.3-24.7) 25.4(25.0-25.8) 26.1 28.7(28.5-28.9) 29.1 30.0	165.1(158.4-169.3) 163.7(159.5-167.9) 165.5 172(171-173) 170.2 175.6	59.9(47.6-70.4) 59.9(59.4-60.4) 55.1 59.6(56.0-63.1) 45.6 79.5	1.64(1.53-1.81) 1.66(1.64-1.68) 1.63 1.74(1.71-1.76) 1.50 1.96	129(93-181) 109(108-110) 118 126(109-144) 101 184		
3	24.4(24.3-24.7) 25.4(25.0-25.8) 26.1 28.7(28.5-28.9) 29.1 30.0 34.0	165.1(158.4-169.3) 163.7(159.5-167.9) 165.5 172(171-173) 170.2 175.6	59.9(47.6-70.4) 59.9(59.4-60.4) 55.1 59.6(56.0-63.1) 45.6 79.5 57.0	1.64(1.53-1.81) 1.66(1.64-1.68) 1.63 1.74(1.71-1.76) 1.50 1.96 1.53	129(93-181) 109(108-110) 118 126(109-144) 101 184 145		
3	24.4(24.3-24.7) 25.4(25.0-25.8) 26.1 28.7(28.5-28.9) 29.1 30.0 34.0 36.5(36.5-36.6)	165.1(158.4-169.3) 163.7(159.5-167.9) 165.5 172(171-173) 170.2 175.6 152.2 161(155-166)	59.9(47.6-70.4) 59.9(59.4-60.4) 55.1 59.6(56.0-63.1) 45.6 79.5 57.0 52.8(50.2-55.3)	1.64(1.53-1.81) 1.66(1.64-1.68) 1.63 1.74(1.71-1.76) 1.50 1.96	129(93-181) 109(108-110) 118 126(109-144) 101 184 145 98(82-113)		
3 1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	24.4(24.3-24.7) 25.4(25.0-25.8) 26.1 28.7(28.5-28.9) 29.1 30.0 34.0 36.5(36.5-36.6) 24.3(12.6-36.0)	165.1(158.4-169.3) 163.7(159.5-167.9) 165.5 172(171-173) 170.2 175.6 152.2 161(155-166)	59.9(47.6-70.4) 59.9(59.4-60.4) 55.1 59.6(56.0-63.1) 45.6 79.5 57.0 52.8(50.2-55.3) 56.2(44.0-68.4)	1.64(1.53-1.81) 1.66(1.64-1.68) 1.63 1.74(1.71-1.76) 1.50 1.96 1.53	129(93-181) 109(108-110) 118 126(109-144) 101 184 145 98(82-113) 116(74-158)	Gray	3
3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	24.4(24.3-24.7) 25.4(25.0-25.8) 26.1 28.7(28.5-28.9) 29.1 30.0 34.0 36.5(36.5-36.6) 24.3(12.6-36.0) 25.1(12.7-37.5)	165.1(158.4-169.3) 163.7(159.5-167.9) 165.5 172(171-173) 170.2 175.6 152.2 161(155-166) 164.9(151.0-178.8) 161.8(149.4-174.2)	59.9(47.6-70.4) 59.9(59.4-60.4) 55.1 59.6(56.0-63.1) 45.6 79.5 57.0 52.8(50.2-55.3) 56.2(44.0-68.4) 59.2(37.0-81.4)	1.64(1.53-1.81) 1.66(1.64-1.68) 1.63 1.74(1.71-1.76) 1.50 1.96 1.53 1.54(1.47-1.61)	129(93-181) 109(108-110) 118 126(109-144) 101 184 145 98(82-113) 116(74-158) 94(69-119)	Baldwin	7
3	24.4(24.3-24.7) 25.4(25.0-25.8) 26.1 28.7(28.5-28.9) 29.1 30.0 34.0 36.5(36.5-36.6) 24.3(12.6-36.0) 25.1(12.7-37.5) 27.2(17.2-37.1)	165.1(158.4-169.3) 163.7(159.5-167.9) 165.5 172(171-173) 170.2 175.6 152.2 161(155-166) 164.9(151.0-178.8) 161.8(149.4-174.2) 160.0(128.8-191.2)	59.9(47.6-70.4) 59.9(59.4-60.4) 55.1 59.6(56.0-63.1) 45.6 79.5 57.0 52.8(50.2-55.3) 56.2(44.0-68.4) 59.2(37.0-81.4) 60.3(42.7-77.9)	1.64(1.53-1.81) 1.66(1.64-1.68) 1.63 1.74(1.71-1.76) 1.50 1.96 1.53 1.54(1.47-1.61)	129(93-181) 109(108-110) 118 126(109-144) 101 184 145 98(82-113) 116(74-158) 94(69-119) 100(67-134)	Baldwin Cournand	7 9
3 4 5 7	24.4(24.3-24.7) 25.4(25.0-25.8) 26.1 28.7(28.5-28.9) 29.1 30.0 34.0 36.5(36.5-36.6) 24.3(12.6-36.0) 25.1(12.7-37.5)	165.1(158.4-169.3) 163.7(159.5-167.9) 165.5 172(171-173) 170.2 175.6 152.2 161(155-166) 164.9(151.0-178.8) 161.8(149.4-174.2)	59.9(47.6-70.4) 59.9(59.4-60.4) 55.1 59.6(56.0-63.1) 45.6 79.5 57.0 52.8(50.2-55.3) 56.2(44.0-68.4) 59.2(37.0-81.4)	1.64(1.53-1.81) 1.66(1.64-1.68) 1.63 1.74(1.71-1.76) 1.50 1.96 1.53 1.54(1.47-1.61)	129(93-181) 109(108-110) 118 126(109-144) 101 184 145 98(82-113) 116(74-158) 94(69-119)	Baldwin	7

Contributors: (a) Galdston, M., (b) Morrow, P. E., (c) Morse, M., (d) Shock, N. W.

References: [1] Morse, M., Univ. of Chicago, unpublished. [2] Shock, N. W., Norris, A. H., Landowne, M., and Falzone, J. A., Jr., J. Geront. 11:379, 1956. [3] Gray, J. S., Barnum, D. C., Matheson, H. W., and Spies, S. N., J. Clin. Invest. 29:677, 1950. [4] Matheson, H. W., and Gray, J. S., Ibid 29:688, 1950. [5] Malamos, B., Beitr. Klin. Tuberk. 93:225, 1938. [6] Dripps, B. D., and Comroe, J. H., Jr., Am. J. Physiol. 149:43, 1947. [7] Baldwin, E. de F., Cournand, A., Richards, D. W., Jr., Medicine 27:243, 1948. [8] Galdston, M., Wolfe, W. B., and Steele, J. M., J. Appl. Physiol. 5:17, 1952. [9] Cournand, A., Richards, D. W., Jr., and Darling, R. C., Am. Rev. Tuberc. 40:487, 1939.

95. MECHANICS OF BREATHING

Although a large literature has accumulated on the mechanics of breathing, comparison of results often is difficult because of differences in experimental technique. Measurements of lung compliance may yield different results when the elastic pressure changes are measured during spontaneous or rapid breathing, as against those measured under true static conditions when air flow is stopped for a second or more. An additional complication in measurements of compliance arises because the pressures observed during slow volume changes depend on the previous degree of expansion of the lungs. (Part I illustrates slow pressure-volume changes in the cat; similar lung behavior has been observed for other mammals, including man.) Thus lung compliance determinations depend on whether measurements are made (I) from the normal resting volume, (2) after a deep inspiration, or (3) with the functional residual capacity decreased, either voluntarily or involuntarily, from effects of posture or anesthetics. Most of the measurements given in the tables below have been made from the resting lung volume, usually in sitting individuals. The reservations cited above apply also to measurements of lung resistance; furthermore, the measured resistance may depend on the lung volume, as well as on the frequency of breathing.

Contributor: Radford, E. P., Jr.

Part 1: SLOW, PRESSURE-VOLUME CURVES: CAT

Cat, weighing 3.7 kilograms, lungs exposed, lay in tank respirator; lung volume changes were produced by slowly decreasing tank pressure. Three different inflation curves were obtained after the lungs had been allowed to deflate to various pressures. Each inflation or deflation curve required 20-30 seconds.

/1/ Lungs allowed to collapse completely and immediately reinflated slowly. /2/ Lungs deflated to a pressure of 0.6 cm H_2O after a maximum inflation, then reinflated. /3/ Lungs deflated to 2 cm H_2O and immediately reinflated. /4/ Deflation (following procedures used in obtaining Curve 1), shown for comparison.

Contributor: Radford, E. P., Jr.

Reference: Radford, E. P., Jr., "Tissue Elasticity," p 186, Baltimore: American Physiological Society, 1957.

95. MECHANICS OF BREATHING (Continued)

Part II: INTRAPULMONARY PRESSURES AT VARIOUS LUNG VOLUMES: MAN

All measurements made on males in sitting position. Mean lung volumes are per cent of vital capacity at ambient pressure. Values in parentheses are ranges, estimate "b" of the 95% range (cf Introduction).

	Maxim	um Expi	ratory Pressure	Maximu	m Inspir	ratory Pressure	F	lelaxatio	n Pressure ^l	
	Subjects no.	Volume %	Positive Pressure mm Hg	Subjects no.	Volume %	Negative Pressure mm Hg	Subjects no.	Volume %	Pressure mm Hg	Refer- ence
	(A)	(B)	(C)	(D)	(E)	(F)	(G)	(H)	(1)	(J)
1	12	9.7	41.5(14.7-68.3)	11	3.9	86.0(47.0-125.0)	14	0	-19.2(-31.8 to -6.6)	1
2	12	25.0	52.5(10.9-94.1)	11	21.7	74.6(46.4-102.8)	14	13.9	-8.5(-15.5 to -1.5)	1
3	12	43.8	69.9(30.5-109.3)	11	34.8	63.3(25.9-100.7)	14	31.0	-1.3(-9.9 to 7.3)	1
4	12	60.0	90.0(47.0-133.0)	11	55.6	56.8(25.6-88.0)	14	51.0	4.1(-1.9 to 10.1)	1
5	12	75.0	93.3(58.1-128.5)	11	75.7	44.8(16.8-72.8)	14	72.0	10.5(1.9-19.1)	1
6	12	83.0	107.0(74.4-139.6)	11	91.0	23.6(2.2-49.4)	14	87.0	14.9(0.3-29.5)	1
7	100	100.0	119.0(86.0-145.0)				14	100.0	20.6(10.2-31.0)	1,2

/1/ Measured with glottls open at desired lung volume; one nostril plugged and other connected with a water manometer.

Contributors: (a) Lees, W. M., Snider, G. L., and Fox, R. T., (b) Radford, E. P., Jr., (3) Dayman, H. G.

References: [1] Rahn, H., Otis, A. B., Chadwick, L. E., and Fenn, W. O., Am. J. Physiol. 146:161, 1946. [2] Gross, D., Am. Heart J. 25:335, 1943.

Part III: PRESSURE-VOLUME DIAGRAM OF CHEST AND LUNGS: MAN

On the ordinates 100% of vital capacity represents the height of inspiration, and 0% of vital capacity represents maximum expiration, both at zero pressure or ambient pressure in the lungs. The diagram shows the pressures which can be developed passively (relaxation pressure) or actively (maximum pressures) at different lung volumes. In the upper right corner where the lung is maximally expanded and the pressure has a positive value, there is danger of rupture of the lung (broken line in diagram). In the lower left corner where the blood vessels are exposed to a maximum negative pressure, there is extreme vasodilation and danger of hemorrhage (broken line in diagram).

Contributors: (a) Fenn, W. O., (b) Radford, E. P., Jr.

References: [1] Fenn, W. O., in "Handbook of Respiratory Physiology" (Boothby, W. M., ed), Randolph Field, Texas: USAF School of Aviation Medicine, 1954. [2] Fenn, W. O., Rivista Di Medicina Aeronautica, 1955.

95. MECHANICS OF BREATHING (Continued)

Part IV: INTRAPLEURAL PRESSURES: MAN

Values expressed as gauge pressures (cm of H2O less than ambient atmospheric pressure).

No. and Sex	Inspiration	Expiration	Reference
(A)	(B)	(C)	(D)
1 200	-7.3(-14.0 to -4.0)	-3.8(-10.0 to -2.0)	1
2 400, 109	-9.3(-14.6 to -3.9) ¹	-3.8(-8.7 to -1.1) ¹	2

/1/ Measurements made with a modified Lillingston and Pearson pneumothorax apparatus.

Contributors: (a) Lees, W. M., Snider, G. L., and Fox, R. T., (b) Radford, E. P., Jr.

References: [1] Lees, A. W., Glasgow M. J. 32:1, 1951. [2] Laha, P. N., Ind. M. Gazette 81:359, 1946.

Part V: COMPLIANCE OF LUNG-THORAX SYSTEM: MAMMALS

Animal	Condition	Weight kg	Compliance L/cm H2O	Reference
(A)	(B)	(C)	(D)	(E)
Man	Unanesthetized, supine		0.12	1-3
1	Anesthetized, supine	66	0.062	1-3
Cat	Anesthetized	3.2	0.0068	4
	Anesthetized	2.6	0.0057	4-6
Dog	Anesthetized	20	0.048	5,7
	Anesthetized	11.8	0.0265	5,8
Rabbit	Anesthetized	2	0.0023	9

Contributors: (a) DuBois, A. B., (b) Ross, B. B., (c) Radford, E. P., Jr., (d) Frank, N. R.

References: [1] Nims, R. G. Conner, E. H., and Comroe, J. H., Jr., J. Clin. Invest. 34:744, 1955. [2] Rahn, H., Otis, A. B., Chadwick, L. E., and Fenn, W. O., Am. J. Physiol. 146:161, 1946, [3] Otis, A. B., Fenn, W. O., and Rahn, H., J. Appl. Physiol. 2:592, 1950. [4] Nisell, O. I., and DuBois, A. B., Am. J. Physiol. 178:206, 1954. [5] Brody, A. W., ibid 178:189, 1954. [6] Brody, A. W., DuBois, A. B., Nisell, O. I., and Engelberg, J., ibid 186:142, 1956. [7] Van Liew, H. D., ibid 177:161, 1954. [8] Severinghaus, J. W., and Stupfel, M., J. Appl. Physiol. 8:81, 1955. [9] Bernstein, L., J. Physiol. 123:44P, 1954.

Part VI: RELAXATION PRESSURE CURVE: MAN

The relaxation pressure curve (solid line) of the chest and lungs (PC + PL) consists of two components (broken lines), the elasticity of the chest and diaphragm (PC) and the elasticity of the lungs (PL). At the normal relaxation volume, where the relaxation pressure curve crosses the axis, the elasticity of the lung is exactly balanced by the elasticity of the chest, and both are equal in magnitude to the intrapleural pressure, or 4 mm Hg at expiration. The lung curve intersects the relaxation pressure curve at a volume of about 70% of the vital capacity, at which point the chest curve crosses the axis and all of the relaxation pressure is due to the elasticity of the lung. The lung curve presumably intersects the "0" axis in the residual air region at a point that measures the minimal air.

Contributors: (a) Fenn, W. O., (b) Radford, E. P., Jr.

Reference: Fenn, W. O., in "Handbook of Respiratory Physiology" (Boothby, W. M., ed), Randolph Field, Texas: USAF School of Aviation Medicine, 1954.

95. MECHANICS OF BREATHING (Continued)

Part VII: PULMONARY COMPLIANCE: MAN

Two standard methods of measuring pulmonary compliance give similar results in normal subjects. Static Method: The intra-esophageal pressure upon interruption of air flow after an inspiration of 0.5 and 1.0 L, is subtracted from the intra-esophageal pressure upon interruption of air flow at the end expiratory level. Compliance is expressed as L/cm H₂O pressure difference. Dynamic Method: The intra-esophageal pressure at the instant of zero air flow after inspiration, is subtracted from the intra-esophageal pressure at the instant of zero air flow after expiration. This pressure difference during normal breathing is divided into the tidal volume of that breath. The value is usually expressed as an average for 5 or 10 breaths. Capacity values are for ATPS. Values in parentheses are ranges and are estimate "c" of the 95% range (cf Introduction), unless otherwise indicated.

	Condition	Method	Age	No. and Sex	Functional Residual Capacity, L	Vital Capacity L	Compliancel L/cm H ₂ O	Refer- ence
	(A)	(B)	(C)	(D)	(E)	(F)	(G)	(H)
1	Supine	Dynamic	l hr-7 da	180 and ♀			0.005(0.002-0.009)	1
2	Sitting	Dynamic	28(19-49)	49 d		5.02(2.20-7.80)	0.19(0.14-0.33)	2-4
3		Dynamic	22(19-29)	110		3.14(2.30-3.80)	0.13(0.09-0.18)	2, 3, 5
4		Static	28(21-43)	60 d		4.70(3.30-5.90)	0.20(0.14-0.31)	4-7
5		Static	26(18-43)	420		3.57(3.00-4.20)	0.14(0.09-0.22)	4-6,8
6		Static	69 (50 - 87)	8đ, 189		3.09(1.79-4.39)b	0.13(0.058-0.202)b	9
7	During Exercise2	Dynamic	24(20-36)	29 &	3.84(2.5-6.5)		0.22(0.13-0.39)	2
8		Dynamic	21(19-29)	79	2.37(1.7-3.2)		0.13(0.09-0.18)	2, 3, 5

/1/ Intra-esophageal pressure taken as equivalent to intrathoracic pressure in determining pressure differential across the lung. /2/ Treadmill speed, 3 miles per hour.

Contributors: (a) McIlroy, M. B., (b) Alexander, J. K., (c) Fritts, H. W., (d) Frank, N. R., (e) Radford, E. P., Jr., (f) Turino, G. M.

References: [1] Cook, C. D., Sutherland, J. M., Segal, S., Cherry, R. B., Mead, J., McIlroy, M. B., and Smith, C. A., J. Clin. Invest. 36:440, 1957. [2] Marshall, R., unpublished. [3] Attinger, E. O., Monroe, R. D., and Segal, M. S., J. Clin. Invest. 35:905, 1956. [4] Frank, N. R., Mead, J., Siebens, A. A., and Storey, C. F., J. Appl. Physiol. 9:38, 1956. [5] Cherniack, R. M., J. Clin. Invest. 35:394, 1956. [6] Heaf, P. J., and Prime, F. J., Clin. Sc., Lond. 15:319, 1956. [7] Stead, W. W., Fry, D. L., and Ebert, R. V., J. Laborat. Clin. M. 40:674, 1952. [8] Brown, C. C., Fry, D. L., and Ebert, R. V., Am. J. M. 17:438, 1954. [9] Frank, N. R., Mead, J., and Ferris, B. G., Jr., unpublished.

Part VIII: PULMONARY COMPLIANCE VS VITAL CAPACITY: MAN

Measurements made using the intra-esophageal balloon technique on young adults, 18-35 years old, in sitting position. Values in parentheses are ranges, estimate "c" of the 95% range (cf Introduction).

	No. and Sex	Vital Capacity L	Compliance L/cm H ₂ O	Reference
	(A)	(B)	(C)	(D)
1	98	2.5-3.0	0.13(0.10-0.18)	1-3
2	13♀	3.0~3.5	0.15(0.09-0.22)	1,4,5
3	18♀	3.5-4.0	0.15(0.10-0.25)	1, 2, 4-6
4	70	3.5-4.0	0.17(0.11-0.25)	1,3
5	13d	4.0-4.5	0.18(0.09-0.28)	1-3,7
6	200	4.5-5.0	0.20(0.15-0.33)	1-4,6,7
7	140	5.0-5.5	0.22(0.15-0.32)	1,4,6
8	70	Over 5.5	0.27(0.24-0.33)	1, 4, 6, 7

Contributor: Ebert, R. V.

References: [1] Frank, N. R., Mead. J., Slebens, A. A., and Storey, C. F., J. Appl. Physiol. 9:38, 1956. [2] Attinger, E. O., Monroe, R. G., and Segal, M. S., J. Clin. Invest. 35:905, 1956. [3] Heaf, P. J., and Prime, F. J., Clin. Sc., Lond. 15:319, 1956. [4] Mead, J., and Whittenberger, J. L., J. Appl. Physiol. 5:779, 1953. [5] Brown, C. C., Fry, D. L., and Ebert, R. V., Am. J. M. 17:438, 1954. [6] Cherniack, R. M., J. Clin. Invest. 35:394, 1956. [7] Stead, W. W., Fry, D. L., and Ebert, R. V., J. Laborat. Clin. M. 40:674, 1952.

95. MECHANICS OF BREATHING (Concluded)

Part IX: PULMONARY COMPLIANCE: VERTEBRATES

	Animal	Weight kg	Compliance L/cm H ₂ O	Reference
	(A)	(B)	(C)	(D)
1 Ma	n, infant, l wk old	3	0.0052	1
2 Ma	n, adult	70	0.2	2
3 Cat	t	2	0.006	3
4 Do	g	20	0.09	4
5 Fre			0.001	5
6 Gui	inea pig		0.0008	6
7 Ho	• •	430	0.8	7
8 Rai		0.225	0.0012	8

Contributors: (a) DuBois, A. B., (b) Ross, B. B., (c) Radford, E. P., Jr.

References: [1] Cook, C. D., Cherry, R. B., O'Brien, D., Karlberg, P., and Smith, C. A., J. Clin. Invest. 34:975, 1955. [2] Frank, N. R., Mead, J., Siebens, A. A., and Storey, C. F., J. Appl. Physiol. 9:38, 1956. [3] Nisell, O. I., and DuBois, A. B., Am. J. Physiol. 178:206, 1954. [4] Van Liew, H. D., ibid 177:161, 1954. [5] Klein, F., Zschr. Biol. 33:219, 1896. [6] Hild, R., and Bruckner, G., Zschr. Biol. 108:250, 1956. [7] McCutcheon, F. H., J. Cellul. Physiol. 37:447, 1951. [8] Lawton, R. W., and Joslin, D., Am. J. Physiol. 167:111, 1951.

Part X: CLINICAL RANGE OF PULMONARY COMPLIANCE: MAN

Adult male of average size (ht = 180 cm).

Condition	Degree of Alteration	Compliance L/cm H ₂ O
(A)	(B)	(C)
1 No pulmonary restriction	Normal	0.19(0.12-0.26)
2 Pneumonectomy, pulmonary congestion, bronchospasm	Slight	0.09(0.06-0.12)
3 Asthma, repeated heart failure, poliomyelitis, kyphoscoliosis, pulmonary infiltration (sarcoidosis, scleroderma)	Moderate	0.05(0.03-0.06)
4 Pulmonary fibrosis, pulmonary carcinomatosis	Severe	0.02(0.01-0.03)

Contributors: (a) DuBois, A. B., (b) Radford, E. P., Jr.

References: [1] Brown, C. C., Fry, D. L., and Ebert, R. V., Am. J. M. 17.438, 1954. [2] Bondurant, S., Hickam, J. B., and Isley, J. K., J. Clin. Invest. 36:59, 1957. [3] Marshall, R., McIlroy, M. D., and Christie, R. V., Clin. Sc., Lond. 13:137, 1954. [4] McIlroy, M. B., and Marshall, R., ibid 15:345, 1956. [5] McIlroy, M. B., and Bates, D. V., Thorax 11:303, 1956. [6] Marshall, R., and DuBois, A. B., Clin. Sc., Lond. 15:473, 1956. [7] DuBois, A. B., Botelho, S. Y., and Comroe, J. H., Jr., J. Clin. Invest. 35:327, 1956. [8] Ferris, B. G., Jr., Mead. J., Whittenberger, J. L., and Saxton, G. A., Jr., N. England J. M. 247:390, 1952.

Part XI: RESISTANCE OF LUNGS AND AIRWAY: MAN

Resistive pressure determined from esophageal pressure measurements. Values in parentheses are ranges, estimate "c" of the 95% range (cf Introduction).

	Subjects	Rate of Air Flow L/sec	Resistive Pressure cm H ₂ O	Resistance cm H ₂ O/L/sec	Reference
	(A)	(B)	(C)	(D)	(E)
1	18 infants, newborn	0.05	1.0	29	1
2	8 adults, male	0.5	0.85(0.55-1.20)1	1.70	2
3		1.0	1.81(1.10-2.55)	1.81	2
4		1.5	2.87(1.75-4.25) ¹	1.91	2
5	l adult, male (asthmatic)	0.5	17.71	35.4	2

/1/ Measured during inspiration only.

Contributor: Radford, E. P., Jr.

References: [1] Cook, C. D., Sutherland, J. M., Segal, S., Cherry, R. B., Mead, J., McIlroy, M. B., and Smith, C. A., J. Clin. Invest. 36:440, 1957. [2] McIlroy, M. B., Mead, J., Selverstone, N. J., and Radford, E. P., Jr., J. Appl. Physiol. 7:485, 1955.

96. MEAN RESPIRATORY AIR FLOW CHARACTERISTICS: MAN

Subjects at rest. Volumes were measured at ATPS conditions (cf Page 1). Summary values are averages of means.

Dofor-	Delet	ence	3			7	m	4	ur.				2	1 -	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		9	7	- 0	0	6	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
leration4	Expiration	L/sec/sec	(K)				1.10	0.76			10	0.93			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1							1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
Flow Deceleration4	Inspiration	L/sec/sec		101			1.64	1.42			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1.53			1							1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
leration3	Februation	L/sec/sec	1000/2	(3)			1.75	0 2 1	1.00			1 63				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			1.2					
Flow Acceleration3	T TO W CITE A	Inspiration I	ון פכר / פכר	(H)			1 87		1.12			1 70	100			1 1 1 1 1 1 1 1 1 1 1			2.0					
Do402	low Kate-	Expiration	r/sec	(B)	0.43	0 440	0.00	0.000	0.400	0.383	0.393	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.400	0.463	0 5.85		0.524	0.65	0.48	0.415	011.0	0.379	0.48	
		r c	L/sec	(F)	0.46	007	0.480	0.717	0.673	0.417	9090	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.579	0 513	2720	0.00	0.540	0,71	85.0	00.0	0.500	0.427	0.56	
	late2	邱	r/sec	(E)	0 32	70.0	0.282				0 354		0.318	0 265	0.400	0.321	0.293		0 0	07.0	0.262	0.242	0.26	
	Flow Rate2	Inspiration	L/sec	(0)	0 25	0.33	0.328				767 0	0.430	0.382	0 335	0.555	0.405	0.370		0	0.58	0.344	0.310	0.34	
	uration		Sec	(3)	2	1.40	2.28	1.62	, 00	70.7		1,44	1 84		1.89	1.41	1.65	2 1 2	5.13		1.56	2.09	5 26	11:1
	Phase Duration1	Inspiration Expiration	000	200	(a)	1.00	1.99	1 43		1.78		1.20	1 60	1.00	1.63	1.10	1 37	1:5	2.51		1.45	1 62	70	1.17
		Chacifications	Discourage and a second		(A)	Children, of	Adults of						1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Average	Adults, 9		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Average	Adults, of				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Average

/1/ Period of measurable air flow. /2/ Tidal air flow. /3/ Average air flow increase during phase initiation. /4/ Average air flow decrease during phase termination.

Contributors: (a) Morrow, P. E., (b) Scott, C. C.

References: [1] Hartwich, A., Zschr. ges. exp. Med. 69:482, 1929-30. [2] Bretschger, H. J., Pflügers Arch. 210:134, 1952. [3] Specht, H., Marshall, L. H., and Spicknall, B. H., J. Appl. Physiol. 2:363, 1950. [L. H., and Hoffmaster, B., Am. J. Physiol. 157:265, 1949. [4] Specht, H., Marshall, L. H., and Spicknall, B. H., J. Appl. Physiol. 2:363, 1950. [5] Silverman, L., Lee, R. C., and Drinker, C. K., J. Clin. Invest. 23:907, 1944. [6] Cain, C. C., and Otis, A. B., J. Aviat, M. 21:149, 1949. [7] Proctor, D. F., and Hardy, J., Bull. Johns Hopkins Hosp. 85:253, 1949. [8] Rumpf, K., Zschr. ges. exp. Med. 101:493, 1937. [9] Fleisch, A., Pflügers Arch. 214:595, 1926.

97. RESPIRATORY REFLEXES: MAN

Reflexes, except where noted, have been demonstrated in man. Many respiratory alterations exist for which receptors or reflex routes are not known, and all reflexes depend upon net prevailing integrated activity of countless other reflexes. CAC = cardio-accelerator center, CIC = cardio-inhibitor center, VCC = vasoconstrictor center, RC = respiratory centers in brain stem.

(H) (I)		Increased 1 respiratory rate or depth 2.	Increased 1 respiratory ratel or depth 2. Hyperpnea. 1	Increased i respiratory ratel or depth 2. Hyperpnea. I	Increased I respiratory ratel or depth 2. Hyperpnea. I Apnea. I ncreased I respiratory rate without important circulatory effects 3.	Increased I respiratory ratel or depth 2. Hyperpnea. I Increased I respiratory rate without important circulatory effects 3. Expiratory blast I or cough.	Increased I respiratory ratel or depth 2. Hyperpnea. I Increased I respiratory rate without important circulatory effects 3. Expiratory blast I or cough.	Increased I respiratory ratel or depth 2. Hyperpnea. I horeased I respiratory rate without important circulatory effects 3. Expiratory blast I or cough. Vasoconstric- I tion, tachy-cardia 4, polypnea.	Increased I respiratory ratel or depth 2. Hyperpnea. I horeased I respiratory rate without important circulatory effects 3. Expiratory blast I or cough. Vasoconstric- I tion, tachy-cardia 4, polypnea. Vasodilatation, appea followed by polypnea (diphasic).
(9)		ln	<u> </u>	Hi Hi	hy Hy Hy Hy Hy Hy Hy Hy Hy Hy Hy Hy Hy Hy	Phrenics, thoracics.	Phrenics, thoracics.	Phrenics, thoracics. Vagus, sympathetics, phrenics, thetics, thetics, thoracics, thoracics.	thoracics, thoracics, thetics, phrenics, thoracics. Sympathetics, phrenics, thoracics. Sympathetics, thoracics.
(E) (F)		ss. RC stimu-lated.			R R	RG RG RG	RC RC RC	RG RG RG CO	RG RG RG Avagus. VG
		ratory eptors Somatics.				ors in right vagus. g betch vagus. etch dings (?). Vagus.	Stretch (?) receptors in joints (and tendons ?). Stretch receptors in great veins, right atrium. Slowly adapting alveolar stretch receptors. Rapidly adapting receptors. Rapidly adapting receptors. Any receptors. Rapidly adapting receptors. Any Free nerve endings (?). Vagus. Mixed Respiratory and Cardiovascular	ors in right vagus. etch ng etch dings (?). Vagus. and Cardiovascular Cardiac Sympath	ors in right Vagus. etch ng Vagus. etch ng Vagus. and Cardiovascular Cardiac sympat ors in Pulmonar reins.
(G)	0	Respiratory Stretch (?) receptors in joints (and tendons ?).	Respiratory Stretch (?) receptors in joints (and tendons ?). Stretch receptors in great veins, right atrium.	Respirato Stretch (?) receptor in joints (and tendons ?). Stretch receptors great veins, righ arrium. Slowly adapting alveolar stretch receptors.	Respirato Stretch (?) receptoi in joints (and tendons ?). Stretch receptors great veins, righ arrium. Slowly adapting alveolar stretch receptors. Rapidly adapting alveolar stretch receptors.	Respira Stretch (?) recepin joints (and tendons ?). Stretch receptor great veins, rratrium. Slowly adapting alveolar strett receptors. Rapidly adapting receptors. Repidly adapting receptors.	Respira Stretch (?) recepting in joints (and tendons?). Stretch receptor great veins, rratrium. Slowly adapting alveolar stretreceptors. Rapidly adapting alveolar stretreceptors. Receptors. Free nerve endii	Respira Stretch (?) recepin in joints (and tendons?). Stretch receptor great veins, r. atrium. Slowly adapting alveolar strett receptors. Rapidly adapting alveolar strett receptors. Repidly adapting alveolar strett receptors. Respiratory ar receptors.	Respiratory Stretch (?) receptors in joints (and tendons ?). Stretch receptors in great veins, right atrium. Slowly adapting alveolar stretch receptors. Rapidly adapting alveolar stretch receptors. Repidly adapting receptors. Repidly adapting alveolar stretch receptors. Stretch receptors (?).
(C)						Respiratory Stretch (?) receptors in joints (and tendons ?). Stretch receptors in great veins, right atrium. Slowly adapting alveolar stretch receptors. Rapidly adapting vagues alveolar stretch receptors. Rapidly adapting receptors. Rapidly adapting receptors. Rapidly adapting receptors. Inhalation of irritant Free nerve endings (?). Vagus infections.	nhalation of irritant gases and vapors; respiratory infections. Mixe	Inhalation of irritant gases and vapors; respiratory infections. Thrombotic, embolic, or atherosclerotic occlusion.	inhalation of irritant gases and vapors; respiratory infections. Thrombotic, embolic, or atherosclerotic occlusion.
(B)		Motion of extremities.	Motion of extremities. Blood pressure in great veins, right atrium.	Motion of extremities. Blood pressure in great veins, right atrium. Moderate inflation of lungs.	Motion of extremities. Blood pressure in great veins, right atrium. Moderate inflation of lungs. Extreme inflation or deflation.	uou uo	, oo uo	, uo u	s. In lation ation n. rease
(A)			spira- son)	rd -	ď	ď	Tra-	Propriocepto- respiratory Vena cavo-respira- tory (Harrison) Alveolo-respira- Breuer) Alveolo-respira- Breuer) Alveolo-respira- Breuer) Alveolo-respira- atory (acceler- atory) Cough reflex) Coronary reflex	ra-

11/ In dog. /2/ In cat. /3/ In dog and rabbit. /4/ Usual result of coronary occlusion is tachycardia, but in some cases there is a complicating vaso-vagal Contributors: (a) Peel, A. A. F., (b) Aviado, D. M., Jr., (c) Grayson, J., (d) Nahum, L. H., (e) Peterson, L. H. reflex which results in bradycardia and fall in blood pressure.

References: [1] Aviado, D. M., Jr., and Schmidt, C. F., Physiol. Rev. 35:247, 1955. [2] Wright, S., "Applied Physiology," London: Oxford University Press, 1945. [3] De Castro, U., Trav. Lab. Rech. Biol. Inst. Cajal, 24:365, 1926. [4] Schmidt, C. F., and Comroe, J. H., Physiol. Rev. 20:115, 1940. [5] Schweitzer, A., and Wright, S., Quart, J. Exp. Physiol. 28:33, 1938.

98. REQUIRED TIDAL VOLUME VS BODY WEIGHT AND BREATHING FREQUENCY: MAN

gram: daily activity and eating, add 10%; fever, add 5% for each OF above 99 degrees, rectal; altitude, add 5% for each 2000 ft above sea level; tracheotomy, Ventilation nomogram to be used in estimating adequacy of tank respirator settings. Correction factors to be applied to tidal volumes obtained from nomoafter all above corrections have been added, subtract volume equal to one-half body weight. sat = saturated with water vapor.

Contributor: Abajian, J., Jr. Reference: Radford, E. P., Jr., J. Appl. Physiol. 7:451, 1955.

99. MEAN TIDAL VOLUME FOR VARIOUS TECHNIQUES OF ARTIFICIAL RESPIRATION: MAN Part 1: APNEIC INFANTS

Values are cubic centimeters air per respiratory cycle for five infants with endotracheal intubation.

-										
		ine	300-600	(K)	25	36	50	79	92	
	Rocking	Supine	450-450	(3)	22	30	45	52	98	hin-lift
	Manual Rocking	ne	300-600	(I)	20	28	42	46	7.2	hack-pressure
		Prone	450-450	(H)	18	24	35	42	65	of 35-45% of 1
Tidal Volume, cc	Back-	pressure	Hip-lift ²	(D)	58	106	116	133	210	souley eyes enc
Tic	Back-	pressure	Arm-lift ⁱ	(F)	41	62	98	111	184	(2) Hin-lift alone gave values of 35-45% of hack-pressure hin-lift
	Chest-	pressure	Arm-lift	(E)	46	86	110	124	206	book - nanogonino onne lift
	Manak to	-01-HIDDIN	Mouth	(a)	94	150	220	248	284	Of of book pro
		Sleeping)	(C)	32	48	62	87	94	11 A man 11 ft alone acres 201100 of 30 5000 of
	Weight	lb		(B)	15	22	31	30	38	01000 00010
	Age	mo		(A)	1 5	2 12	3 24	4 30	5 36	11 / A 1:6.

/1/ Arm-lift alone gave values of 30-50% of back-pressure arm-lift. /2/ Hip-lift alone gave values of 35-45% of back-pressure hip-lift

Contributor: Gordon, A. S.

Reference: Gordon, A. S., and Frye, C. W., J. Am. M. Ass. (in press).

Part II: APNEIC ADULTS

Apnea induction: A-C = anesthesia and curare; D-A = drug and anesthesia; I-P = intracranial pathology. Airway: N = natural, no artificial airway used; A artificial oropharyngeal (standard Connell airway that prevents lip obstruction and reaches to base of tongue); E = cuffed endotracheal tube. Head position: N = no support of head or mandible; E = neck extended at atlanto-occipital joint. Values in parentheses are ranges, estimate "c" of the 95% range (cf Introduction).

./									-			-
								Impil	Tidal Volume, ml			
	W	Δουσο		Hood	Prone	Hin-	Chest-	Back-	Back-	Back-	Eve Rocking Refer-	king
	9	Induction	Airway	Position		lift	pressure	pressure	pressure	pressure		0
	2				(Schafer)	(Schafer) (Emerson)		Arm-Int	Hip-roll	Hip-lift	Prone S	upine
					1	1000 10000	(Silvester)	(Holger Nielsen)	(Emerson)	(Holger Nielsen) (Emerson) (Schafer-Emerson-lvy)		
	(C)	(<u>Q</u>)	(E)	(F)	(B)	(H)	(1	(7)	(K)	(L)	(E)	(N)
-		A-C	E		485	6351	10692	1056	196	1140		
21-28		A-C	E3				1123	1170		1249	574	393
_		I-P			155		285	245	350	405		
31-59		D-A4						474		864		
20-83		I-P			365	352		577		089		
	101-174	A-C	ī	N or E			503(400-700)	655(260-840)				
	101-210	A-C	z	z			73(0-560)					
	101-210	A-C	z	z				126(0-780)				
	155-210	A-C	z	ध			352(0-1060)					
	155-180	A-C	z	回				52(0-1160)				
-	165-210	A-C	A	回			418(0-1200)					
-	155-210	A-C	А	旦				338(0-760)				
	155-186	A-C	А	z			84(0-500)					
	155-210	A-C	A	Z				177(0-840)				
1 0	n satura	Arterial oxygen saturation, %5 86(74-9	86(74-9	5)6	67(42-91)			93(89-100)	(001-06)56	88(70-98)	93(89-100)	(00
				-		-						

/4/ During immediate preoperative period. /5/ Measurements made at end of 15minute periods of artificial respiration on 11 anesthetized and curarized adult males. 16/ Control. /1/ Ten subjects. /2/ Fifteen subjects. /3/ Wearing full-face gas mask.

Contributors: (a) Gordon, A. S., (b) Safar, P., (c) Elam, J. O.

References: [1] Gordon, A. S., Sadove, M. S., Raymon, F., and Ivy, A. C., J. Am. M. Ass. 147:1444, 1951. [2] Gordon, A. S., Frye, C. W., Miller, R. D., and Wyant, G. M., U. S. Armed Forces M. J. 6:781, 1955. [3] Nims, R. G., Conner, E. H., Botelho, S. Y., and Comroe, J. H., Jr., J. Appl. Physiol. 4:486, 1951. [4] Whittenberger, J. L., Affeldt, J. E., Goodale, W. T., and Sarnoff, S. J., ibid 4:472, 1951. [5] Safar, P., and Elam, J. O., Anesthesiology (in press). [6] Safar, P., Escarraga, L., and Elam, J. O., N. England J. M. (in press). [7] Safar, P., J. Am. M. Ass. (in press). [8] Gordon, A. S., Prec, O., Wedell, H., Sadove, M. S., Raymon, F., Nelson, J. T., and Ivy, A. C., J. Appl. Physiol. 4:6, 421, 1951.

100. VENTILATORY CHARACTERISTICS OF VARIOUS RESPIRATORS AND TECHNIQUES OF ARTIFICIAL RESPIRATION: MAN Values in parentheses are ranges, estimate "c" of the 95% range (cf Introduction).

Volume	C. C. C. C. C. C. C. C. C. C. C. C. C. C	L			Pressure	Tidal	Ventilatory		1
Respirator Repirator Rocondition and Sex W. 1b mm Hg ml Hg m	Or		Subjects		Applied1	Volume	Rate	Remarks	Keler-
(A) (B) (C) Automatic Mechanical (E) (F) (G)	Respirator	No.		Wt, lb	mm Hg	ml	per min		1
Intermittent positive airway 5 Amesthetized male Circuistory effects deterrious, pressure 1 Automatic Mechanical Respirators 1 Automatic Mechanical Respirator 1		(B)	(C)	(D)	(E)	(F)	(G)	(H)	Ξ
Intermittent positive airway 5 Anesthetized and 108-157 3.92 1127(420-1990) 12 Circulatory effects deleterious, pressure 12 and females 126-192 4.32 320(70-576) 23 proportional to mean mask 126-192 4.32 320(70-576) 13 Proportional to mean mask 126-192 4.32 332 13 Proportional to mean mask 13 Politony elities 131 519 214 332 214			Aut	omatic Mech	nanical Res	spirators			
Pressure Curarized, males A i i i i i i i i i i i i i i i i i i	I Intermittent positive airway	2		108-157	3.92	1127(420-1990)	12		1-4
Apolity positive alrway pressure 120-192 4.12 3100-192 130 1300-192 130 1300-192 130 1300-192 130 130 130 1300-192 130			curarized, males		(6,	1723 027020	200	proportional to mean mask	
Positive - negative airway pressure 1		12	and females.	126-192	4.36	320(10-510)	52	pressure.	
Tank Tank	2		Oropharyngeal	108-192	4.12	1139(306-1880)	11		
Chest-pressure arm-lift (Silvester) 15 Anesthetized and rearized, males 10 Anesthetized and reasure (Schafer) 15 Anesthetized and reasure (Schafer) 15 Anesthetized and reasure arm-lift (Nielsen) 15 Anesthetized and reasure and females 10 - 210 10 Anesthetized and reasure (Schafer) 15 Anesthetized and reasure (Schafer) 15 Anesthetized and reasure and females 10 - 210 10 Anesthetized and reasure (Schafer) 15 Anesthetized and reasure (Schafer) 15 Anesthetized and reasure arm-lift (Nielsen) 15 An	6	14	Poliomvelitis		-7.43	332	17	Circulatory effects deleterious,	5,6
Culrass (chest-abdominal) 13 nearly complete -7.43 214 tank pressure (approximately paralysis, males and females. Electrophrenic respirator 1 Electrophrenic Respirator 20 Circulatory effects beneficial. Chest-pressure arm-lift (Silvester) 10 Anesthetized and females. + to ++ 1046(659-1795) 12 Circulatory effects beneficial. Chest-pressure arm-lift (Silvester) 10 Anesthetized and females. + to ++ 1046(659-1795) 12 Circulatory effects beneficial. Endotracheal 130-205 + to ++ 1046(659-1795) 12 Circulatory effects beneficial. Endotracheal 130-205 + to ++ 1046(659-1795) 12 Circulatory effects beneficial. Endotracheal 110-205 + to ++ 1046(659-1795) 12 Circulatory effects of maneuvers and blood gas abnormalities. Eventuality (Emerson) 15 Anesthetized and currized, males 103-205 + to ++ 1046(67-1564) Persons. Back-pressure arm-lift (Nielsen) 15 Anesthetized and currized, males 101-210 + to ++ 104(67-1564) Persons. Mouth-to-mouth 15 Anesthetized and currized, mal			patients with		-11.13	519		proportional to mean (negative)	
Electrophrenic respirator 1		13	nearly complete		-7.43	214		tank pressure (approximately	
Electrophrenic respirator 1			paralysis, males		-11.13	311		½ peak pressure). Some	
Electrophrenic respirator 1 Electrophrenic Respirator 1 Electrophrenic Respirator 2 665 20 Circulatory effects beneficial. 2 Electrophrenic Respiration 2 Electrophrenic Respiration 30-205 + to ++ 1146(659-1795) 12 Circulatory effects of maneuvers Endotracheal 130-205 ++ 101(807-1707) 100 dasa abnormalities. 2 Endotracheal 1 2 2 2 2 2 2 2 2 2	00		and females.		-14.83	404		subjects inadequately venti-	
Electrophrenic respirator 1				Close south	paid Docni	2000		lated by cult ass.	-
Electrophrenic respirator 1				Clectrophic	dean ome	Lator			
Chest-pressure arm-lift (Silvester) In Anesthetized and curarized, males. rocking Architicial Respiration Respiration In 146(659-1795) 12 Circulatory effects of maneuvers Back-pressure arm-lift (Nielsen) Endotracheal 130-205 + to ++ 1146(659-1795) 12 Circulatory effects of maneuvers Hip-roll, prone pressure arm-lift (Nielsen) Endotracheal ++ 1054(67-1707) hot directly because of not interpretable because of not interpretable because of not interpretable because of not interpretable because of not interpretable because of not interpretable because of not interpretable because of not interpretable because of not interpretable because of not interpretable because of not interpretable because of not interpretable because of not interpretable because of not interpretable because of not interpretable because of maneuvers Risp-roll, prone pressure arm-lift (Nielsen) 15 Anesthetized and chemales. 101-210 ++ 501(342-652) Wethod gaught nation-wide since not not not not not not not not not not		-			0	865	20	Circulatory effects beneficial.	2,6
Chest-pressure arm-lift (Silvester) 10 Anesthetized and curarized, males 130-205 + to ++ 1146(659-1795) 12 12 12 130-205 12 12 130-205 14 1101(807-1707) Curarized, males H+ 1101(807-1707) 10 140 15 14 10 14 10 10 10 10 10				Manual Artif	icial Resp	iration			
Back-pressure arm-lift (Nielsen) curarized, males ++ 1101(807-1707) not interpretable because of H++ Hip-roll, prone pressure Endotracheal ++ 1054(671-1564) hotod gas abnormalities. Eve rocking Hip-lift (Emerson) ++ 635(445-853) ventilation may be inadequate without airway or in obese Prone pressure (Schafer) 15 Anesthetized and females. 101-210 ++ 501(342-652) Method taught nation-wide since late to method taught nation-wide since late and females. Mouth-to-mouth 15 Anesthetized and females. Expired Air Inflation 4.02 1500(1000-2000)4 6-30 Superiority claimed to methods of manual artificial respiration. Airway-to-mouth 15 Anesthetized and females. 110-210 4.02 1500(1000-2000)4 6-30 Superiority claimed to methods of manual artificial respiration.	⊥.	10	Anesthetized and	130-205	+ to ++	1146(659-1795)	12	Circulatory effects of maneuvers	3 7-11
Hip-roll, prone pressure Endotracheal airway. Hip-lift (Emerson)	_		curarized, males.		++	1101(807-1707)		not interpretable because of	
Eve rocking airway. +++ 615(41-880) Ventilation may be inadequate without airway or in obese without airway or in obese Hip-lift (Emerson) Frone pressure (Schafer) + 501(342-652) Persons. Back-pressure arm-lift (Nielsen) 15 Anesthetized and females. 101-210 ++ 126(0-780) Method taught nation-wide since lift airway. Mouth-to-mouth 15 Anesthetized and females. 110-210 4.02 1500(1000-2000) 5-30 Superiority claimed to methods of manual artificial respiration.	12 Hip-roll, prone pressure		Endotracheal		+++	1054(671-1564)		blood gas abnormalities.	
Hip-lift (Emerson) Prone pressure (Schafer) Back-pressure arm-lift (Nielsen) Back-pressure arm-lift (Nielsen) Is Anesthetized and females. Mouth-to-mouth Back-pressure arm-lift (Nielsen) Is Anesthetized and females. Mouth-to-mouth Back-pressure arm-lift (Nielsen) In In In In In In In In In In In In In I	13 Eve rocking		airway.			751(511-880)		Ventilation may be inadequate	
Prone pressure (Schafer) Back-pressure arm-lift (Nielsen) Back-pressure arm-lift (Nielsen) Back-pressure arm-lift (Nielsen) Curarized, males and females. Mouth-to-mouth Mouth-to-mouth Airway-to-mouth Airway-to-mouth The foliation Another females and females. Expired Air Inflation Author females Airway-to-mouth The foliation Author females Airway-to-mouth The foliation Author females Airway-to-mouth The foliation The foliation The foliation and females	1	Ţ			+++	635(445-853)		without airway or in obese	
Back-pressure arm-lift (Nielsen) 15 Anesthetized and curarized, males and females. Mouth-to-mouth 15 Anesthetized and curarized, males and females. Mouth-to-mouth 15 Anesthetized and curarized, males and females.	٠.				+	501(342-652)		persons.	
Mouth-to-mouth Airway-to-mouth		15	Anesthetized and	101-210	+	126(0-780)		Method taught nation-wide since	12-14
Mouth-to-mouth Matural airway. Expired Air Inflation Mouth-to-mouth Airway-to-mouth Airway-to-mouth Mouth-to-mouth Airway-to-mouth and females.			curarized, males					1951.	
Mouth-to-mouth 15 Anesthetized and 110-210 4.02 1500(1000-2000)4 6-30 Superiority claimed to methods Airway-to-mouth and females.			and females.						
Mouth-to-mouth 15 Anesthetized and 110-210 4.02 1500(1000-2000)4 6-30 Superiority claimed to methods Airway-to-mouth and females.			Natural airway.						
Mouth-to-mouth 15 Anesthetized and 110-210 4.02 1500(1000-2000) ⁴ 6-30 Superiority claimed to methods Airway-to-mouth and females.				Expired	Air Inflati	lon			1
Airway-to-mouth curarized, males and females.	17 Mouth-to-mouth	15	Anesthetized and	110-210	4.02	1500(1000-2000)4		Superiority claimed to methods	12-15
			curarized, males					of manual artificial respira- tion.	
			and temates.	1					

[1] Lines 10-16 indicate effort of operator. [2] Mean pressure at mask. [3] Peak pressure at tank. [4] Approximate.

Contributors: (a) Price, H. L., and Conner, E. H., (b) Safar, P.

[6] Sarnoff, S. J., Maloney, J. V., Jr., and Whittenberger, J. L., Ann. Surg. 132:921, 1950. [7] Gordon, A. S., Raymon, F., Sadove, M. S., and lvy, A. C., lvy, A. C., ibid 4:439, 1951. [11] Waters, R. M., and Bennett, J. H., Current Res. Anesth. 15:151, 1936. [12] Safar, P., J. Am. M. Ass. (in press). [13] Safar, P., and Elam, J. O., N. England J. M. (in press). [15] Safar, P., Wedell, H., Sadove, M. S., Raymon, F., Nelson, J. T., and lvy, A. C., ibid 4:421, 1951. [10] Gordon, A. S., Raymon, F., Sadove, M. S., Wedell, H., and References: [1] Price, H. L., Conner, E. H., and Dripps, R. D., J. Appl. Physiol. 6:517, 1954. [2] Maloney, J. V., Jr., Affeldt, J. E., Sarnoff, S. J., and Whittenberger, J. L., Surg. Gyn. Obst. 92:672, 1951. [3] Motley, H. L., Werko, L., Cournand, A., and Richards, D. W., Jr., J. Aviat. M. 18:417, 1947. [4] Berneus, B., and Carlsten, A., Acta med. scand. 152:19, 1955. [5] Collier, C. R., and Affeldt, J. E., J. Appl. Physiol. 6:531, 1954. J. Am. M. Ass. 144:1447, 1950. [8] Karpovitch, P. V., Hale, C. J., and Balley, T. L., J. Appl. Physiol. 4:458, 1951. [9] Gordon, A. S., Prec, O., Anesthesiology 18:904, 1957.

101. VENTILATION AND GAS EXCHANGE VS EXERCISE AND RECOVERY: MAN

Data from subjects clinically free of pulmonary or cardiovascular disease and in basal conditions. Values for males and females calculated separately. STPS conditions.[1] Ranges in parentheses conform to estimate "b" of the 95% range (cf. Introduction).

	ige (cr introduction).		Males	
	Variable	Group I: Age 16-34 yr	Group II: Age 35-49 yr	Group III: Age 52-69 yr
_	(A)	(B)	(C)	(D)
	Physical characteristics	(2)		
1	Age, yr	25,5(mean)	42.7(mean)	59.6(mean)
2	Height, cm	173.8(156.6-191.0)	171.7(157.8-185.6)	169.6(153-186.2)
3	Weight, kg	66.0(49.4-82.6)	64.9(42.5-87.3)	66,3(49,1-83.5)
4	Body surface area, sq m	1.77(1.29-2.05)	1.80(1.48-2.12)	1.80(1.50-2.70)
5	Vital capacity, supine, cc1	4012(2780-5244)	4160(3200-5120)	3417(1767-5067)
6	Maximal breathing capacity,			
ŭ	standing, L/min ¹	126.0(67.8-183.2)	109.4(77.6-141.2)	90.6(57.0-124.2)
	Ventilation, L/min/sq m BSA2			
7	Basal	2.6(3.0-4.2)	3,1(2,1-4,1)	3.9(3.0-4.8)
8	1 min standard exercise ³	11.0(6.4-15.6)	10.0(5.4-14.6)	11.2(5.8-16.6)
9	1st min recovery	12.5(8.3-16.7)	13.4(8.2-18.6)	14.5(9.5-19.5)
10	2nd min recovery	8.6(5.6-11.6)	9.4(5.2-11.2)	10.8(6.8-14.8)
11	5th min recovery	5.2(3.94-6.46)	5.2(3.8-6.6)	6.3(2.9-8.7)
	Oxygen consumption, cc/min/			
	sq m, BSA			
12	Basal	146(118-174)	131(111-151)	132(98-166)
13	l min standard exercise	503(331-675)	481(301-661)	506(326-686)
14	5th min recovery	1488(1144-1832)	1493(1301-1665)	1511(1183-1839)
	Oxygen removal, cc/L ventil.			
15	Basal ⁴	47.1(37.1-57.1)	46.1(35.1-57.1)	38.5(33.7-43.3)
16	1 min standard exercise	56.2(41.4-71.0)	55.7(42.3-69.1)	55.7(42.3-69.1)
			Females	
	Wamiah la		remaies	
	Variable	Group I: Age 16-34 yr	Group II: Age 35-49 yr	Group III: Age 50-79 yr
	(A)	Group I: Age 16-34 yr (E)		Group III: Age 50-79 yr (G)
_			Group II: Age 35-49 yr (F)	(G)
1	(A) Physical characteristics Age, yr	(E) 25.1(mean)	Group II: Age 35-49 yr (F) 43.3(mean)	(G) 59.8(mean)
2	(A) Physical characteristics	(E) 25.1(mean) 161.8(149.4-174.2)	Group II: Age 35-49 yr (F) 43.3(mean) 164.0(150.4-177.6)	(G) 59.8(mean) 158.4(145.0-171.8)
	(A) Physical characteristics Age, yr Height, cm Weight, kg	(E) 25.1(mean)	Group II: Age 35-49 yr (F) 43.3(mean) 164.0(150.4-177.6) 62.6(32.0-93.2)	(G) 59.8(mean) 158.4(145.0-171.8) 67.2(45.2-89.2)
2	(A) Physical characteristics Age, yr Height, cm Weight, kg Body surface area, sq m	(E) 25.1(mean) 161.8(149.4-174.2) 59.2(37.0-81.4) 1.58(1.30-1.86)	Group II: Age 35-49 yr (F) 43.3(mean) 164.0(150.4-177.6) 62.6(32.0-93.2) 1.72(1.38-2.06)	(G) 59.8(mean) 158.4(145.0-171.8) 67.2(45.2-89.2) 1.7(1.46-1.94)
2.	(A) Physical characteristics Age, yr Height, cm Weight, kg Body surface area, sq m Vital capacity, supine, ccl	(E) 25.1(mean) 161.8(149.4-174.2) 59.2(37.0-81.4)	Group II: Age 35-49 yr (F) 43.3(mean) 164.0(150.4-177.6) 62.6(32.0-93.2)	(G) 59.8(mean) 158.4(145.0-171.8) 67.2(45.2-89.2)
2 3 4	Physical characteristics Age, yr Height, cm Weight, kg Body surface area, sq m Vital capacity, supine, cc1 Maximal breathing capacity,	(E) 25.1(mean) 161.8(149.4-174.2) 59.2(37.0-81.4) 1.58(1.30-1.86) 3057(1955-4159)	Group II: Age 35-49 yr (F) 43.3(mean) 164.0(150.4-177.6) 62.6(32.0-93.2) 1.72(1.38-2.06) 2830(2036-3624)	(G) 59.8(mean) 158.4(145.0-171.8) 67.2(45.2-89.2) 1.7(1.46-1.94) 2431(1367-3495)
2 3 4	(A) Physical characteristics Age, yr Height, cm Weight, kg Body surface area, sq m Vital capacity, supine, ccl Maximal breathing capacity, standing, L/minl	(E) 25.1(mean) 161.8(149.4-174.2) 59.2(37.0-81.4) 1.58(1.30-1.86)	Group II: Age 35-49 yr (F) 43.3(mean) 164.0(150.4-177.6) 62.6(32.0-93.2) 1.72(1.38-2.06)	(G) 59.8(mean) 158.4(145.0-171.8) 67.2(45.2-89.2) 1.7(1.46-1.94)
2. 3. 4. 5. 6	(A) Physical characteristics Age, yr Height, cm Weight, kg Body surface area, sq m Vital capacity, supine, ccl Maximal breathing capacity, standing, L/minl Ventilation, L/min/sq m BSA2	(E) 25.1(mean) 161.8(149.4-174.2) 59.2(37.0-81.4) 1.58(1.30-1.86) 3057(1955-4159) 93.7(68.5-118.9)	Group II: Age 35-49 yr (F) 43.3(mean) 164.0(150.4-177.6) 62.6(32.0-93.2) 1.72(1.38-2.06) 2830(2036-3624) 89.3(53.5-125.2)	(G) 59.8(mean) 158.4(145.0-171.8) 67.2(45.2-89.2) 1.7(1.46-1.94) 2431(1367-3495) 73.5(39.9-107.1)
2. 3. 4. 5. 6	(A) Physical characteristics Age, yr Height, cm Weight, kg Body surface area, sq m Vital capacity, supine, cc ¹ Maximal breathing capacity, standing, L/min ¹ Ventilation, L/min/sq m BSA ² Basal	(E) 25.1(mean) 161.8(149.4-174.2) 59.2(37.0-81.4) 1.58(1.30-1.86) 3057(1955-4159) 93.7(68.5-118.9) 3.2(2.4-4.0)	Group II: Age 35-49 yr (F) 43.3(mean) 164.0(150.4-177.6) 62.6(32.0-93.2) 1.72(1.38-2.06) 2830(2036-3624) 89.3(53.5-125.2) 3.2(2.4-4.0)	(G) 59.8(mean) 158.4(145.0-171.8) 67.2(45.2-89.2) 1.7(1.46-1.94) 2431(1367-3495) 73.5(39.9-107.1) 3.4(2.6-4.2)
2. 3. 4. 5. 6. 7. 8	(A) Physical characteristics Age, yr Height, cm Weight, kg Body surface area, sq m Vital capacity, supine, cc ¹ Maximal breathing capacity, standing, L/min ¹ Ventilation, L/min/sq m BSA ² Basal 1 min standard exercise ³	(E) 25.1(mean) 161.8(149.4-174.2) 59.2(37.0-81.4) 1.58(1.30-1.86) 3057(1955-4159) 93.7(68.5-118.9) 3.2(2.4-4.0) 9.0(5.6-12.4)	Group II: Age 35-49 yr (F) 43.3(mean) 164.0(150.4-177.6) 62.6(32.0-93.2) 1.72(1.38-2.06) 2830(2036-3624) 89.3(53.5-125.2) 3.2(2.4-4.0) 11.4(7.8-15.0)	(G) 59.8(mean) 158.4(145.0-171.8) 67.2(45.2-89.2) 1.7(1.46-1.94) 2431(1367-3495) 73.5(39.9-107.1) 3.4(2.6-4.2) 11.4(8.0-14.8)
2. 3. 4. 5. 6. 7. 8. 9.	(A) Physical characteristics Age, yr Height, cm Weight, kg Body surface area, sq m Vital capacity, supine, cc ¹ Maximal breathing capacity, standing, L/min ¹ Ventilation, L/min/sq m BSA ² Basal I min standard exercise ³ 1st min recovery	(E) 25.1(mean) 161.8(149.4-174.2) 59.2(37.0-81.4) 1.58(1.30-1.86) 3057(1955-4159) 93.7(68.5-118.9) 3.2(2.4-4.0) 9.0(5.6-12.4) 10.9(7.9-13.9)	Group II: Age 35-49 yr (F) 43.3(mean) 164.0(150.4-177.6) 62.6(32.0-93.2) 1.72(1.38-2.06) 2830(2036-3624) 89.3(53.5-125.2) 3.2(2.4-4.0) 11.4(7.8-15.0) 11.9(8.5-15.3)	(G) 59.8(mean) 158.4(145.0-171.8) 67.2(45.2-89.2) 1.7(1.46-1.94) 2431(1367-3495) 73.5(39.9-107.1) 3.4(2.6-4.2) 11.4(8.0-14.8) 12.6(8.2-17.0)
2 3 4 5 6 7 8 9	Physical characteristics Age, yr Height, cm Weight, kg Body surface area, sq m Vital capacity, supine, cc1 Maximal breathing capacity, standing, L/min1 Ventilation, L/min/sq m BSA2 Basal I min standard exercise3 1st min recovery 2nd min recovery	(E) 25.1(mean) 161.8(149.4-174.2) 59.2(37.0-81.4) 1.58(1.30-1.86) 3057(1955-4159) 93.7(68.5-118.9) 3.2(2.4-4.0) 9.0(5.6-12.4) 10.9(7.9-13.9) 8.1(5.5-10.7)	Group II: Age 35-49 yr (F) 43.3(mean) 164.0(150.4-177.6) 62.6(32.0-93.2) 1.72(1.38-2.06) 2830(2036-3624) 89.3(53.5-125.2) 3.2(2.4-4.0) 11.4(7.8-15.0) 11.9(8.5-15.3) 9.2(5.8-12.6)	(G) 59.8(mean) 158.4(145.0-171.8) 67.2(45.2-89.2) 1.7(1.46-1.94) 2431(1367-3495) 73.5(39.9-107.1) 3.4(2.6-4.2) 11.4(8.0-14.8) 12.6(8.2-17.0) 8.5(6.7-10.3)
2. 3. 4. 5. 6. 7. 8. 9.	Physical characteristics Age, yr Height, cm Weight, kg Body surface area, sq m Vital capacity, supine, cc ¹ Maximal breathing capacity, standing, L/min ¹ Ventilation, L/min/sq m BSA ² Basal 1 min standard exercise ³ 1st min recovery 2nd min recovery 5th min recovery	(E) 25.1(mean) 161.8(149.4-174.2) 59.2(37.0-81.4) 1.58(1.30-1.86) 3057(1955-4159) 93.7(68.5-118.9) 3.2(2.4-4.0) 9.0(5.6-12.4) 10.9(7.9-13.9)	Group II: Age 35-49 yr (F) 43.3(mean) 164.0(150.4-177.6) 62.6(32.0-93.2) 1.72(1.38-2.06) 2830(2036-3624) 89.3(53.5-125.2) 3.2(2.4-4.0) 11.4(7.8-15.0) 11.9(8.5-15.3)	(G) 59.8(mean) 158.4(145.0-171.8) 67.2(45.2-89.2) 1.7(1.46-1.94) 2431(1367-3495) 73.5(39.9-107.1) 3.4(2.6-4.2) 11.4(8.0-14.8) 12.6(8.2-17.0)
2 3 4 5 6 7 8 9	(A) Physical characteristics Age, yr Height, cm Weight, kg Body surface area, sq m Vital capacity, supine, ccl Maximal breathing capacity, standing, L/minl Ventilation, L/min/sq m BSA2 Basal 1 min standard exercise3 1st min recovery 2nd min recovery 5th min recovery Oxygen consumption, cc/min/	(E) 25.1(mean) 161.8(149.4-174.2) 59.2(37.0-81.4) 1.58(1.30-1.86) 3057(1955-4159) 93.7(68.5-118.9) 3.2(2.4-4.0) 9.0(5.6-12.4) 10.9(7.9-13.9) 8.1(5.5-10.7)	Group II: Age 35-49 yr (F) 43.3(mean) 164.0(150.4-177.6) 62.6(32.0-93.2) 1.72(1.38-2.06) 2830(2036-3624) 89.3(53.5-125.2) 3.2(2.4-4.0) 11.4(7.8-15.0) 11.9(8.5-15.3) 9.2(5.8-12.6)	(G) 59.8(mean) 158.4(145.0-171.8) 67.2(45.2-89.2) 1.7(1.46-1.94) 2431(1367-3495) 73.5(39.9-107.1) 3.4(2.6-4.2) 11.4(8.0-14.8) 12.6(8.2-17.0) 8.5(6.7-10.3)
2, 3, 4, 5, 6, 7, 8, 9, 10, 11,	(A) Physical characteristics Age, yr Height, cm Weight, kg Body surface area, sq m Vital capacity, supine, ccl Maximal breathing capacity, standing, L/minl Ventilation, L/min/sq m BSA2 Basal I min standard exercise3 1st min recovery 2nd min recovery 5th min recovery Oxygen consumption, cc/min/sq m, BSA	(E) 25.1(mean) 161.8(149.4-174.2) 59.2(37.0-81.4) 1.58(1.30-1.86) 3057(1955-4159) 93.7(68.5-118.9) 3.2(2.4-4.0) 9.0(5.6-12.4) 10.9(7.9-13.9) 8.1(5.5-10.7) 4.9(3.7-6.1)	Group II: Age 35-49 yr (F) 43.3(mean) 164.0(150.4-177.6) 62.6(32.0-93.2) 1.72(1.38-2.06) 2830(2036-3624) 89.3(53.5-125.2) 3.2(2.4-4.0) 11.4(7.8-15.0) 11.9(8.5-15.3) 9.2(5.8-12.6) 5.2(3.2-7.2)	(G) 59.8(mean) 158.4(145.0-171.8) 67.2(45.2-89.2) 1.7(1.46-1.94) 2431(1367-3495) 73.5(39.9-107.1) 3.4(2.6-4.2) 11.4(8.0-14.8) 12.6(8.2-17.0) 8.5(6.7-10.3) 4.5(2.3-6.7)
2, 3, 4, 5, 6, 7, 8, 9, 10, 11,	(A) Physical characteristics Age, yr Height, cm Weight, kg Body surface area, sq m Vital capacity, supine, cc1 Maximal breathing capacity, standing, L/min1 Ventilation, L/min/sq m BSA2 Basal 1 min standard exercise3 1st min recovery 2nd min recovery 2nd min recovery 5th min recovery Oxygen consumption, cc/min/sq m, BSA Basal	(E) 25.1(mean) 161.8(149.4-174.2) 59.2(37.0-81.4) 1.58(1.30-1.86) 3057(1955-4159) 93.7(68.5-118.9) 3.2(2.4-4.0) 9.0(5.6-12.4) 10.9(7.9-13.9) 8.1(5.5-10.7) 4.9(3.7-6.1)	Group II: Age 35-49 yr (F) 43.3(mean) 164.0(150.4-177.6) 62.6(32.0-93.2) 1.72(1.38-2.06) 2830(2036-3624) 89.3(53.5-125.2) 3.2(2.4-4.0) 11.4(7.8-15.0) 11.9(8.5-15.3) 9.2(5.8-12.6) 5.2(3.2-7.2)	(G) 59.8(mean) 158.4(145.0-171.8) 67.2(45.2-89.2) 1.7(1.46-1.94) 2431(1367-3495) 73.5(39.9-107.1) 3.4(2.6-4.2) 11.4(8.0-14.8) 12.6(8.2-17.0) 8.5(6.7-10.3) 4.5(2.3-6.7)
2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,	(A) Physical characteristics Age, yr Height, cm Weight, kg Body surface area, sq m Vital capacity, supine, cc1 Maximal breathing capacity, standing, L/min1 Ventilation, L/min/sq m BSA2 Basal 1 min standard exercise3 1st min recovery 2nd min recovery 2nd min recovery 5th min recovery Oxygen consumption, cc/min/sq m, BSA Basal 1 min standard exercise	(E) 25.1(mean) 161.8(149.4-174.2) 59.2(37.0-81.4) 1.58(1.30-1.86) 3057(1955-4159) 93.7(68.5-118.9) 3.2(2.4-4.0) 9.0(5.6-12.4) 10.9(7.9-13.9) 8.1(5.5-10.7) 4.9(3.7-6.1) 126(106-146) 463(311-615)	Group II: Age 35-49 yr (F) 43.3(mean) 164.0(150.4-177.6) 62.6(32.0-93.2) 1.72(1.38-2.06) 2830(2036-3624) 89.3(53.5-125.2) 3.2(2.4-4.0) 11.4(7.8-15.0) 11.9(8.5-15.3) 9.2(5.8-12.6) 5.2(3.2-7.2)	(G) 59.8(mean) 158.4(145.0-171.8) 67.2(45.2-89.2) 1.7(1.46-1.94) 2431(1367-3495) 73.5(39.9-107.1) 3.4(2.6-4.2) 11.4(8.0-14.8) 12.6(8.2-17.0) 8.5(6.7-10.3) 4.5(2.3-6.7)
2, 3, 4, 5, 6, 7, 8, 9, 10, 11,	(A) Physical characteristics Age, yr Height, cm Weight, kg Body surface area, sq m Vital capacity, supine, cc1 Maximal breathing capacity, standing, L/min1 Ventilation, L/min/sq m BSA2 Basal I min standard exercise3 1st min recovery 2nd min recovery 5th min recovery 5th min recovery Oxygen consumption, cc/min/sq m, BSA Basal I min standard exercise 5th min recovery	(E) 25.1(mean) 161.8(149.4-174.2) 59.2(37.0-81.4) 1.58(1.30-1.86) 3057(1955-4159) 93.7(68.5-118.9) 3.2(2.4-4.0) 9.0(5.6-12.4) 10.9(7.9-13.9) 8.1(5.5-10.7) 4.9(3.7-6.1)	Group II: Age 35-49 yr (F) 43.3(mean) 164.0(150.4-177.6) 62.6(32.0-93.2) 1.72(1.38-2.06) 2830(2036-3624) 89.3(53.5-125.2) 3.2(2.4-4.0) 11.4(7.8-15.0) 11.9(8.5-15.3) 9.2(5.8-12.6) 5.2(3.2-7.2)	(G) 59.8(mean) 158.4(145.0-171.8) 67.2(45.2-89.2) 1.7(1.46-1.94) 2431(1367-3495) 73.5(39.9-107.1) 3.4(2.6-4.2) 11.4(8.0-14.8) 12.6(8.2-17.0) 8.5(6.7-10.3) 4.5(2.3-6.7)
2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,	(A) Physical characteristics Age, yr Height, cm Weight, kg Body surface area, sq m Vital capacity, supine, cc1 Maximal breathing capacity, standing, L/min1 Ventilation, L/min/sq m BSA2 Basal I min standard exercise3 1st min recovery 2nd min recovery 5th min recovery Oxygen consumption, cc/min/sq m, BSA Basal I min standard exercise 5th min recovery Oxygen removal, cc/L ventil.	(E) 25.1(mean) 161.8(149.4-174.2) 59.2(37.0-81.4) 1.58(1.30-1.86) 3057(1955-4159) 93.7(68.5-118.9) 3.2(2.4-4.0) 9.0(5.6-12.4) 10.9(7.9-13.9) 8.1(5.5-10.7) 4.9(3.7-6.1) 126(106-146) 463(311-615) 1318(1158-1478)	Group II: Age 35-49 yr (F) 43.3(mean) 164.0(150.4-177.6) 62.6(32.0-93.2) 1.72(1.38-2.06) 2830(2036-3624) 89.3(53.5-125.2) 3.2(2.4-4.0) 11.4(7.8-15.0) 11.9(8.5-15.3) 9.2(5.8-12.6) 5.2(3.2-7.2) 126(108-144) 505(323-690) 1368(1184-1552)	(G) 59.8(mean) 158.4(145.0-171.8) 67.2(45.2-89.2) 1.7(1.46-1.94) 2431(1367-3495) 73.5(39.9-107.1) 3.4(2.6-4.2) 11.4(8.0-14.8) 12.6(8.2-17.0) 8.5(6.7-10.3) 4.5(2.3-6.7) 126(107-151) 512(370-654) 1348(1078-1618)
2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,	(A) Physical characteristics Age, yr Height, cm Weight, kg Body surface area, sq m Vital capacity, supine, ccl Maximal breathing capacity, standing, L/minl Ventilation, L/min/sq m BSA ² Basal I min standard exercise ³ 1st min recovery 2nd min recovery 5th min recovery Oxygen consumption, cc/min/sq m, BSA Basal I min standard exercise 5th min recovery Oxygen removal, cc/L ventil. Basal ⁴	(E) 25.1(mean) 161.8(149.4-174.2) 59.2(37.0-81.4) 1.58(1.30-1.86) 3057(1955-4159) 93.7(68.5-118.9) 3.2(2.4-4.0) 9.0(5.6-12.4) 10.9(7.9-13.9) 8.1(5.5-10.7) 4.9(3.7-6.1) 126(106-146) 463(311-615) 1318(1158-1478)	Group II: Age 35-49 yr (F) 43.3(mean) 164.0(150.4-177.6) 62.6(32.0-93.2) 1.72(1.38-2.06) 2830(2036-3624) 89.3(53.5-125.2) 3.2(2.4-4.0) 11.4(7.8-15.0) 11.9(8.5-15.3) 9.2(5.8-12.6) 5.2(3.2-7.2) 126(108-144) 505(323-690) 1368(1184-1552) 46.0(35.2-58.8)	(G) 59.8(mean) 158.4(145.0-171.8) 67.2(45.2-89.2) 1.7(1.46-1.94) 2431(1367-3495) 73.5(39.9-107.1) 3.4(2.6-4.2) 11.4(8.0-14.8) 12.6(8.2-17.0) 8.5(6.7-10.3) 4.5(2.3-6.7) 126(107-151) 512(370-654) 1348(1078-1618) 44.5(36.7-52.3)
2 3 4 5 6 7 8 9 10 11 12 13 14	(A) Physical characteristics Age, yr Height, cm Weight, kg Body surface area, sq m Vital capacity, supine, cc1 Maximal breathing capacity, standing, L/min1 Ventilation, L/min/sq m BSA2 Basal I min standard exercise3 1st min recovery 2nd min recovery 5th min recovery Oxygen consumption, cc/min/sq m, BSA Basal I min standard exercise 5th min recovery Oxygen removal, cc/L ventil.	(E) 25.1(mean) 161.8(149.4-174.2) 59.2(37.0-81.4) 1.58(1.30-1.86) 3057(1955-4159) 93.7(68.5-118.9) 3.2(2.4-4.0) 9.0(5.6-12.4) 10.9(7.9-13.9) 8.1(5.5-10.7) 4.9(3.7-6.1) 126(106-146) 463(311-615) 1318(1158-1478)	Group II: Age 35-49 yr (F) 43.3(mean) 164.0(150.4-177.6) 62.6(32.0-93.2) 1.72(1.38-2.06) 2830(2036-3624) 89.3(53.5-125.2) 3.2(2.4-4.0) 11.4(7.8-15.0) 11.9(8.5-15.3) 9.2(5.8-12.6) 5.2(3.2-7.2) 126(108-144) 505(323-690) 1368(1184-1552)	(G) 59.8(mean) 158.4(145.0-171.8) 67.2(45.2-89.2) 1.7(1.46-1.94) 2431(1367-3495) 73.5(39.9-107.1) 3.4(2.6-4.2) 11.4(8.0-14.8) 12.6(8.2-17.0) 8.5(6.7-10.3) 4.5(2.3-6.7) 126(107-151) 512(370-654) 1348(1078-1618)

/1/ Lung volumes and maximal breathing capacity determined by spirographic method. Lung volumes, method of Christie [2], modified by Hurtado and Baller [3]. For lung volumes, resting pulmonary mid-position is point of reference from which all measurements are taken (position of return end quite expiration). The volume of air contained then in the chest is the sum of the reserve and residual airs [2-8]. Maximal breathing capacity apparatus, modified recording spirometer of closed-circuit type derived from Benedict-Roth, calculations at 37° C. [9] /2/ Apparatus: tissot gasometer, electrically driven kymograph; Douglas bag interposed through three-way valve into inflow circuit to spirometer; inspiratory flutter valves connected through tube and mouth piece to patient. CO₂, O₂ determinations by Haldane apparatus. /3/ Step up on platform, 20 cm high, and down again at rate of 30 cycles/min. /4/ Rate of O₂ removal calculated as difference between inspired and expired air O₂ concentrations.

Contributor: (a) Cohn, J. E., (b) Harden, K. A.

References: [1] Baldwin, E. de F., Cournand, A., and Richards, D. W., Jr., Medicine 27:243, 1948. [2] Christie, R. V., J. Clin. Invest. 11:1099, 1932. [3] Hurtado, A., and Boller, C., ibid 12:793, 1933. [4] Lundsgaard, C., and Schierbeck, K., Acta med. scand. 58:541, 1923. [5] Binger, C. A., J. Exp. M. 38:445, 1923. [6] Binger, C. A., and Brow, G. R., ibid 39:677, 1924. [7] Robinson, S., Arbeitsphysiologie 10:3, 1938. [8] Anthony, A. J., "Funktionsprüfung der Atmung," Leipzig: J. A. Barth, 1937. [9] Sonne, C., Zschr. ges. exp. Med. 94:13, 1934.

102. EFFECTS OF EXERCISE ON PULMONARY FUNCTION AND HEART RATE: MAN

Values in parentheses are estimate "c" of the 95% range (cf Introduction).

Part I: MALES, 4-33 YEARS

Values obtained over a six-minute period during maximal work on a treadmill or bicycle ergometer.

	Variable	4-6 yr	7-9 yr	10-11 yr	12-13 yr	14-15 yr	16-18 yr	20-33 yr
	variable	(10 Subjects)	(12 Subjects)	(13 Subjects)	(19 Subjects)	(10 Subjects)	(9 Subjects)	(42 Subjects)
	(A)	(B)	(C)	(D)	(E)	(F)	(G)	(H)
1	Body height, cm	113.5	135.0	145.4	154.4	171.8	176.9	176.7
		(107-128)	(125-143)	(132-157)	(139-169)	(150-188)	(165-187)	(165-188)
2	Body weight, kg	20.8	30.7	36.5	43.6	59.5	64.1	70.4
		(16.0-27.8)	(25.1-36.5)	(31.1-44.7)	(31.8-60.6)	(40.6-76.2)	(45.2-73.4)	(61.7-86.6)
3	Vital capacity,		2.21	2.65	3.22	4.55	5.17	5.68
	BTPS, L		(1.84-2.51)	(2.24-3.25)	(2.52-4.33)	(2.78-6.57)	(3.20-6.48)	(4.17-7.26)
4	Max. heart rate,	203	208	211	205	203	202	194
	beats/min	(188-214)	(191-220)	(200-227)	(175-237)	(178-222)	(194-220)	(171-212)
5	Max. Oz uptake,	1.01	1.75	2.04	2.46	3.53	3.68	4.11
	STPD, L/min	(0.77-1.30)	(1.40-2.01)	(1.78-2.32)	(1.79-3.40)	(2.59-4.47)	(2.48-4.35)	(3.30-5.09)
6	Max. O ₂ uptake,		56.9	56.1	56.5	59.5	57.6	58.6
	STPD,	(43.2-57.6)	(51.8-62.7)	(51.1-61.5)	(53.0-61.9)	(54.8-63.7)	(51.0-62.4)	(51.1-67.4)
	ml/min/kg							
7	Max. pulmonary	39.8	61.8	70.5	75.2	112.9	110.3	111.3
	ventilation,	(30.9-43.5)	(44.1-75.2)	(50.0-77.5)	(58.1-105.0)	(84.5-140.3)	(79.6-139.3)	(91.5-160.3)
	BTPS, L/min							
8	Max. respira-	70.4	67.0	57.5	54.1	52.9	44.7	39.9
	tory rate,	(63-90)	(55-83)	(32-77)	(31-68)	(39-68)	(28-60)	(27 - 59)
	breaths/min							
9	Max. tidal	0.60	1.05	1.33	1.59	2.52	2.77	3.05
	volume, L	(0.43-0.87)	(0.72-1.25)	(1.12-1.62)	(1.02-2.54)	(1.62-3.26)	(1.68-3.40)	(2.26-4.72)
10	Max. blood	56.3	82.0	84.0	79.1	90.4	104.9	112.0
	lactic acid,	(33-76)	(60-110)	(50-125)	(45-143)	(74-113)	(83-138)	(71-158)
	mg %							
11	2	6.8	9.4	10.2	10.9	13.1	13.5	15.7
	maximal							
	basal							

Contributor: Astrand, P.-O.

Reference: Astrand, P.-O., "Experimental Studies of Physical Working Capacity in Relation to Sex and Age," Copenhagen: Ejnar Munksgaard, 1952.

Part II: MALES, 20-66 YEARS

Values obtained over a five-minute period during maximal work on a treadmill.

	Variable	20-29 yr	31-38 yr	40-48 yr	48-55 yr	59-66 yr	
	variable	(11 Subjects)	(11 Subjects)	(10 Subjects)	(8 Subjects)	(7 Subjects)	
	(A)	(B)	(C)	(D)	(E)	(F)	
1	Body height, cm	180	175	177	172	173	
2	Body weight, kg	72.9	77.5	75.6	68.6	68.9	
3	Vital capacity, BTPS, L	5.25(4.20-6.03)	4.76(3.83-6.49)	4.28(3.76-5.16)	4.16(3.60-5.52)	4.05(3.45-5.04)	
4	Max. heart rate, beats/min	193(186-197)	187(176-206)	178(166-184)	174(161-185)	165(154-176)	
5	Max. Oz uptake, STPD, L/min	3.53(2.56-4.50)	3.42(2.76-3.97)	2.92(2.30-3.62)	2.63(2.24-3.35)	2.35(1.64-3.15)	
6	Max. Oz uptake, STPD, ml/min/kg	48.7(41.9-55.6)	43.1(37.6-52.8)	39.5(33.7-46.5)	38.4(33.7-43.2)	34.5(30.2-41.7)	
7	Max. pulmonary ventilation,	118.2(104-135)	122.4(103-147)	97.6(72-133)	86.8(57-114)	80.8(62-106)	
	BTPS, L/min						
8	Max. respiratory rate, breaths/	43(32-56)	43(32-48)	39(28-48)	38(28-58)	35(26-44)	
	min						
9	Residual air, BTPS, L	1.66(0.84-2.94)	1.60(1.27-2.12)	1.48(0.66-2.24)	1.81(1.00-2.38)	1.72(1.43-2.39)	1
10	Max. blood lactic acid, mg %	89(60-121)	97(70-129)	85(67-114)	73(59-91)	58(46-70)	

Contributor: Asmussen, E.

Reference: Robinson, S., Arbeitsphysiologie 10:251, 1938.

102. EFFECTS OF EXERCISE ON PULMONARY FUNCTION AND HEART RATE: MAN (Concluded)

Values in parentheses are estimate "c" of the 95% range (cf Introduction).

Part III: FEMALES, 4-25 YEARS

Values obtained over a six-minute period during maximal work on a treadmill or blcycle ergometer.

		4-6 yr	7-9 yr	10-11 yr	12-13 yr	14-15 yr	16-17 yr	20-25 yr
	Variable						(10 Subjects)	
	(A)	(B)	(C)	(D)	(E)	(F)	(G)	(H)
1	Body height, cm		132.0	140.6	158.5	164.9	167.7	165.8
		(108-114)	(121-142)	(129-148)	(150-175)	(156-173)	(162-176)	(155-175)
2	Body weight, kg	18.4	27.2	32.5	46.7	56.0	57.3	60.3
		(17.4-21.9)	(20.6-33.0)	(27.0-37.4)	(39.6-60.5)	(46.2-67.1)	(50.5-63.7)	(50.0-72.8)
3	Vital capacity,		1.95	2.30	3.25	3.74	4.14	4.28
	BTPS, L		(1.69-2.24)	(1.88-2.63)	(2.52-4.01)	(2.94-4.32)	(3.24-5.04)	(3.15-5.76)
4	Max. heart rate,	204	211	209	207	202	206	198
	beats/min	(176-214)	(194-233)	(192-220)	(188-222)	(192-217)	(188-214)	(184-225)
5	Max. Oz uptake,	0.88	1.50	1.70	2.31	2.58	2.71	2.90
	STPD, L/min	(0.74-0.94)	(1.21-1.79)	(1.48-1.94)	(2.01-2.72)	(2.02-3.31)	(2.25-3.08)	(2.41-3.40)
6	Max. O2 uptake,	47.9	55.1	52.4	49.8	46.0	47.2	48.4
	STPD,	(42.4-52.2)	(49.3-58.8)	(46.4-56.1)	(45.0-53.5)	(42.5-52.5)	(42.8-51.2)	(43.2-59.6)
	ml/min/kg							
7	Max. pulmonary	33.9	57.3	61.1	79.9	87.9	93.8	89.8
	ventilation, BTPS, L/min	(31.0-38.9)	(48.2-67.6)	(46.2-80.9)	(65.5-102.6)	(68.4-100.7)	(73.6-119.1)	(74.4-114.8)
8	Max. respira-	66.4	67.1	61.3	54.4	51.6	51.2	46.0
	tory rate, breaths/min	(56-81)	(54-94)	(51-82)	(41-88)	(40-58)	(44-60)	(28-63)
9	Max. tidal	0.52	0.91	1.05	1.64	1.87	1.95	2.10
	volume, L	(0.40-0.58)	(0.64-1.22)	(0.85-1.36)	(1.28-2.54)	(1.34-2.41)	(1.43-2.28)	(1.64-3.29)
10	Max. blood	60	76.5	82.2	97.6	100.5	110.2	103.6
	lactic acid,	(51-69)	(64-85)	(56-116)	(76-119)	(73-145)	(77-144)	(69-134)
	mg %							
11	O ₂ uptake,	6.6	9.1	9.6	10.8	11.6	12.6	14.0
	maximal							
	basal							

Contributor: Astrand, P.-O.

Reference: Astrand, P.-O., "Experimental Studies of Physical Working Capacity in Relation to Sex and Age," Copenhagen: Ejnar Munksgaard, 1952.

103. EFFECT OF VARIOUS WORK LOADS ON PULMONARY FUNCTION AND HEART RATE: MAN

Values are for healthy, well-trained males and females during work on a bicycle ergometer. Values in parentheses are ranges, estimate "c" of the 95% range (cf Introduction).

				Work Load		
	Variable	600 kg-m/min	900 kg-	m/min	1200 kg-m/min	1500 kg-m/min
		φ 1	σZ	01	g 2	o 2
	(A)	(B)	(C)	(D)	(E)	(F)
1	O2 uptake, STPD, L/min	1.48(1.36-1.66)	2.09(1.92-2.23)	2.06(1.90-2.24)	2.67(2.43-2.83)	3.33(3.02-3.64)
2	Net efficiency, %	22.5(19.5-24.5)	23.4(22.0-25.5)	23.1(21.3-25.3)	23.7(22.1-26.6)*	23.3(21.1-25.7)
3	O ₂ uptake, % of maximal ³	52(43-64)	50(44-61)	73(59-87)	64(52-78)	79(71-96)
4	Heart rate, beats/min	138(120-156)	128(102-148)	168(146-192)	148(130-169)	167(148-188)
5	Ventilation, BTPS, L/min	34.7(25.3-45.6)	41.9(34.6-52.7)	50.6(39.0-62.4)	55.2(42.7-65.6)	70.9(60.2-89.0)
6	Ventilatory equiv-	23.4(18.3-28.3)	20.1(16.4-25.3)	24.5(19.9-29.0)	20.6(15.8-24.7)	21.1(17.8-26.6)
7	Ventilation, % of maximal ⁵	39(26-52)	34(27-49)	56(36-73)	45(33-64)	58(49-86)

^{/1/31} subjects. /2/21 subjects. /3/ Values calculated as ratio of actual O2 uptake to maximal O2 uptake capacity. /4/ Line 5 ÷ Line 1. /5/ Values calculated as ratio of actual ventilation to maximal ventilation capacity.

Contributors: (a) Astrand, P.-O., (b) Asmussen, E., (c) Suskind, M., (d) Filley, G. F.

Reference: Astrand, P.-O., "Experimental Studies of Physical Working Capacity in Relation to Sex and Age," Copenhagen: Ejnar Munksgaard, 1952.

104. SUMMARY, EFFECTS OF EXERCISE ON PULMONARY FUNCTION AND HEART RATE: MEN AT VARIOUS AGES

All values obtained over a five- or six-minute period during maximal work on a treadmill or bicycle ergometer.

Contributor: Asmussen, E.

References: [1] Åstrand, P. -O., "Experimental Studies of Physical Working Capacity in Relation to Sex and Age," Copenhagen: Ejnar Munksgaard, 1952. [2] Robinson, S., Arbeitsphysiologie 10:251, 1938.

105. ENERGY COST OF PROGRESSION: MAN

The oxygen requirement per minute for a given rate of energy expenditure may exceed the oxygen uptake during any given minute if an oxygen debt is being accumulated, resulting in very high values for level running and swimming. Values in parentheses are calculations, assuming one liter of O_2 = 5 Calories. Values for all subjects listed as weighing 70 kg are proportional calculations from values for subjects of other weights.

	Activity			,	Subjects	Spe	eed	Energy Expenditure	O ₂ Requirement	Referenc
		No	. Sex	Wt, kg	Remarks	mi/hr	km/hr	Cal/min	L/min	
	(A)	(B)		(D)	(E)	(F)	(G)	(H)	(1)	(J)
l	Resting, supine, bas		ರ್	68	19-25 yr			1.2	(0.238)	1,2
2		22	ç	55	22 yr			1.0	(0.196)	3
3	Resting, sitting	5	ď	68	19-25 yr			1.8	(0.360)	1,2
ı		22	ç	55	22 yr			1.1	(0.218)	3
,	Resting, standing	5	ď	68	19-25 yr			2.0	(0.396)	1,2
5		22	\$	55	22 yr			1.1	(0.222)	3
7	Walking, level	2	ď	70	Soldiers	2.3	3.7	3.5	(0.70)	4
3		1	0	70	Laboratory worker	3.2	5.2	4.5	(0.90)	5
9		2	o*	70	Soldiers	3.5	5.6	4.8	(0.97)	4
)	M/- 11 / 1 1	2	ď	70	Soldiers	4.6	7.4	7.8 4.2	(1.57)	6
	Walking, level,	1	0	75	Adult	2.5	4.0	5.6	0.85	0
2	treadmill					3.8	6.0		1.15	
3						5.0	8.0	9.5	1.94	
1		_	+-	/ 2	T 1 111 1	6.3	10.0	17.0	3.47	6
5		1	<i>ਰ</i>	63	Trained athlete	5.0	8.0	7.7	1.57	0
						6.3	10.0	11.3	2.31	
1	337 31		-			7.5	12.0	15.7	3.21	
	Walking, level	2		60 60	Commission of the state of	2 5	6.5	5.6	1 12	7
3	Hard surface road	2	0	08-69	Carrying 9-kg clothing		5.5	6,3	1.13	/
	Grass-covered roa	d			and apparatus	3.5	5.6		1.28	
)	Furrow in field					3.4	5.4	7.0	1.43	
	Harvested field					3.3	5.2	6.9	1.41	
	Plowed field					3.3	5.3	7.7	1.57	
3	Harrowed field	-	-	0.3		3.2	5.1	10.0	2.05	0
	Hard snow	1	ੈਂ	83		3.8	6.0	11.2	2.29	8
5			-	0.7		5.7	9.1	15.8	3.22	8
	Soft snow	1 5	0	83 70	Carrying 20-kg load	2.5	4.0	3.5	(0.70)	9
	Walking, level,	-	0	10	1 miner, 2 athletes,	1.0	1.6			7
3	carrying 21-kg loa	a			2 sedentary workers	2.0	3,2	4.5 5.8	(0.90)	
9						3.0	4.8	9.0	(1.16)	
	W-11: 1-1 2.7	7 3	+.	7.0	C-1 November 1	4.0	6.4	6.1	(1.80)	4
2	Walking, grade ¹ , 2.7		o* o*	70	Soldiers Trained individual	3.5	5.6	4.1	(1.23)	10
- 1	uphill 5.0						3.2	4.8		10
3	5.0		ď	70	Trained individual	2.5 3.5	4.0	7.5	(0.97)	4
5	5.5	1	0	70	Soldier		5.6	7.8	(1.50)	4
- 1	6.2		o	70	Soldiers	3.5	5.6		(1.56)	4
,	7.3		0	70	Laboratory workers	3.5	5.6	8.6	(1.73)	4
- 1	8.3		0	70	Soldier	3.5	5.6	9.3 7.2	(1.87)	4
3	8.6		0	70	Laboratory workers	2.4	3.8	9.3	(1.43)	4
'	8.6	% 64	ď	70	l marathon runner, 23 sharecroppers, 40 trained individuals	3.5	5.6	9.3	(1.87)	-1
	9.0	% 2	ď	70	Soldiers	3.5	5.6	9.3	(1.87)	4
í		7 7	ď	70	Civilian public service workers		5.6	9.7	(1.93)	11
2	11.	3% 2	0	70	Soldiers	3.5	5.6	11.0	(2.20)	4
3		1% 2	0"	70	Soldiers	3.5	5.6	12.3	(2.47)	4
	Walking, grade ² , 0%	2	0	70-79		2.6	4.2	3.9-4.4	0.80-0.90	12
	treadmill, 5%							5.4-5.9	1.10-1.20	
.	uphill 109	,						7.4-7.8	1.51-1.60	
	159							9.7-10.3	1.98-2.10	
3	20%							12.2-13.0	2.48-2.65	
	25%							14.7-15.8	3.00-3.23	
1	Walking, grade ² , 0%	. 2	0	70-79		2,6	4.2	3.9-4.4	0.80-0.90	12
	treadmill, 5%			'				3.4-3.7	0.70-0.76	
	downhill 10%							3.3-3.6	0.68-0.73	
3	159							3.7-3.8	0.75-0.77	
	209							4.2-4.3	0.85-0.88	
1										1

^{/1/} Grade = the distance the body rises, expressed in per cent of the distance travelled. /2/ Grade = 5% for each 29° of incline.

105. ENERGY COST OF PROGRESSION: MAN (Continued)

The oxygen requirement per minute for a given rate of energy expenditure may exceed the oxygen uptake during any given minute if an oxygen debt is being accumulated, resulting in very high values for level running and swimming. Values in parentheses are calculations, assuming one liter of O₂ = 5 Calories. Values for all subjects listed as weighing 70 kg are proportional calculations from values for subjects of other weights.

	Activity		,		Subjects	Sp	eed	Energy Expenditure	O ₂ Requirement	Reference
		No.	Sex	Wt, kg	Remarks	mi/hr	km/hr	Cal/min	L/min	
	(A)	(B)	(C)	(D)	(E)	(F)	(G)	(H)	(1)	(1)
56	Walking, 35.8% grade ¹ ,	5	₫ .	70	l miner, 2 athletes, 2	0.5	0.8	6.2	(1.23)	9
57	carrying 21-kg load				sedentary workers	1.0	1.6	11.3	(2.27)	
58	D					1.5	2.4	14.0	(2.81)	
59	Running, level	2	ੰ	70	Soldiers	5.7	9.2	12.0	(2.40)	4
60 61		1	ď	70	Athlete ³	6.9	11.0	14.5	(2.90)	13
62		1		10	Atmete-	13.2	21.1	38.8	(7.77)	13
63						14.6	23.5	44.7	(8.93)	
64						14.8	23.7	48.0	(9.60)	
65						15.8	25.3	65.2	(13.03)	
66						17.2	27.7	79.0	(15.80)	
67						18.6	29.8	129.8	(25.57)	
68						18.9	30.4	158.0	(31.60)	l
69	Running, level,	1	ੰ	74	Running, at "steady	7.5	12.0	15.7	3.20	14
70	treadmill4				state"	8.8	14.0	18.1	3.70	
71						10.0	16.0	21.1	4.30	
72						11.3	18.0	25.0	5.10	
73	P	,		7.0	D	12,5	20.0	33.3	6.80	7.5
74	Running, level, on track ⁴	1	of of	75 74	Running 800 meters Running 400 meters	12.0	19.2	34.8 89.6	7.10 18.30	15
76	on track.	1	o of	70	Running 200 meters	17.6	28.1	160.9	32.85	15
77		1	ď	72	Running 100 meters	18.0	28.8	227.2	46.40	16
78	Running, 8.6% gradel	25	ď	70	1 marathon runner, 12	5.8	9.3	12.6	(2.53)	4
.	Training, or 70 grade				adults, 12 boys		,		(2.55)	
79		64	ď	70	1 marathon runner, 23 sharecroppers, 40	7.0	11.3	15.8	(3.17)	4
					trained individuals				(0./0)	
80	Bicycling, level	1	ਂ ਂ	70	Laboratory worker on	5.5	8.9	3.2	(0.63)	17
81 82					bicycle weighing 21	9.4	15.1	5.8	(1.17)	
83	Bicycling, 3.5% grade ² ,	1	ď	85	kg Well-trained individual	13.2	21.3	7.8	(2.00)	18
84	treadmill, uphill	1	0	00	on bicycle weighing	7.5	12.0	8.8	1.80	10
85	ireadiliii, upiiiii				17 kg	8.8	14.0	10.1	2.05	
86					6	10.0	16.0	11.3	2.30	
87						11.3	18.0	12.8	2.60	
88						12.5	20.0	14.2	2.90	
89						13.8	22.0	16.2	3.30	
90	Bicycling, grade, 2%	1	ď	79	On bicycle weighing	5.4	8.6	6.0	1.22	12
91	treadmill, 4%				16 kg			8.7	1.77	
92	uphill 6%					1		11.4	2.33	
93	8%	!						14.1	2.88	
94 95	Biovoling grade 2%	1	ď	79	On higgala waighing	5.4	8.6	2.5	3.45 0.51	12
96	Bicycling, grade, 2% treadmill, 4%	1	0	19	On bicycle weighing 16 kg	5.4	0.0	2.9	0.51	12
97	downhill 6%				TORG			3.3	0.67	
98	8%							3.7	0.75	
99	10%							4.1	0.83	
00	12%							4.4	0.90	
01	Free-wheeling							2.4	0.48	
02	Rowing, calm water	3	ď	70	Laboratory workers in	2.0	3.2	4.8	(0.97)	19
03					rowboat with assist-	2.5	4.0	6.5	(1.30)	
04					ant; 2 oars used	3.0	4.8	8.7	(1.73)	
05						3.5	5.6	11.0	(2.50)	
06	Rowing machine	1	ď	70	Expert oarsmen in ex-	10.9	17.4	16.2	(3.23)	20
07	ergometer	3	ď	70	cellent condition; l	11.3	18.1	18.8	(3.77)	
001			₫	70	Dar used)	12.0	19.2	25.0	(5.00)	
08	Skating, smooth ice	2	ď	70	Laboratory workers;	9.0	14.5	7.8	(1.57)	21

/1/ Grade = the distance the body rises, expressed in per cent of the distance travelled. /2/ Grade = 5% for each 2.90 of incline. /3/ O₂ debt included in values given for this subject. /4/ O₂ determination from total O₂ uptake in work and recovery.

105. ENERGY COST OF PROGRESSION: MAN (Continued)

The oxygen requirement per minute for a given rate of energy expenditure may exceed the oxygen uptake during any given minute if an oxygen debt is being accumulated, resulting in very high values for level running and swimming. Values in parentheses are calculations, assuming one liter of O_2 = 5 Calories. Values for all subjects listed as weighing 70 kg are proportional calculations from values for subjects of other weights.

	Activity	<u> </u>			Subjects	Sp	eed	Energy Expenditure	O ₂ Requirement	Referenc
	•	No.	Sex	Wt, kg	Remarks	mi/hr	km/hr	Cal/min	L/min	
	(A)	(B)	(C)	(D)	(E)	(F)	(G)	(H)	(1)	(J)
111	Skating, smooth ice	2	ď	70	Laboratory workers;	13.0	20.9	13.0	(2.60)	21
	(concluded)				skating skill, good					
112	Skiing, level	1	ď	83	Skiing, at "steady	2.6	4.2	8.3	1.69	8
113					state" on loose snow	3.9	6.3	11.5	2.34	
14						5.3	8.4	14.8	3.02	
115						6.7	10.7	15.4	3.14	
116						8.2	13.1	21.6	4.41	
17			-	0.0		9.2	14.7	25.7	5.24	
18	Skiing, level, carrying 20-kg load	1	<i>ਰ</i>	83	Skiing, at "steady state" on loose snow	2.5	4.0	12.6	2.57	8
119	Skiing, 16.7% grade ² ,	1	ď	83	Skiing, at "steady	1.8	2.8	13.9	2.84	8
17	uphill	1		03	state" on loose snow	1.0	2.0	13.7	4.04	0
20	Snow-shoeing, level	2	ď	70	Soldiers on bearpaw	2.5	4.0	8.7	(1.73)	4
	and a streeting, sever	_	-		snow-shoes; skill,				,,	
					fair					
21					Mountaineers on bear-	2.6	4.2	12.3	(2.47)	4
					paw snow-shoes;				,,	
					skill, good					
22		4	ď	70	2 soldiers; skill, fair.	2.5	4.0	10.3	(2.07)	4
					2 mountaineers;					
					skill, good. All on					
					trail snow-shoes.					
23		1	ď	70	Mountaineer on trail	3.5	5.6	14.8	(2.97)	4
					snow-shoes; skill,					
					good					
24		1	ď	83		2.5	4.0	13.8	2.82	8
25	Snow-shoeing, level,	1	ď	83		2.5	4.0	15.0	3.06	8
	carrying 20-kg load									
26	Snow-shoeing, 16.7%	l	ď	83		1.8	2.8	16.4	3.34	8
	grade ²									
27	Swimming, breast	1	ď	70	Laboratory worker;	1.0	1.6	6.8	(1.37)	22
Ī	stroke, up to 3-min				skill, good					
28	duration	6	ď	70	Laboratory workers;	1.6	2.6	8.2	(1.63)	22
]					skill, 4 good, 2 fair					
29		1	ď	70	Athlete; skill, good ³	1.9	3.0	13.7	(2.73)	23
30						2.2	3.5	30.8	(6.17)	
31						2.4	3.8	42.2	(8.43)	
32						2.7	4.3	61.5	(12.30)	
33	Swimming, breast	l	ď		Excellent swimmer	0.6	1.0	6.9	1.41	24
34	stroke, "steady					0.9	1.4	7.7	1.58	
35	state''					1.2	1.9	9.9	2.02	
36						1.5	2.4	12.6	2.57	
37						1.8	2.9	16.0	3.26	
38						2.1	3.4	19.6	4.00	
39	Swimming, breast	1	ď		Good swimmer,	2.2	3.6	38.0	7.75	25
40	stroke, short				sprinting 20-40	2.6	4.1	58.0	11.80	
	sprint4				meters					
41	Swimming, crawl	1	ď		Excellent swimmer	1.4	2,2	9.4	1.92	24
42	stroke, "steady					1.7	2.6	11.9	2.42	
43	state"					2.0	3.1	14.4	2.94	
44						2.2	3.5	16.2	3.30	
45	Swimming, crawl	1	ď		Good swimmer,	2.2	3.6	22.0	4.50	25
46	stroke, short				sprinting 20-40	2.6	4.1	29.0	5.90	
47	sprint ⁴				meters	2.9	4.6	39.0	8.00	
48						3.2	5.0	50.0	10.20	
49						3.5	5.6	67.0	13.70	
50						3.8	6.0	95.0	19.40	

/2/ Grade = 5% for each 2.90 of incline. /3/ O_2 debt included in values given for this subject. /4/ O_2 determination from total O_2 uptake in work and recovery.

Contributors: (a) Riley, R. L., and Johns, C. J., (b) Morehouse, L. E., and Cherry, R. B., (c) Asmussen, E., (d) Chapin, J. L., (e) Douglas, C. G.

References: [1] Passmore, R., Thomson, J. G., and Warnoch, G. M., Brit. J. Nutrit. 6:253, 1952. [2] Boothby, W. M., Berkson, J., and Dunn, H. L., Am. J. Physiol. 116:468, 1936. [3] Quiggle, A. B., and Kottke, F. J., Bull. Univ. Minnesota Hosp. XXVI, No. 4, 1954. [4] Morehouse, L. E., and Cherry, R. B., "Energy Cost of Progression," National Academy of Sciences Contract No. W 44-109 q.m. 305, Subcontract QMC 65, July 22, 1946. [5] Talbott, J. II., et al, J. Biol. Chem. 78:445, 1928. [6] Böje, O., Acta physiol. scand. 7:362, 1944. [7] Glasow, W., and Müller, E. A., Arbeitsphysiologie 14:319, 1950. [8] Christensen, E. H., and Högberg, P., ibid 14:292, 1950. [9] Briggs, H., J. Physiol., Lond 54:292, 1920. [10] Smith, II. M., Carnegie Institution of Washington Pub. No. 309, 1921. [11] Erickson, L. E., Simonson, H. L., Taylor, H. A., and Keys, A., Am. J. Physiol. 145:391, 1946. [12] Asmussen, E., unpublished. [13] Sargent, R. M., Proc. Roy. Soc., Lond., B100:10, 1926. [14] Christensen, E. H., and Högberg, P., Arbeitsphysiologie 14:249, 1950. [15] Hansen, E., unpublished. [16] Hansen, E., Arbeitsphysiologie 8:151, 1934. [17] Zuntz, L., Pflüger's Arch. 70:346, 1898. [18] Åstrand, P.-O., Arbeitsphysiologie 15:23, 1953. [19] Liljestrand, G., and Lindhard, J., Skand. Arch. Physiol., Berl. 39:215, 1920. [20] Henderson, Y., and Haggard, H. W., Am. J. Physiol. 72:264, 1925. [21] Liljestrand, G., and Stenström, N., Skand. Arch. Physiol., Berl. 39:167, 1920. [22] Liljestrand, G., and Stenström, N., ibid 39:1, 1920. [23] Karpovich, P. V., and LeMaistre, H., Res. Quart. Am. Ass. Health 11:40, 1940. [24] Frederiksen, R., Tidsskrift for Legemsøvelser 1945:49. [25] Karpovich, P. V., and Millman, N., Am. J. Physiol. 142:140, 1944.

106. O2 REQUIREMENT AT VARIOUS RUNNING AND WALKING SPEEDS: MEN

Oxygen Requirement, L/min

Contributor: Henry, F. M.

107. EFFECT OF BREATHING N₂ ON RESPIRATORY BATE TIDAL AND MINITE VOLUMES: MAN

	RAIL,	TIDAL AND	MIMOLE	A OP OIM	IES: MAIN
		Respiratory	Tidal	Min	ute Volume
	Breathl		Volume		Ratio ² :
	no.	breaths/min		L/min	Experimental
		breams/mm	1111		Control
	(A)	(B)	(C)	(D)	(E)
1	1	16.4	370	0.62	
2	4	17.2	550	0.99	1.60
3	7	16.2	1063	1.63	2.63
4	10	19.8	1111	2.25	3.63
5	13	19.5	704	1.69	2.74

/1/ Breathing was continuous. /2/ "Experimental" refers to any pulmonary ventilation after the first breath; "control" refers to volume of the first breath.

Contributor: Swann, H. G.

Reference: Lutz, B. R., and Schneider, E. C., Am. J. Physiol. 50:336, 1920.

108. EFFECT OF BREATHING N₂ ON RESPIRATORY RATE AND MINUTE VOLUME: DOG

н						
ı		Time of	Respi	ratory Rate	Minu	ite Volume
ı		Exposure		Ratio ¹ :		Ratio1:
I		min	per min	Experimental	L/min	Experimental
ı		111111		Control		Control
I		(A)	(B)	(C)	(D)	(E)
ı	1	At rest2	13.0		4.9	
I	2	0.1			8.0	1.63
ĺ	3	0.3	23.5	1.7	10.3	2.10
	4	0.5			13.5	2.76
	5	0.7	29.0	2.2	17.0	3.47
	6	0.9			12.5	2.55
	7	1.1	20.5	1.6	9.0	1.84

/1/ "Experimental" refers to ventilation after exposure to N_2 ; "control" refers to breathing during the first minute before exposure to N_2 . /2/ Minute before exposure to N_2 .

Contributor: Swann, H. G.

Reference: Swann, H. G., Engineering Division, ATSC, USAAF, Report No. TSEAL-696-79B, p 31, Oct., 1945.

109. PULMONARY FUNCTION: RESIDENTS AND NEWCOMERS AT HIGH ALTITUDES

Altitude = 13,090 ft (478 mm Hg), except for Line 1. Values in parentheses are ranges, estimate "b" of the 95% range (cf Introduction).

	Residence	Respiratory Rate breaths/min	Minute Volume L/min	Alveola pO ₂ , mm Hg	pCO ₂ , mm llg	Respiratory Quotient	O ₂ Consumption L/min
	(A)	(B)	(C)	(D)	(E)	(F)	(G)
1 Sea level		12.1	6.9(6.1-7.7)	97.9(93.5-102.3)	40.8(38.6-43.0)	0.864(0.842-0.886)	
2	2-8 da ^I	16.8	9.6(8.8-10.4)	50.4(48.4-52.4)	32.1(31.4-32.8)	0.826(0.782-0.870)	257.2(230.0-284.4)
3	14-54 dal	16.1	9.2(8.4-10.0)	53.6(51.6-55.6)	31,1(28.8-33.4)	0.831(0.801-0.861)	246.8(239.0-254.6)
4	6-23 yr ²	13.6	7.5(6.9-8.1)	48,1(44.6-51,6)	34.7(33.0-36.4)	0.847(0.821-0.873)	243.6(229.8-257.4)

/1/ Sea level residents tested during brief stay at altitude. /2/ Residents born in the Andean altiplano and living at 13,090 ft for 6 yr or more.

Contributor: Swann, H. G.

Reference: Chiodi, H., J. Appl. Physiol. 10:82, 1957.

110. BLOOD GASES: RESIDENTS AND NEWCOMERS AT HIGH ALTITUDES

Values in parentheses are ranges, estimate "b" of the 95% range (cf Introduction). -

					-				_	-
	A:	ltitud	el			Oxygen		Carbo	n Dioxide	Refer-
	6.		11 <i>a</i>	Pressure	Content ²	Capacity ²	Saturation	Pressure	Content	ence
	ft	m	mm Hg	mm Hg	m1/100 ml	m1/100 ml	%	mm lig	m1/100 ml	ence
	(A)	(B)	(C)	(D)	(E)	(F)	(G)	(H)	(1)	(J)
					P	ermanent Resid	ents			
1	492	150	746	90	20.7	21.7	95.4	41	46	D-I,1
2	7840	2390	568	68	21.2(18.5-24)	23.1(19-27.5)	91.7(86.5-97)	37.8(34-42)	41.1(37-45)	D-1,2
3	10,300	3140	517	66	21.8(19-25)	24.0(22-26)	91.0(87-95)	36.4(31-42)	39.3(34.5-44)	D,1;E-1,2
4	12,238	3730	479	57	21.9(18.5-25)	25.0(21.5-28.5)	87.6(84.5-91.5)		36.0(33-39)	D,1;E-G,
										1,2
5	14,896	4540	431	47	23.0(19.5-26.5)	28.3(24-32.5)	81.4(75.5-87)	34.7(29-40)	33.5(32-35)	D,1;E-1,2
6	15,950	4860	413	46	23.4(20.5-26.5)	29.0(25-33)	80.7(76-85)	33.0(28-38)	34.0(31-37)	D,1;E-1,2
7	17,521	5340	387	43	23.0	30.2	76.2	29.3	31.8	D-1,3
						Newcomers ³				
8	11,319	3450	496	55	20.5	24.1	85	31	41	D-I,4
9	15,421	4700	429	44	18.74	24.14	78	29.3	38.3	D,G-I,3
10	17,521	5340	387	43	18.64	24.54	76.2	27.7	35.0	D,G-I,3
11	20,145	6140	347	35	16.34	24.94	65.6	24.2	30.2	D,G-1,3

/1/ U. S. standard atmosphere. /2/ Combined O_2 only; does not include physically dissolved O_2 . /3/ Up to 16 da. /4/ Derived by interpolation.

Contributors: (a) Adler, H. F., and Luft, U. C., (b) Penrod, K. E., (c) Swann, H. G.

References: [1] National Research Council CAM Report, "Handbook of Respiratory Data in Aviation," Charts A-1, B-1, B-3, prepared from data of the Aero-Medical Laboratory, Wright Field, and The Johnson Foundation, Washington, D. C., 1944. [2] Hurtado, A., and Aste-Salazar, H., J. Appl. Physiol. 1:304, 1948. [3] Dill, D. B., Christensen, E. H., and Edwards, H. T., Am. J. Physiol. 115:530, 1936. [4] Becker-Freysend, H., Loeschcke, H. H., Luft, U. C., and Opitz, E., Luftfahrtmedizin 7:160, 1942.

111. EFFECT OF REDUCED BAROMETRIC PRESSURES ON PULMONARY FUNCTION AND HEART RATE: MAN

Eight trained subjects, seated and breathing air through a face mask from a Pioneer demand valve, in a high altitude chamber. After 20-minute period at ground level (540 feet above sea level), during which control measurements were made, ascent to desired altitude occurred at rate of 4500 feet per minute. Each subject was exposed from ground level to experimental level, with at least a one-day interval between successive exposures. Values are averages.

	Exposure	Alveolar	Alveolar	Alveolar	Minute	Respiratory		al Hb O2	O2 Con-	Heart
	Time	pO ₂	pCO ₂	R. Q. 1	Volume ²	Rate	Calc.3		sumption ⁵	Rate ⁶
_	min	mm Hg	mm Ilg	(5)	L/min	breaths/min	%	%	L/min	%
	(A)	(B)	(C)	(D)	(E)	(F)	(G)	(H)	(1)	(J)
		1 102 2	27.0		d Level (B = 7		T		0.314	
1	5	102.2	37.0	0.82	8.80	13			0.314	
2	10	100.8	37.2	0.80	9.10	14			0.334	827
3	15	101.5	36.8	0.81	9.02	14		20	0.327	
4	20	101.1	37,6	0.81	8.85	13	1	98	0.324	100
5	5	54.5	35.1	0.95	000 ft (B = 483	16	89	89	0,312	
6	10	52.1	35.4	0.89	9.45	14	88	87	0.302	113
7	15	51.2	35.1	0.86	9.82	14	87	85	0.302	113
8	20	51.0	35.1	0.85	9.48	13	87	86	0.319	115
9	25	50.0	35.2	0.83	9.42	14	86	85	0.321	113
10	30	50.4	34.9	0.85	9.50	14	87	85	0.313	113
11	35	49.5	35.3	0.83	9.53	14	86	84	0.313	1112
12	40	51.4	34.5	0.83	9.66	14	88	85	0.325	106
13	45	51.4	34.3	0.83	9.72	14	87	85	0.326	100
14	50	50.9	34.3	0.83	9.61	14	87	85	0.320	104
15	55	49.4	35.1	0.81	9.80	15	86	85	0.336	104
16	60	50.7	34.0	0.82	9.77	14	87	85	0.331	99
10	00	30.7	J4.0		d Level (B = 7		01	0.5	0.551	77
17	5	107.1	35.1	0,86	8.69	11			0.301	Γ
18	10	107.9	34.6	0.87	8.69	12			0.281	
19	15	107.0	34.9	0.83	8,61	12			0.297	817
20	20	106.1	34.9	0.83	8.25	13			0.275	100
20	20	100.1	31.7		000 ft (B = 412		L		0.2.5	100
21	5	46.1	32.4	1.11	9,50	12	85	82	0.233	T
22	10	45.6	30.8	1.03	9.32	12	85	80	0.225	111
23	15	44.4	30,8	0.99	8.98	11	84	78	0.244	
24	20	44.8	30.0	0.96	9.14	11	84	79	0.244	110
25	25	46.1	28.5	0.98	9.40	11	85	79	0.236	
26	30	45.4	28.6	0.95	9.74	13	85	79	0.248	103
27	35	44.4	28.9	0.91	9.36	12	84	80	0.248	
28	40	43.2	29.4	0.87	8.79	12	83	78	0.250	103
29	45	44.2	28.6	0.89	9.76	12	84	80	0.270	
30	50	44.4	28.2	0.87	9.39	12	85	81	0.254	101
31	55	43.5	27.9	0.82	8.90	13	84	79	0.258	
32	60	44.2	28.0	0.86	10.50	11	84	82	0.306	105
				Groun	d Level (B = 1	751 mm IIg)				
33	5	108.2	34.6	0.88	8.55	12			0.275	
34	10	105.3	34.9	0.82	8.45	11			0.304	
35	15	105.5	34.8	0.82	8.49	12			0.294	827
36	20	107.1	35.0	0.86	8.42	12			0.279	100

/1/ As calculated by equation from Fenn, W. O., Rahn, H., and Otis, A. B., Am. J. Physiol. $\frac{146}{pCO_2}$ and pO_2 with the nomogram of L. J. Henderson, 1928. /4/ Per cent saturation of arterial blood as estimated from alveolar $\frac{146}{pCO_2}$ and $\frac{146}{pCO_2}$ and $\frac{146}{pCO_2}$ with the nomogram of L. J. Henderson, 1928. /4/ Per cent saturation of arterial blood as indicated by the Millikan oximeter. /5/ At STP, calculated from O_2 consumption = $\frac{Va \times pC}{0.864 \times Q}$, where Va = alveolar ventilation in L/min, BTPS; pC = alveolar pCO_2 in mm Hg; Q = alveolar respiratory quotient; $0.864 = \frac{310}{273} \times \frac{760}{1000}$. A constant dead space of 210 cc was assumed in computing Va from total ventilation (150 cc personal dead space, plus 60 cc apparatus dead space). /6/ As per cent of resting heart rate at ground level. These values are averages based on several measurements

during each indicated 10-min period. /7/ Average value for control rate in beats/min.

111. EFFECT OF REDUCED BAROMETRIC PRESSURES ON PULMONARY FUNCTION AND HEART RATE: MAN (Concluded)

	Exposure	Alveolar	Alveolar		Minute	Respiratory	Arteri	al Hb O ₂	O ₂ Con-	Heart
	Time	pO ₂	pCO ₂	Alveolar	Volume ²	Rate	Calc.3	Oxim.4	sumption ⁵	Rate ⁶
	min	mm Hg	mm Hg	R. Q. ¹	L/min	breaths/min	%	%	L/min	9/9
	(A)	(B)	(C)	(D)	(E)	(F)	(G)	(H)	(1)	% (J)
_		, ,			000 ft (B = 379	mm Hg)				
37	5	44.1	28.8	1.23	11.38	11	84	80	0.246	
38	10	43.1	28.4	1.15	10.90	11	84	79	0.246	107
39	15	41.8	28.0	1.06	11.02	11	82	77	0.266	
40	20	41.3	28.3	1.02	11.24	12	82	78	0.271	109
41	25	41.5	26.6	0.99	11.24	12	82	75	0.271	
42	30	40.1	27.0	0.94	11.06	11	81	75	0.292	108
43	35	40.1	26.7	0.93	11.10	11	81	76	0.292	
44	40	40.8	26.2	0.93	11.73	11	82	76	0.307	111
45	45	40.2	25.7	0.90	11.43	12	81	77	0.296	
46	50	39.8	26.2	0.88	10.66	12	81	77	0.282	108
47	55	40.3	25.4	0.88	10.63	12	82	76	0.272	
48	60	41.1	25.1	0.90	10.83	11	83	78	0.275	104
					d Level (B = 1					
49	5	104.1	36.5	0.85	8.30	13			0.278	
50	10	104.2	35.1	0.85	8.71	12			0.297	_
51	15	100.7	37.0	0.79	8.12	11			0.315	847
52	20	104.8	35.5	0.85	8.40	11			0.296	100
					$000 \text{ ft } (B = 34^{\circ})$					
53	5	39.8	27.1	1.21	13,77	11	81	78	0.298	
54	10	37.6	26.6	1.03	12.36	11	79	74	0.301	124
55	15	36.8	26.3	0.97	12.66	11	78	74	0.325	
56	20	36.7	24.4	0.94	11.76	11	78	73	0.284	112
57	25	36.4	25.6	0.93	12.23	12	78	72	0.310	
58	30	36.4	24.4	0.94	12.46	12	80	74	0.299	117
59	35	36.8	24.5	0.89	12.60	12	79	75	0.321	
60	40	37.9	23.4	0.89	13.44	13	80	77	0.326	107
61	45	39.0	23.2	0.84	12.56	13	79	76	0.315	
					d Level (B = 1					
62	5	105.0	34.7	0.83	8.72	10			0.321	
63	10	103.9	35.2	0.81	8.18	11			0.296	
64	15	102.9	35.5	0.82	8.57	11			0.315	
65	20	103.3	35.3	0.81	8.64	11			0.320	100
					000 ft (B \pm 32)					
66	5	36.1	24.4	1.26	16.79	14	78	73	0.311	
67	10	34.0	25.1	1.11	14.61	12	75	68	0.317	131
68	15	33.6	23.8	1.05	15.82	14	75	69	0.338	
69	20	32.7	24.6	1.01	15.21	14	73	66	0.347	126
70	25	31.8	24.1	0.95	14.15	14	72	63	0.330	
71	30	32.0	23.5	0.95	15.31	15	72	64	0.359	124

/1/ As calculated by equation from Fenn, W. O., Rahn, H., and Otis, A. B., Am. J. Physiol. 146:639, 1946. /2/ Calculated at BTPS. /3/ Per cent saturation of arterial blood as estimated from alveolar $\overline{pCO_2}$ and $\overline{pO_2}$ with the nomogram of L. J. llenderson, 1928. /4/ Per cent saturation of arterial blood as indicated by the Millikan oximeter. /5/ At STP; calculated from O₂ consumption = $\frac{Va \times pC}{0.864 \times Q}$, where Va = alveolar ventilation in L/min, BTPS; pC = alveo-

lar pCO₂ in mm Hg; Q = alveolar respiratory quotient; $0.864 \times Q$ $\frac{310}{273} \times \frac{760}{1000}$. A constant dead space of 210 cc was

assumed in computing Va from total ventilation (150 cc personal dead space, plus 60 cc apparatus dead space). /6/ As per cent of resting heart rate at ground level. These values are averages based on several measurements during each indicated 10-min period. /7/ Average value for control rate in beats/min.

Contributors: (a) lvy, A. C., (b) Marbarger, J. P., (c) Swann, H. G., (d) Wechsberg, P.

Reference: Air Force Tech. Rept. No. 6528, Aug. 1951.

112. EFFECT OF REDUCED BAROMETRIC PRESSURES AND ${\rm CO_2}$ INHALATION ON PULMONARY FUNCTION AND HEART RATE: MAN

Four trained subjects, seated and breathing air through a face mask from a Pioneer demand valve in a high altitude chamber at simulated altitude of 16,000 feet. After control period of 10 minutes, subjects breathed 6% CO₂ in air for 15 minutes, followed by 10-minute recovery period also at 16,000 feet. Values are averages.

		Exposure	Alveolar	Alveolar	Alveolar	Minute	Respiratory	Arteria	1 Hb O ₂	Heart
	Condition	Time	pO ₂	pCO2	R. Q.1	Volume ²	Rate	Calc.3	Oxim.4	Rate ⁵
		min	mm Hg	mm Hg		L/min	breaths/min	%	%	%
	(A)	(B)	(C)	(D)	(E)	(F)	(G)	(H)	(I)	(J)
1	Control	2	49.0	32.0	1.22	13,87	H	88	87	
2		4	47.8	30.9	1.13	12.36	12	87	86	
3		6	47.2	30.9	1.11	12.73	11	86	85	
4		8	47.9	30.0	1.09	13,87	0.1	87	86	
5		10	46.4	30.5	1.05	12.14	10	85	84	87
6	6% CO2	2	46.1	36.3	0.89	12.79	11	84	84	
7		4	47.4	40.0	0.72	13.80	12	84	85	
8		6	47.7	40.2	0.77	15.16	14	84	85	
9		8	48.1	41.4	0.82	15.10	12	83	85	
10		0.1	48.9	41.2	0.82	15.45	13	84	84	
11		12	49.3	41.4	0.86	15.09	14	85	84	
12		14	49.2	41.5	0.85	15.96	14	85	84	
13		15	49.4	41.5	0.85	15.37	13	85	84	79
14	Recovery	2	47.9	35.7	1.39	14.95	13	86	85	
15	, and the second	4	46.4	32.2	1.12	12.56	12	86	82	
16		6	46.2	31.9	1.13	12.07	11	85	82	
17		8	45.4	31.9	1.07	12.10	11	85	81	
18		10	45.9	31.7	1.08	11.83	10	85	81	83
					Summa	ry)				
19	Control		47.9	30.9	1.12	12.99	11	87	85	87
20	6% CO2		48.3	40.4	0.82	14.84	13	84	84	79
21	Recovery		46.4	32.7	1.16	12.70	11	85	82	83

/1/ Alveolar respiratory quotient as calculated by equation from Fenn, W. O., Rahn, H., and Otis, A. B., Am. J. Physiol. 146:639, 1946. /2/Calculated at BTPS. /3/ Per cent saturation of arterial blood as estimated from alveolar pCO₂ and pO₂ with the nomogram of L. J. Henderson, 1928. /4/ Per cent saturation of arterial blood as indicated by the Millikan oximeter. /5/ As per cent of resting heart rate at ground level. Values are averages based on several measurements during each period.

Contributors: (a) lvy, A. C., (b) Marbarger, J. P., (c) Swann, H. G., (d) Wechsberg, P.

Reference: Air Force Tech. Rept. No. 6528, Aug. 1951.

113. EFFECT OF REDUCED BAROMETRIC PRESSURES AND EXERCISE ON PULMONARY FUNCTION AND HEART RATE: MAN

Eight trained subjects, seated and breathing air through a face mask from a Pioneer demand valve, in a high altitude chamber. At ground level and at simulated altitude of 16,000 feet, subjects engaged in muscular work, pushing feet alternately against pedals constructed from flat pieces of spring steel, at rate of 30 times a minute for each foot. The mechanical work required for this task was calculated to be 49.4 kilogram-meters per minute. Work period of 10 minutes was preceded by a 10-minute control period and followed by a 10-minute recovery period. Values are averages.

Condition			Exposure	Alveolar	Alveolar	4.1	Minute	Respiratory	Arteria	al Hb O ₂	O2 Con-	Heart
Min		Condition	Time	pO ₂	pCO ₂		Volume ²	Rate				Rate ⁶
Control Cont			min	mm Hg		R. Q. 1	L/min	breaths/min	%	%	L/min	%
Control 2		(A)	(B)	(C)	(D)	(E)		(G)			(J)	(K)
2					Gr	ound Leve	l (B = 746 m	m Hg)				
3	1	Control	2	101.3	37.7	0.83	9.12	12			0.349	
4 8 102.2 37.3 0.85 8.79 12 0,320 0,353 84 6 Work 2 94.5 41.7 0.79 12.18 15 0.548 7 4 96.9 41.4 0.83 13.83 14 0.632 9 8 98.7 41.3 0.83 13.99 15 0.622 9 8 98.7 41.3 0.86 14.85 15 0.661 10 10 98.5 41.0 0.84 13.94 16 0.595 92 11 Recovery 2 102.8 37.7 0.87 10.81 13 0.407 12 4 101.9 38.0 0.86 8.85 13 0.315 13 6 102.4 37.5 0.84 8.81 13 0.316 14 8 102.0 37.5 0.84 8.76 13 0.306 87	2		4	101.5	37.8	0.82	8.72	12			0.332	
5 10 100.1 38.5 0.83 9.06 12 0.353 84 6 Work 2 94.5 41.7 0.79 12.18 15 0.548 8 6 97.6 41.3 0.83 13.83 14 0.632 9 8 98.7 41.3 0.83 13.99 15 0.661 10 10 98.5 41.0 0.84 13.94 16 0.595 92 11 Recovery 2 102.8 37.7 0.87 10.81 13 0.407 12 4 101.9 38.0 0.86 8.85 13 0.315 13 6 102.4 37.5 0.85 8.89 13 0.315 15 10 102.8 36.7 0.84 8.76 13 0.315 15 10 102.8 33.6 1.19 11.07 12 85 81 0.280	3		6	101.7	38.0	0.86	8.63	12			0.314	
6 Work	4		8	102.2	37.3	0.85	8.79	12			0.320	
7	5		10	100.1	38.5	0.83	9.06				0.353	84
8 6 97.6 41.3 0.83 13.99 15 0.622 0.661 0 10 98.5 41.0 0.84 13.94 16 0.595 92 11 Recovery 2 102.8 37.7 0.87 10.81 13 0.407 12 4 101.9 38.0 0.86 8.85 13 0.315 13 0.316 14 8 102.0 37.5 0.84 8.81 13 0.315 15 10 102.8 36.7 0.84 8.81 13 0.315 15 10 102.8 36.7 0.84 8.81 13 0.306 87 15 10 102.8 36.7 0.84 8.81 13 0.315 15 10 102.8 36.7 0.84 8.76 13 0.306 87 17 10 10.28 36.7 0.84 8.76 13 0.306 87 17 10 10.28 36.7 0.84 8.76 13 0.306 87 17 10 10.28 36.7 0.84 8.76 13 0.306 87 17 10 10.28 36.7 0.84 8.76 13 0.306 87 17 12 12 12 12 12 12 1	6	Work	2		41.7	0.79	12.18	15			0.548	
Part											0.632	
Recovery 10		ĺ									0.622	
Recovery 2	9				41.3		14.85	15			0.661	
12	10		10	98.5			13.94	16			0.595	92
13 6 102.4 37.5 0.85 8.89 13 0.316 0.315 10 102.8 36.7 0.84 8.81 13 0.306 87		Recovery	2				10.81				0.407	
14 15 10 8 102.0 37.5 0.84 8.81 13 0.306 87 16,000 ft (B = 412 mm Hg) 16,000 ft (B = 412 mm Hg) 16 Control 2 46.6 33.6 1.19 11.07 12 85 81 0.280 0.313 0.44 0.446 0.442 0.446 0.442 0.446 0.442 0.446 0.442 0.446 0.442 0.446 0.444 0.446 0.444 0.446 0.444 0.446 0.444 0.446 0.444 0.446 0.444 0.446 0.444 0.446			4								0.315	
10			6								0.316	
16, 000 ft (B = 412 mm Hg) Control 2 46.6 33.6 1.19 11.07 12 85 81 0.280 4 44.6 33.8 1.12 11.46 12 83 80 0.313 8 6 44.2 33.6 1.08 11.09 12 83 78 0.320 19 8 43.4 33.3 1.04 11.09 12 82 78 0.319 20 10 43.0 33.4 1.02 11.38 11 82 78 0.344 95 Work 2 41.0 35.3 1.02 16.01 14 78 74 0.526 24 40.6 35.2 1.00 17.65 15 78 73 0.589 23 6 40.1 35.3 0.97 17.63 15 78 73 0.607 24 8 39.6 35.3 0.97 17.65 15 77 72 0.609 25 10 39.8 34.9 0.97 17.65 15 77 72 0.609 26 Recovery 2 41.6 33.3 0.96 13.11 12 80 74 0.426 27 4 41.3 33.3 0.96 10.11 11 80 76 0.316 28 6 41.6 33.5 0.96 10.11 11 80 76 0.316 29 8 41.0 32.6 0.92 9.99 12 80 76 0.307 30 10 40.8 33.2 0.94 10.25 11 79 75 0.325 92 Summary, Ground Level 31 Control 101.4 37.9 0.84 8.86 12 0.334 84 32 Work 97.2 41.3 0.83 13.76 15 0.612 92 33 Recovery 102.4 37.5 0.85 9.22 13 0.332 87 Summary, 16,000 ft Control 44.4 33.5 1.09 11.22 12 83 79 0.309 95 Summary, 16,000 ft			8								0.315	
16 Control 2 46.6 33.6 1.19 11.07 12 85 81 0.280 17 4 44.6 33.8 1.12 11.46 12 83 80 0.313 18 6 44.2 33.6 1.08 11.09 12 83 78 0.320 19 8 43.4 33.3 1.04 11.09 12 82 78 0.319 20 10 43.0 33.4 1.02 11.38 11 82 78 0.319 21 Work 2 41.0 35.3 1.02 16.01 14 78 74 0.526 22 4 40.6 35.2 1.00 17.65 15 78 73 0.589 23 6 40.1 35.3 0.97 17.65 15 77 72 0.609 25 10 39.8 34.9 0.97 17.58 17 <td>15</td> <td></td> <td>10</td> <td>102.8</td> <td>36.7</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0.306</td> <td>87</td>	15		10	102.8	36.7						0.306	87
17												
18 6 44.2 33.6 1.08 11.09 12 83 78 0.320 19 8 43.4 33.3 1.04 11.09 12 82 78 0.319 20 10 43.0 33.4 1.02 11.38 11 82 78 0.344 95 21 Work 2 41.0 35.3 1.02 16.01 14 78 74 0.526 22 4 40.6 35.3 1.00 17.65 15 78 73 0.607 24 8 39.6 35.3 0.97 17.65 15 78 73 0.607 24 8 39.6 35.3 0.97 17.65 15 77 72 0.609 25 10 39.8 34.9 0.97 17.58 17 78 71 0.594 107 26 Recovery 2 41.6 33.3 0.96 13.11 12 80 74 0.426 27 4 41.6 <td></td> <td>Control</td> <td></td>		Control										
19												
20											0.320	
21 Work												
22												95
23		Work									0.526	
24 8 39.6 35.3 0.97 17.65 15 77 72 0.609 25 10 39.8 34.9 0.97 17.58 17 78 71 0.594 107 26 Recovery 2 41.6 33.3 0.96 13.11 12 80 74 0.426 27 4 41.3 33.3 0.95 10.98 13 80 74 0.348 28 6 41.6 33.5 0.96 10.11 11 80 76 0.316 29 8 41.0 32.6 0.92 9.99 12 80 76 0.316 29 10 40.8 33.2 0.94 10.25 11 79 75 0.325 92 Summary, Ground Level 31 Control 101.4 37.9 0.84 8.86 12 0.334 84 32 Work 97.2 41.3 0.83 13.76 15 0.612 92 33 Recovery 102.4 37.5 0.85 9.22 13 0.332 87 Summary, 16,000 ft 4 Control 44.4 33.5 1.09 11.22 12 83 79 0.309 95 35 Work 40.2 35.2 0.99 17.30 15 78 73 0.583 107											0.589	
25 10 39.8 34.9 0.97 17.58 17 78 71 0.594 1072 12 12 12 12 13 1073 1074 1075												
26 Recovery 2 41.6 33.3 0.96 13.11 12 80 74 0.426 27 4 41.3 33.3 0.95 10.98 13 80 74 0.348 28 6 41.6 33.5 0.96 10.11 11 80 76 0.316 29 8 41.0 32.6 0.92 9.99 12 80 76 0.307 30 10 40.8 33.2 0.94 10.25 11 79 75 0.325 92 Summary, Ground Level 31 Control 101.4 37.9 0.84 8.86 12 0.334 84 32 Work 97.2 41.3 0.83 13.76 15 0.612 92 33 Recovery 102.4 37.5 0.85 9.22 13 0.332 87 Summary, 16,000 ft 44.4 33.5 1.09 11.22 12 83 79 0.309 95 35 Work 40.2 35.2 0.99 17.30 15 78 73 0.583 107												
27												107
28 6 41.6 33.5 0.96 10.11 11 80 76 0.316 29 8 41.0 32.6 0.92 9.99 12 80 76 0.307 30		Recovery										
29 8 41.0 32.6 0.92 9.99 12 80 76 0.307 32.5 92 Summary, Ground Level 31 Control 101.4 37.9 0.84 8.86 12 0.334 84 32 Work 97.2 41.3 0.83 13.76 15 0.612 92 33 Recovery 102.4 37.5 0.85 9.22 13 0.332 87 Summary, 16,000 ft 44.4 33.5 1.09 11.22 12 83 79 0.309 95 35 Work 40.2 35.2 0.99 17.30 15 78 73 0.583 107												
30 10 40.8 33.2 0.94 10.25 11 79 75 0.325 92 Summary, Ground Level											0.316	
Summary, Ground Level			8		32.6						0.307	
31 Control 101.4 37.9 0.84 8.86 12 0.334 84 32 Work 97.2 41.3 0.83 13.76 15 0.612 92 33 Recovery 102.4 37.5 0.85 9.22 13 0.332 87 Summary, 16,000 ft 34 Control 44.4 33.5 1.09 11.22 12 83 79 0.309 95 35 Work 40.2 35.2 0.99 17.30 15 78 73 0.583 107	30		10	40.8	33.2				79	75	0.325	92
32 Work 97.2 41.3 0.83 13.76 15 0.612 92 33 Recovery 102.4 37.5 0.85 9.22 13 0.332 87 Summary, 16,000 ft 34 Control 44.4 33.5 1.09 11.22 12 83 79 0.309 95 35 Work 40.2 35.2 0.99 17.30 15 78 73 0.583 107												
33 Recovery 102.4 37.5 0.85 9.22 13 0.332 87 Summary, 16,000 ft 44.4 33.5 1.09 11.22 12 83 79 0.309 95 Work 40.2 35.2 0.99 17.30 15 78 73 0.583 107												-
Summary, 16,000 ft 34 Control 44.4 33.5 1.09 11.22 12 83 79 0.309 95 35 Work 40.2 35.2 0.99 17.30 15 78 73 0.583 107												
34 Control 44.4 33.5 1.09 11.22 12 83 79 0.309 95 35 Work 40.2 35.2 0.99 17.30 15 78 73 0.583 107	33	Recovery		102.4	37.5						0.332	87
35 Work 40.2 35.2 0.99 17.30 15 78 73 0.583 107												
36 Recovery 413 332 0.95 10.90 12 90 75 0.344 03												107
30 Recovery 11.3 33.2 0.75 10.07 12 80 75 0.344 92	36	Recovery		41.3	33.2	0.95	10.89	12	80	75	0.344	92

/1/ Alveolar respiratory quotient as calculated by equation from Fenn, W. O., Rahn, H., and Otis, A. B., Am. J. Physiol. $\underline{146}$:639, 1946. /2/ Calculated at BTPS. /3/ Per cent saturation of arterial blood as estimated from alveolar pCO₂ and $\underline{pO_2}$ with the nomogram of L. J. Henderson, 1928. /4/ Per cent saturation of arterial blood as indicated by the Millikan oximeter. /5/ At STP, calculated from O₂ consumption = $\frac{\text{Va x pC}}{0.864 \text{ x Q}}$, where Va = alveolar ventilation in L/min, BTPS; pC = alveolar pCO₂ in mm Hg; Q = alveolar respiratory quotient; 0.864 = $\frac{310}{273}$ x $\frac{760}{1000}$. A constant dead space of 210 cc was assumed in computing Va from total ventilation (150 cc personal dead space, plus 60 cc apparatus dead space). /6/ As per cent of resting heart rate at ground level. These values are averages based on several measurements during each indicated 10-min period.

Contributors: (a) lvy, A. C., (b) Marbarger, J. P., (c) Swann, H. G., (d) Wechsberg, P.

Reference: Air Force Tech. Rept. No. 6528, Aug. 1951.

114. EFFECT OF ACCLIMATIZATION TO REDUCED BAROMETRIC PRESSURES ON PULMONARY FUNCTION: MAN

Slow decompression over period of one month to an equivalent altitude of about 21,000 ft. Exercise on stationary bicycle at 2530 ft-1b per min, except at altitudes above 20,000 ft where the rate was reduced to 1490 ft-1b per min. Averages of 4 subjects, except at 21,000-22,000 ft, when 3 subjects were observed. PV = pulmonary ventilation.

	1	Care Comments									A. A.	tal Diana				
			Res	Respiratory	Puli	ulmonary	Ventilation Katios	on Ratios			Arter	Arterial Blood			Rean	Respiratory
Day	Altitude	011100000000000000000000000000000000000		Date	Von	Ventilation	PV at Altitude	DV at Altitude PV in Exercise		000		pCO,			200	
		Fressure		nale		HITALION	The dr thilliand	2000		7		1		Ho	Š	Quotient
Jo	×	mm Hø	brea	ths/min	_	/min	PV at Sea Level	PV at Rest	8	mm Hg	E	nm Hg				
Ascent	1000 ft	Ascent 1000 ft Rest Exercise	Rest	Rest Exercise	Rest	Exercise	(At Rest)	(At Altitude)	Rest	Rest Exercise	Rest	Exercise	Rest	Exercise	Rest	Exercise
(4)	(B)	(5)	(0)	(E)	(F)	(5)	(H)	(I)	(J)	(X)	3	(M)	(Z)		(P)	(8)
(4)		760	120	18.0	8 9	24.0		3.5	06	94	42	44	7.40	7.39	0.831	0.910
0	Sea level	F.42 402	2	22.00	0	3,6 %	4	4.0	09	54	30	33	7.46	7.47	0.834	0.950
6-0	7-12	C:11 COX-CXC 21-6 6-0	12.5	0.77	10.2	2.0		0 4	46	4	28	2.8	7.50		0.830	0.924
#1-11	14-10	717-074	12.0	440-412 12.3 20.6	0 0	47.3	2.7	0 4	40	3.4	22	24	7.52		0.809	0.941
10-19	10.20	10-19 17.5-16.5 566-570 15.0	20.01	24.5		2.04	. 00	4.0	37	32	22	22	7.51	7.48	0.838	0.948
27-61	17-20	19-26 17-20 301-327 10:0 21:3	10.0	21.3	14.2		2.1	3.3	32	31	22	2.1	7.51		0.854	0.937

6 24-26 21-22 335-321 15.3 21.3 14.3 Contributor: Swann, H. G.

Reference: Houston, C. S., and Riley, R. L., Am. J. Physiol. 149:565, 1947.

Ratio A = Ioad performance at given altitude to rest performance at sea level; Ratio B = load performance at given altitude to rest performance at same 115. EFFECT OF REDUCED BAROMETRIC PRESSURES AND EXERCISE ON VENTILATION: MAN

altitude. Alt = altitude. SL = sea level.

		,	Reference			(X)	-	-	-	-	-	2	7	~ .	-	_	-
					0009	(M)	6.3	7.2	1.1	7.8	1.2						
1	SC	Load	est		4000	(L)	4.7	5.1	1.1	5.8	1.2			7.0	1.5	9.0	1.4
	Ventilation Ratios	ĭ	Re	Load in ft-1b/min	2000	(K)	2.7	3.0	1.1	3.3	1.2			3.7	1.4	4.4	1.6
	Ventila			Load in	357	(J)	1.6					2.0	1.5				
		Rest at Alt	Rest at SL		0	(1)	1.0	1.0		1.0		1.3		1.3		2.0	_
					0009	(H)	1.8	2.2	1.2	2.3	1.3			2.5	1.4		
	tatios	Load	st	0	4000	(5)	1.6	1.9	1.2	2.0	1.3			2.3	1.4		
	Respiratory Rate Ratios	2	Re	Load in ft-1b/min	2000	(F)	1.3	1.6	1.2	1.6	1.2			2.0	1.5	1.9	1.4
	Respirato			Load in	357	(E)	1.3					1.3	1.3				
		Rest at Alt	Rest at SL		0	(D)		1.0		1.0		1.3		1.0		1.5	
SPA IPVEL			Karlo	Type	-	(0)	A	A	ш	Α	m	ď	В	A	В	A	ď
altitude. Alt = altitude. AL = Sea level.		(Pressure	mm Hg		(B)	746-760	523	523	429	429	412	412	349	349	282	282
7 II T V . 4 7 II I		Altitude	>	1000 ft		(A)	SL	2 10		1.5) •	16		20		25	
-							-	2	23	4	· 10		7	00	6	10	-

Contributor: Swann, H. G.

References: [1] Schneider, E. C., and Clark, R. W., Am. J. Physiol. 75:298, 1926. [2] Rahn, H., and Otis, A. B., ibid 150:210, 1947.

116. EFFECT OF ACUTE EXPOSURE TO 2.43% O_2 ON PULMONARY FUNCTION: DOG

Death results in 8-20 minutes. Values are averages of 4 dogs for first five minutes of breathing time, and of 3 dogs thereafter.

	Breathing	Respiratory	Ventilati	ion Ratios		Arterial Bloo	d
	Time min	Rate breaths/min	Experimental l Control (at rest)	Experimental ² Control (at start)	O ₂ Sat. %	pCO ₂ mm Hg	pН
	(A)	(B)	(C)	(D)	(E)	(F)	(G)
1	03	16	1.5		93	44	7.32
2	1	32	8.3	5.5	32	23	7.54
3	2	34	6.9	4.6	21	23	7.53
4	5	21	4.0	2.7	17	14	7.47
5	9	19	2.8	1.9	14	14	7.37
6	Terminal4	0			12	26	7.16

/1/ Ratio of experimental ventilation to ventilation of healthy dog at rest. /2/ Ratio of experimental ventilation to ventilation of same dogs at start (minute before anoxia). /3/ Minute before anoxia. /4/ Observations taken a few seconds before cardiac failure.

Contributor: Swann, H. G.

Reference: Swann, H. G., and Brucer, M., Texas Repts. Biol. M. 7:539, 1949.

117. EFFECT OF PROGRESSIVE ANOXIA ON PULMONARY FUNCTION: DOG

Rebreathing through soda lime into a spirometer of 3.52 liter capacity; death resulting in 15-28 minutes. Values are averages of 4 dogs for first 14 minutes of breathing time, and of 3 dogs thereafter. In this type of anoxia, increase in ventilation is apparently due to increase in respiratory rate (compare Columns B and D).

	Breathing	D	Ventilati	on Ratios	H	Arterial Bloo	d
	Time min	Respiratory Rate breaths/min	Experimental ¹ Control (at rest)	Experimental ² Control (at start)	O ₂ Sat. %	pCO ₂ mm Hg	рН
	(A)	(B)	(C)	(D)	(E)	(F)	(G)
1	03	22.8	2.2		87	39	7.31
2	3-5	25.2	2.9	1.1	74	41	7.31
3	8-9	42.0	5.6	1.8	62	32	7.41
4	12-14	30.8	5.0	1.4	36	24	7.42
5	17-19	26.4	3.7	1.2	25	18	7.47
6	22-23	17.2	3.5	0.8	20	16	7.37
7	Terminal ⁴	0			. 11	23	7.14

/1/ Ratio of experimental ventilation to ventilation of healthy dog at rest. /2/ Ratio of experimental ventilation to ventilation of the group of 4 dogs during minute before anoxia. /3/ Minute before anoxia. /4/ Observations taken a few seconds before cardiac arrest.

Contributor: Swann, H. G.

Reference: Swann, H. G., and Brucer, M., Texas Repts. Biol. M. 7:553, 1949.

118. EFFECT OF HYPERVENTILATION ON BLOOD CO_2 CARRIAGE: MAN

Values are averages of 3 subjects, hyperventilated in a body respirator for 24 hours.

	Minute		Plasma	
Hyperventilation	Volume L/min	CO ₂ Content	рН	CO ₂ Capacity ¹
(A)	(B)	(C)	(D)	(E)
l Before	7.5	61.2	7.37	62.3
During				
2 At 1 hr	17.7	52.3	7.48	62.6
3 At 12 hr	19.1	46.0	7.53	61.0
At 24 hr	18.9	44.6	7.50	58.6
After				
5 At 1 hr	8.7	51.5	7.38	56.8
6 At 24 hr	7.0	53.5	7.38	58.1

/1/ At pCO2 of 40 mm Hg.

Contributors: (a) Vandam, L. D., (b) Swann, H. G.

Reference: Brown, E. B., Campbell, G. S., Johnson, M. N., Hemingway, A., and Visscher, M. B., J. Appl. Physiol. 1:33, 1948.

119. EFFECT OF COMBINED ANOXIA AND HYPERCAPNIA ON ALVEOLAR CO_2 AND O_2 : MAN

Part I: TABULAR

 ΔpCO_2 = difference between ambient and alveolar pCO_2 ; ΔpO_2 = difference between ambient and alveolar pO_2 .

	Subjects	Exposure Time	CO2	Ambie O ₂	pCO ₂	pOz	CO2	Alveo:	pCO ₂	pOz	ΔpCO _Z	ΔρΟ2
	no.	min		%		Hg		%		Hg	mm	Hg
_	(A)	(B)	(C)	(D)	(E)	(F)	(G)	(H)	(1)	(J)	(K)	(L)
1	4	Rest	0.03	20.94	0.2	150.1	5.76	14.18	40.8	100.4	40.6	49.7
2		4	1.28	19.62	9.2	140.5	5.49	14.60	39.3	103.7	30.1	36.8
3		10	2.41	18.32	17.3	131.2	5.94	13.75	42.3	98.5	25.0	32.7
4		23	3.84	16.63	27.5	119.1	5.81	13.28	43.5	95.0	16.0	22.1
5		28	4.79	15.50	34.3	111.0	6.50	13.01	46.4	92.5	12.1	18.5
6		34	5.95	14.18	42.6	101.5	7.08	12.55	50.4	89.3	7.8	12.2
7	4	Rest	0.03	20.94	0.2	150.1	5.92	14.55	41.9	103.0	41.7	47.0
8		4	0.75	20.23	5.3	143.4	4.90	16.05	33.7	112.8	26.6	30.6
9		10	1.79	18.97	12.6	134.4	5.74	14.20	40.4	100.0	27.8	34.4
10		22	3.15	17.48	22.3	123.7	5.95	13.49	42.2	95.2	19.9	28.5
11		28	4.07	16.42	28.8	116.3	6.22	13.09	44.1	92.9	15,3	23.4
12		34	4.83	15.50	34.1	109.6	6.61	12.95	46.3	89.0	12.2	20.0
13		46	5.66	14.52	40.0	102.8	6.93	12.39	49.3	88.2	12.3	18.4
14		51	6.54	13.45	46.2	95.2	7.87	11.45	55.8	81.4	9.6	13.8
15	4	Rest	0.03	20.94	0.2	150.1	5.81	13.85	41.1	98.1	39.9	52.0
16		18	2.21	19.34	15.9	138.5	5.85	14.84	41.4	105.6	25.5	32.9
17		34	4.32	20.57	31.0	147.5	6.57	17.79	46.8	127.0	15.8	20.5
18		42	5.41	19.54	38.8	140.0	7.10	16.86	50.7	123.7	11.9	16.3
19		51	6.72	20.52	48.2	147.2	7.92	18.98	56.7	135.8	8.5	11.4
20	4	Rest	0.03	20.94	0.2	148.5	4.95	15.08	35.5	108.2	35.3	40.3
21		17.5	2.47	18.13	17.4	127.5	5.39	14.50	38.0	102.2	20.6	25.3
22		28	4.19	16.25	29.4	114.4	6.14	13.53	42.9	95.0	13.4	19.4
23		42	4.60	15.22	32.3	106.8	6.54	13.01	46.0	91.2	13.5	15.6
24		52	4.98	13.27	35.0	93.2	6.64	10.85	46.5	76.1	11.5	17.1
25		58	4.78	12.45	33.6	87.3	6.54	10.73	45.9	73.5	12.3	13.8
26		66	4.36	13.21	30.6	92.6	6.33	10.04	44.4	70.5	13.8	22.1
27		72	5.13	10.45	36.2	73.5	6.35	8.72	44.5	60.7	8.3	12.8
28	10	Rest	0.03	20.94	0.2	148.8	5.96	13.77	42.3	97.6	42.0	51.2
29	8	19	3.07	17.53	22.2	122.7	6.38	12.73	45.5	90.6	22.3	32.1
30	10	31	4.32	15.50	30.7	110.0	6.98	11.91	49.6	84.4	18.9	25.6
31	7	54	4.98	12.83	35.2	90.8	6.88	10.23	48.5	72.1	13.3	18.7

Contributors: (a) Behnke, A. R., (b) Swann, H. G.

Reference: Consolazio, W. V., Fisher, M. B., Pace, N., Pecora, L. J., Pitts, G. C., and Behnke, A. R., Am. J. Physiol. 151:479, 1947.

Part II: GRAPHIC

Contributors: (a) Behnke, A. R., (b) Swann, H. G.

Reference: Consolazio, W. V., Fisher, M. B., Pace, N., Pecora, L. J., Pitts, G. C., and Behnke, A. R., Am. J. Physiol. 151:479, 1947.

120. EFFECTS OF BREATHING CO,

Reference (1)

ion).		Remarks		(H)		Maximum minute volume	claimed in most cases.			Subjects with emphysema.					Subjects with asthma.					"Plateau" of not more than 10% variation in four 30-	sec periods, shown by	27/42 and 13/31.	Effects of hypoxia and hyper-	capnia are additive.		Normal and premature	infants.			Subjects with pneumoconiosis,	grade 111 to grade V.	Subjects followed "until venti-	lation became uniform."				Effects of O2 and CO2 additive.						Normal and premature infants.
ge (cf Introduct		Value) Tidal Volume	%	(9)																269(51-448)	331(146-542)													43.2(21.5-116)	106(83.5-190)	175(133-214)							
Values in parentheses are ranges, estimate "c" of the 95% range (cf Introduction).	Part I: ON VENTILATION: MAMMALS	Observed Change (% of Resting Value) Volume Respiratory Rate Tidal	%	(F)	Man															103(14-413)	150(43-531)													No significant change.	20.6(-18 to +37)	34.0(22-53)							
re ranges, estir	rt 1: ON VENTI	Observe Minute Volume	%	(E)	~	20(1-39)	55(20-120)	68(34-190)	78(56-300)	16(1-30)	33(9-74)	41(16-84)	47(17-85)	51(23-96)	20(1-37)	59(40-83)	67(47-98)	77(53-102)	95(70-126)	544(201-1178)	857(402-1530)		38.9(14-94)	31.0(21-57)	27.8(16-42)	09	50	50	2	76(23-157)	64(30-101) 38.5(26-52)	234(144-391)		36.1(32-40)	146(112-190)	266(211-300)	14.2(4-31)	28.4(14-61)	34.3(18-44)	52.8(41-74)	98.6(63-146)	1700-0010:001	12
in parentheses a	Pa	200	Concentration	(D)		4% in air				4% in air	449				4% in air					7.6% in O2	10.4% in O2	7	2% in 12% O2	2% in 17% O ₂	2% in 21% O2	2% in air	2% in 15% O2,	2% in 15% O2	0.5% in 15% O24	4% in air		5% in air		2.16% in air	4.31% in air	5.48% in air	1% in air	1% in O ₂	2% in air	2% in O ₂	4% in air	4% In O2	0.5%
Values		Method of	Administration	(C)		Box bag				Box bag					Box bag					Regulator, 10-liter	mask		Spirometer				plethysmograph			Box bag		Spirometer and	mouthpiece	Mouthpiece and	demand valve		Tissot and Siebe-	Gorman mask					Special mask and plethysmograph
		Exposure	min	(B)		1	2	3	4 4		2	3	寸	5	-	2	3	4	5	2.5-8.5	T		Up to 5			5				2		5-20		8-10			8-15	-					10
		Subjects	no.	(A)		28				23)				7					42	31		18			41	45	45	41	25		22		00			17		12		15		77

17 31

29 8 30 31 32 17 33 12 34 12 35 15 36 22

		2 /0 411 0444					
3		5.5% in air	061			subjects with melancholia.	
		6.5% in air	315				
		4% in sir	744. 785			Subjects with depression	6
		5.5% in air	1344: 1675			and inhibition during ill-	
		6 5% in sir	2644. 2835			ness and recovery.	
Ü	Spinomotor	3 3-7 8% in air	925(750-1150)6			Normal subjects.7	10
2	pri outeter		400(0-100)			Subjects with emphysema.	
-	Douglas bag	5% in O2	130-200			Subjects with congenital heart disease.	=
	Gasometer and	26% in 10% O ₂	75(54-104)			Subjects with anoxia.	12
	Douglas bag	5-7% in O2	332(90-750)			Normal subjects.8	13
			145(42-298)			Subjects with emphysema.	1.4
	Gas tank and	3-5% in air	2029; 32910			Normal subjects. Subjects with emphysema.	4
	0		1319; 27810			Subjects with cyanotic	
						heart disease.	
			1159; 31510			Subjects with chronic	
			01:0:02/			Subjects with ohronic	
			657; 18110			alkalosis.	
-	Gas tank and	3-5% in air	85.69; 37510			1.8-2.4 g salicylate given	15
	anesthesia ba					1.5-2 hr before test.	
	Douglas bag	5% in O2	130-200		87-110	Early peak of hyperventi-	11
						subjects become familiar	
						with tests.	
	Exposure chamber	3.8-4.5% in air	200			No evidence of secondary	16
	•					decrease of ventilation	
		200	11 200		Almoolow CO.	over mis period:	17
	Exposure chamber	0% in air	883.12.843.11		elevated 18%		•
		5.66% in air	4293, 12;		with 3% CO2.		
			3683, 11		Maximum alveolar pCO2 reach-		
	Exposure chamber	1-5% in air	47(24-60)				18
				Cat			
	Douglas bag	35-50% in air and O ₂		Apneustic and gasp- ing pattern of respiration		Chloralose anesthesia.	19

/1/ Extension of exposure to 12-14 min in 9 cases resulted in more normal hyperventilation. /2/ Preceded by inspiration of O2 for 5 min. /3/ Approximate figure from graph. /4/ Illness. /5/ Recovery. /6/ Maximum response. /7/ Response reduced by airway obstruction. /8/ Results compared with controls breathing O2. /9/ 3% CO2 in air. /11/ 5. CO2 in air. /11/ Acclimatized. /12/ Unacclimatized.

120. EFFECTS OF BREATHING CO2 (Continued)

Values in parentheses are ranges, estimate "c" of the 95% range (cf Introduction).

Part I: ON VENTILATION: MAMMALS (Concluded)

		arks Reference	H) (1)		ceptor block.		gotomized 21																	
		lume Remarks	(H)		of Chloralose, with and with- re- out chemoreceptor block. has ct on rper- ition,	ng ght se ing	0 t a	Z Z	b0 = b0	b0 = 0 b0														
Rate Tidal Volume		%	(D)		Blocking of chemore-ceptor has no effect on CO ₂ hyper-ventilation, breathing O ₂ ; slight	decrease breathing air.	decrease breathing air. 2013; 1914	decrease breathing air. 2013; 1914 3913; 3814	decrease breathing air. 2013; 1914 3913; 3814 6413; 6214	decrease breathing air. 2013; 1914 3913; 3814 6413; 6214 10413; 9214	decrease breathing air. 2013; 1914 3913; 3814 6413; 6214 10413; 9214 12213; 10614	decrease breathing air. 2013; 1914 3913; 3814 6413; 6214 10413; 921							r r r r	t t	, , , , , , , , , , , , , , , , , , ,	ency eer. ppi- ppi- ng, on	eency eer. ppi- ppi- on	eer. ppi-
Volume Respiratory Rate Tidal		%	(F)	Dog			2413; 1614	2413; 1614 3313; 1214	2413; 1614 3313; 1214 3913; -214	2413; 1614 3313; 1214 3913; -214 4613	2413; 1614 3313; 1214 3913; -214 4613 5213	2413; 1614 3313; 1214 3913; -214 4613 5213 Guinea Pig	2413; 1614 3313; 1214 3913; -214 4613 5213 unnea Pig Increase in frequency	2413; 1614 3313; 1214 3913; -214 4613 5213 uinea Pig Increase in frequen becomes slower. Apneustic respi-	2413; 1614 3313; 1214 3913; -214 4613 5213 uinea Pig Increase in frequenc becomes slower. Apneustic respi- ration appears at	2413; 1614 3313; 1214 3913; -214 4613 5213 uinea Pig Increase in frequen becomes slower. Apneustic respi- ration appears a 8th da. Gasping, deep respiration	2413; 1614 3313; 1214 3913; -214 4613 5213 uinea Pig Increase in frequent becomes slower. Apneustic respiration appears at 8th da. Gasping, deep respiration for 3 da.	4214 2413; 1614 ; 5014 3313; 1214 ; 3514 3913; -214 4613 5213 Guinea Pig Increase in free becomes slo Apneustic re ration appear 8th da. Gasp deep respira for 3 da. Hamster and Squirrel	2413; 1614 3313; 1214 3913; -214 4613 5213 uinea Pig Increase in free becomes slo Apneustic re ration appear ght da. Gasp deep respira for 3 da. rand Squirrel rand Squirrel	2413; 1614 3313; 1214 3913; -214 4613 5213 uinea Pig Increase in frequen becomes slower. Apneustic respiration for 3 da. ra and Squirrel for 3 da. ra and Squirrel 5% CO2 increases	2413; 1614 3313; 1214 3913; -214 4613 5213 uinea Pig Increase in free becomes slo Apneustic re ration appeai 8th da. Gasp deep respira for 3 da. r.r. and Squirrel For 20, increa	2413; 1614 3313; 1214 3913; -214 4613 5213 suinea Pig Increase in frec hecomes slo Apneustic re ration appea 8th da. Gasp deep respira for 3 da. er and Squirrel 5% CO2 increa	2413; 1614 3313; 1214 3913; -214 4613 5213 unea Pig Increase in free Peromes slo Apneustic re ration appea, 8th da. Gasp deep respira for 3 da. rs and Squirrel for 3 da. rs and Squirrel 180°CO2 increa respiratory respiratory respiratory respiratory respiratory respiratory respiratory respiratory respiratory respiratory respiratory respiratory respiratory	2413; 1614 3313; 1214 3913; -214 4613 5213 unea Pig Increase infrequence respiration appears ration appears for 3 da. for 3 da. respiratory respiration appears for 3 da. respiratory respiration 3 da. respiratory respiration 3 da. respiratory resp
Minute	_		(E)				6913; 4214	6913; 4214 131 ¹³ ; 50 ¹⁴	6913; 4214 13113; 5014 12313; 3514	6913, 4214 13113, 5014 12313; 3514	6913, 4214 13113, 5014 12313; 3514	6913, 4214 13113, 5014 12313, 3514	6913; 4214 13113; 5014 12313; 3514	6913; 4214 13113; 5014 12313; 3514 Gev	6913; 4214 13113; 5014 12313; 3514 Gu	6913; 4214 13113; 5014 12313; 3514 Gu	6913; 4214 13113; 5014 12313; 3514 Gu	6913, 4214 13113; 5014 12313; 3514 Ge	6913, 4214 13113, 5014 12313, 3514 Gr	6913, 4214 13113; 5014 12313; 3514 Ge	6913; 4214 13113; 5014 12313; 3514 Gr	6913; 4214 13113; 5014 12313; 3514 Get Hamster	6913; 4214 13113; 5014 12313; 3514 Gu	6913; 4214 13113; 5014 12313; 3514 IAmster
CO2	700	Concentration	(D)		6.5% in O ₂ or 5.1% in air		5% in air	5% in air 10% in air	5% in air 10% in air 20% in air	5% in air 10% in air 20% in air 40% in air	5% in air 10% in air 20% in air 40% in air 80% in air	5% in air 10% in air 20% in air 40% in air 80% in air	5% in air 10% in air 20% in air 40% in air 80% in air 3-15%	5% in air 10% in air 20% in air 40% in air 80% in air 3-15%	5% in air 10% in air 20% in air 40% in air 80% in air	5% in air 10% in air 10% in air 40% in air 80% in air 3-15%	5% in air 10% in air 20% in air 40% in air 80% in air 3-15%	5% in air 10% in air 20% in air 40% in air 80% in air	5% in air 10% in air 20% in air 40% in air 80% in air 3-15%	5% in air 10% in air 20% in air 40% in air 80% in air 3-15%	5% in air 10% in air 20% in air 40% in air 80% in air 3-15%	5% in air 10% in air 20% in air 40% in air 80% in air 3-15%	5% in air 10% in air 10% in air 40% in air 80% in air 3-15% 3-10% in O ₂	5% in air 10% in air 20% in air 40% in air 80% in air 3-15% 3-10% in O ₂ 6% in O ₂
Method of	Meniod Of	Administration	(0)		Demand valve		Gas bag and tra-	Gas bag and tra- cheal cannula	Gas bag and tra- cheal cannula	Gas bag and tra- cheal cannula	Gas bag and tra- cheal cannula	Gas bag and tra- cheal cannula	Gas bag and tra- cheal cannula	Gas bag and tra- cheal cannula	Gas bag and tra- cheal cannula Exposure chamber	Gas bag and tra- cheal cannula Exposure chamber	Gas bag and tra- cheal cannula Exposure chamber	Gas bag and tra- cheal cannula Exposure chamber	Gas bag and tra- cheal cannula Exposure chamber Cylinder gas mix-	Gas bag and tra- cheal cannula Exposure chamber Cylinder gas mix- ture (humidified)	Gas bag and tra- cheal cannula Exposure chamber ture (humidified)	Gas bag and tra- cheal cannula Exposure chamber ture (humidified)	Gas bag and tra- cheal cannula Exposure chamber ture (humidified)	Gas bag and tra- cheal cannula Exposure chamber ture (humidified)
i		Time	(B)		ω.							0	9-13 da E							6 da	13 da	G da	13 da	13 da
Subjects	SUBLICES	no.	(A)		65 32		6 99													6 20	50 2 6	6 20	6 20 8	6 20 8

/13/ Normal. /14/ Vagotomized. /15/ 4 hamsters and 2 squirrels. /16/ Hibernating.

Contributor: Shephard, R. J.

[3] Shock, N. W., and Soley, M. H., ibid 137:256, 1942. [4] Cross, K. W., Hooper, J. M., and Lord, J. M., J. Physiol., Lond. 125:628, 1954.
[5] Donald, K. W., Clin. Sc., Lond. 8:45, 1949. [6] Heller, E., Killiches, W., and Drinker, C. K., J. Indust. Hyg. 11:293, 1929. [7] Lambertsen, C. J., Kough, R. H., Cooper, D. V., Emmel, G. L., Loeschcke, H. H., and Schmidt, C. F., J. Appl. Physiol. 5:471, 487, 803, 1952. [8] Shock, N. W., and Soley, M. H., Am. J. Physiol. 130:777, 1940. [9] Schou, H. I., Trolle, C., and Østergaard, T., Acta psychiat. neur., Kbh. 17:189, 1942. [10] Cherniak, R. M., and Snidal, D. P., J. Clin. Invest. 35:1286, 1956. [11] Shephard, R. J., J. Physiol., Lond. 129:142, 1955. [12] Keys, A., Stapp, J. P., and Violante, A., Am. J. Physiol. 138:763, 1943. [13] Prime, F. J., and Westlake, E. K., Clin. Sc., Lond. 13:321, 1954. [14] Alexander, J. K., West, J. R., Wood, J. A., References: [1] Donald, K. W., and Christie, R. V., Clin. Sc., Lond. 8:33, 1949. [2] Dripps, R. D., and Comroe, J. H., Am. J. Physiol. 149:43, 1947.

[18] Häbisch, H., Pflügers Arch. 251:594, 1949. [19] Leuken, B., and Timm, C. I., Pflügers Arch. 249:241, 1947. [20] Hesser, C. M., Acta physiol. scand. 18: (suppl.) 64, 1949. [21] Eichenberger, E., Helvet, physiol. pharm. acta 7:55, 1949. [22] Schäfer, K. E., Storr, H., and Scheer, K., Pflügers Arch. 251:741, 1949. [23] Lyman, C. P., Am. J. Physiol. 167:638, 1951. [24] Biörck, G., Johansson, B., and Schmid, H., Acta physiol. scand. 37:71, 1956. and Richards, D. W., J. Clin. Invest. 34:511, 1955. [15] Alexander, J. K., Spalter, H. F., and West, J. R., ibid 34:533, 1955. [16] Nielsen, M., Skand. Arch. Physiol., Berl. 74: (suppl.) 10, 87, 1936. [17] Chapin, J. L., Otis, A. B., and Rahn, H., U. S. Air Force, WADC Tech. Rept. 55-357, p 250, 1955.

Part II: ON BLOOD GASES AND ALVEOLAR CO2 THRESHOLD: MAN

A = arterial, V = venous.

Dofon	ence	(K)		_	2	T				1	-	en	4	7		5			_	_		7					9		Y		7		
	Remarks	(7)		Samples obtained from pulmonary veins at	Normal subjects.	Subjects with	arteriosclerosis.	Subjects with essential	hypertension.	Subjects with arterioscle-	rosis and hypertension.		Monmal ambianta	NOT HEAT SUDJECTS.	Emphysematous subjects. ²	Normal subjects.		Subjects with emphy-	sema, stages III to	V. V.	Subjects with cyanotic	Hear disease.	Subjects with chronic	acidosis.	Subjects with chronic	alkalosis,4	1.8-2.4 g salicylate	1.5-2 hr before	test,5		Epileptic subjects.		
	pCO ₂	3 3			16.2(8-41)	15.2	14.8	20.02	10.2	26.4	14.6	16,6-31.1	3.6-13.6	30.3(17-33)	20.8(7.3-51.2)	6.0(2.5-11.2)	12.1(5.9-24.4)	10.2(6-16)	19.2(12-29)	0	0.7	12.0	7.1	4.0	3,4	6.9	2.0	11.2					
Observed Change (% of Resting Value)	Hd %	Œ		-0.5 to -0.8	-0.82(-1.22 to 0)	-0.55	-0.41		-0.41	-1.08	-0.82	-0.58 to -1.22	1 277 0 68 to -1 801 30 5/14 551	-1.21(-0.00 10-1.67)	-0.95(-0.27 to -2.06) 20.8(7.3-51.2) Emphysematous subjects. ²	-0.13(-0.13 to -0.54) 6.0(2.5-11.2)	-0.54(-0.27 to -1.08) 12.1(5.9-24.4	-0.54(-0.13 to -0.81) 10.2(6-16)	-0.68(-0.41 to -1.22) 19.2(12-29)	0 7 0	-0.40			-0.81	-0.26	-0.65	-0.10	-0.36		ensitivity			
served Change	O ₂ Content	(5)	Blood Gases										17-25															-		reshold and S	4.9	40.4	3.1
3qO	CO ₂ Conten			4.4-4.6	5.9(1.8-18.2)	4.6	2.0	6.7	1.1	7.3	1.7		1.2-1.6																	Alveolar CO ₂ Threshold and Sensitivity	7.4		2.1
	Blood	(E)		A	A >		>	A	>	A	>	A.	I A	4	A	A	A	A	A		4	4	K	A	A	A	A	V			A	>	A :
C	CO2 Concentration	(0)		5% in air	5% in 21% O ₂							5% in air	0	5% in 0,5		3% in air	5% in air	3%	2%	3	3%	2%	3%	5%	3%	2%	3% in air	5% in air			10% in O ₂		4-8% in air
	Administration Concentration Blood	(3)	2	BLB mask	Mask								=	Douglas bag		Gas tank and	_														Spirometer		
Exposure			(0)	-	5-15							15-30		57-07		20-35											20-35				5-10		
-	Subjects no.	(0)	(6)	4	12	0		9		10		Q.	,	13	35	12	_	6			3			_	2		3				5		4

/1/ Internal jugular. /2/ Results compared with previous values for patients breathing O2. /3/ Sensitivity of respiratory center, -60 to -90%. /4/ Sensitivity of respiratory center, -70%. /5/ Estimated sensitivity of respiratory center doubled.

120. EFFECTS OF BREATHING CO2 (Continued)

Values in parentheses are ranges, estimate "c" of the 95% range (cf Introduction). Part II: ON BLOOD GASES AND ALVEOLAR CO2 THRESHOLD: MAN (Concluded)

A = arterial, V = venous.

Dofon	ence	(K)		7		00		6		10			
	Remarks	(3)		Epileptic subjects.		3-5 atmospheres	pressure.6			Convalescent hospital	patients.		
	pCO ₂	(1)				57		14.8(8.1-21.7)	7.3(3.1-10.9)	10.6	7.4	13.4(2.3-28.6)	10.2(2.2-21.3)
Observed Change (% of Resting Value)	% %	(H)	cluded)			-1.89	-1.09	2.4(1.0-3.7) -0.63(-0.38 to -0.90) 14.8(8.1-21.7)	14.0(4.8-24.1) -0.39(-0.18 to -0.59) 7.3(3.1-10.9)	-0.67	-0.67	-0.68(-1.09 to -0.13) 13.4(2.3-28.6)	-0.41(-0.82 to -0.13) 10.2(2.2-21.3)
bserved Change	O ₂ Content	(B)	Alveolar CO2 Threshold (concluded)	-1.2	6.0	-0.4	21.9	2.4(1.0-3.7)	14.0(4.8-24.1)				
Ō	Blood CO ₂ Content O ₂ Content	(F)	Alveolar CO2	-0.4	No change	13.3	3.8	3.1(0.8-6.1)	0.4(0.1-0.6)				
	Blood	(E)		А	>	A	>	А	>	A	>	4 :	>
000	Concentration	百)		4-6% in 8-12% A	02	2% in O ₂		2.16% in air		2.5%		3.5% in air	
1	Administration Concentration	(C)		Spirometer 4-6%		Pressure	chamber						
Exposure	Time	(B)		5-10		7		8-10		15-20			
	subjects no.	(A)		30 4		00	~	00	35	4		38 8	39

6/ Results compared with previous experiments of subjects breathing O₂ at 3.5 atmospheres.

Contributor: Shephard, R. J.

Invest. 32:696, 1953. [3] Kety, S. S., and Schmidt, C. F., ibid 27:484, 1948. [4] Prime, F. J., and Westlake, E. K., Clin. Sc., Lond. 13:321, 1954. [5] Alexander, J. K., West, J. R., Wood, J. A., and Richards, D. W., J. Clin. Invest. 34:511, 1955. [6] Alexander, J. K., Spalter, H. F., and West, J. R., ibid 34:533, 1955. [7] Lennox, W. G., and Gibbs, E. L., ibid 11:1155, 1932. [8] Lambertsen, C. J., Ewing, J. H., Kough, R. H., Gould, R., and Stroud, M. W., J. Appl. Physiol. 8:255, 1956. [9] Lambertsen, C. J., Kough, R. H., Cooper, D. V., Emmel, G. L., Loeschcke, H. H., and Schmidt, C. F., ibid 5:471, 487, 803, 1952. [10] Patterson, J. L., Heyman, A., Battey, L. L., and Ferguson, R. W., J. Clin. Invest. 34:1857, 1955. References: [1] Shephard, R.J., J. Physiol., Lond. 129:393, 1955. [2] Novack, P., Shenkin, H. A., Bortin, L., Goluboff, B., and Soffe, A. M., J. Clin.

Part III: ON OTHER RESPIRATORY VARIABLES: MAMMALS

Reference	(H)		7				2		B		3			4		5		9
Remarks	(B)													Continuous analysis of expired gas by Rein	method; events of first 2 min analyzed.	Allowance for effects due to change of	cardiac output and O2 stores.	"Steady state" measurements.
Effect on Variable	(F)	Alveolar CO ₂ Concentration ¹	13-21%	16-22%	9-17%	3-10%	11.8%	8.9%	24(14.8-31.5)%		9.2(1-14)%2	6.4(-3 to +11.1)%3	O ₂ Consumption during Hypercapnia ⁴	2.1 ml/L		31.8(10-54)%1	0.9-1.2 ml/L; 3.6(-4 to +9)%1	0.6-2.5 ml/L
CO ₂ Concentration	(E)	Alve	5% in air	5% in O2	5% in air	5% in O2	3.48% in air		5.53-5.96% in	20-60% O ₂	1-5% in air		O ₂ Cons			5% in air		2-5%
Method of Administration	(Q)		BLB mask				Exposure	chamber								Douglas bag		Douglas bag
Subjects Exposure no. min	(C)		0-1		1-5		1.5	5	10		5-8 da			0-2 and	10-15	0-1	1-5	10-15
Subjects no.	(B)		2				-		5		٣					E,		
Animal	(A)		1 Man	2	3	4	5	9	7		00	6		10 Man	-	11	12	13

14		_	30	Added dead space		0.3-0.7 m1/L	Optimal depth and frequency for respira-	7
							tory work; higher values outside this range.	
2		2	30	Spirometer	4.5% in air	3.8 ml/L; 16%1		8
9		4	Up to 40	Douglas bag	0-9% in air	1.4 ml/L		6
17			40	Cylinder gas	5-7% in air	0.5 ml/L	"Steady state" measurements.	10
1						Brain O ₂ Tension ¹		
18	Man	4	7	Pressure	2% in O2	100% compared with O2 at 3.5	Experiments at 3.5 atmospheres on	11
				chamber		atmospheres.	schizophrenic patients.	
1						Vital Capacity		
19	Man	7	2-5	BLB mask	5% in O ₂	3% increase in one subject; no		'n
						End-Tidal Position		
20	Man	13	4	Whole body	2-4% in air	No change.		12
				plethysmograph and spirometer				
21		2	5	BLB mask	5% in O ₂	Expiratory shift of 40 ml, 80 ml.5	Chest stethograph.	5
1	Cat	12		Rebreathing	4.8% and 6.9% in 25% O ₂	Slight increase of expiratory tonus.	Dial anesthesia; whole body plethysmo- graph.	13
23	Dog	6		Rubber bags and	Ó	Changes small, probably insig-	Urethane anesthesia; inspiratory shift	14
				tracheal cannula		nificant.	during hypercapnia after vagotomy.	
24	Rabbits and cats		1-3	Spirometer and tracheal cannula	2-10% in air	No consistent change.	Urethane anesthesia; whole body plethys- mograph.	15
					Total Body	Accretion of CO2 and Steady State		
52	Man	31	14-30	Douglas bag	5% in O2	1000-2000 ml	9 normal subjects, and 22 with congenital heart disease.6	1
92		25	20-35	Gas tank and anesthetic bag	3-5% in air	Steady state in 20-30 min.	Normal, and emphysematous subjects.	16
22		2	30	Spirometer	4.5% in air	390-4900 ml7	Steady state not reached in 30 min.	80
82			18 hr	Exposure	5.8%	Steady ventilation in 20-30 min.		17
62	Dog	2	45	Cylinder gas mixture	3.45% in air	38 ml/kg body wt.	Pentothal anesthesia, controlled respiration.	18
30	Rat		6-28 da	Exposure	10% in 20-35% O2	68 ml in 200 g rat.	Data combined for different parts of various rats.8	19
						Capacity of Lung Tissues		
31	Dog	13	0.5-1.0	Tracheal cannula 0-17%		2.6 ml/mm Hg pCO2	Exsanguinated lung.	20
h						Survival Time8		
	Mouse	138	Up to 90	Exposure chamber	32.5% in O ₂ 40% in O ₂ 47.5% in O ₂	90 62 52		12
35					52% In O2 62.5% in O2 70% in O2	116		
39		140			40% in 4.7% Oz	7.		
40					40% in 6.5% UZ	2	to appropriate the second seco	1

/1/% increase or decrease. /2/ Short term. /3/ Long term. /4/ Extraventilation. /5/ 1.0-1.6% increase. /6/ Extraventilation/accretion ratio steady at 30 min, CO₂ still accumulating. /7/ 40 to 700 ml/mm Hg pCO₂. /8/ In minutes.

120. EFFECTS OF BREATHING CO2 (Concluded)

Values in parentheses are ranges, estimate "c" of the 95% range (cf Introduction).

Part III: ON OTHER RESPIRATORY VARIABLES: MAMMALS (Concluded)

Reference	(H)	-	717
Remarks	(9)		
Effect on Variable	(F)	Survival Time8 (concluded)	128 95 70 60 30
CO ₂ Concentration	(E)		40% in 12% O ₂ 128 40% in 20% O ₂ 95 40% in 60% O ₂ 70 40% in 380% O ₂ 60 40% in 800% O ₂ 30
Method of Administration	10,	(D)	140 Up to 90 Exposure chamber
Exposure	min	(3)	Up to 90
Subjects		(B)	
Animal Subjects Time Admi		(A)	41 Mouse 42 (concl'd) 43 44 45

/8/ In minutes.

Contributor: Shephard, R. J.

Physiol. 143:140, 1944. [14] Eichenberger, E., Helvet. physiol. pharm. acta 7:55, 1949. [15] Peyser, E., Sass-Kortsak, A., and Verzár, F., Am. J. Physiol. 163:111, 1950. [16] Alexander, J. K., West, J. R., Wood, J. A., and Richards, D. W., J. Clin. Invest. 34:511, 1955. [17] Nielsen, M., and Smith, H., Acta physiol. scand. 24:293, 1951. [18] Farhi, L. E., and Rahn, H., U. S. Air Force, WADC Tech. Rept. 55-357, p.268, 1955. [19] Freeman, F. H., and Fenn, W. O., ibid p.259. [20] Dubois, A. B., Fenn, W. O., and Britt, A. G., J. Appl. Physiol. 5:13, 1953. [21] Chapin, J. L., U. S. Air Force, References: [1] Shephard, R. J., J. Physiol., Lond. 129:142, 1955. [2] Campbell, J. M., Douglas, C. G., Haldane, J. S., and Hobson, F. G., J. Physiol., Lond. 46:301, 1913. [3] Häbisch, H., Pflügers Arch. 251:594, 1949. [4] Benzinger, T., and Hartmann, H., Luftfahrtmedizin 1:129, 1937. [5] Shephard. R. J., J. Physiol., Lond. 129:393, 1955. [6] Michaelis, H., and Müller, E. A., Arbeitsphysiologie 12:192, 1942. [7] Liljestrand, G., Skand. Arch. Physiol., Berl. 35:199, 1918. [8] Adolph, E. F., Nance, F. D., and Shiling, M. S., Am. J. Physiol. 87:532, 1929. [9] Nielsen, M., Skand. Arch. Physiol., Berl. 74: (suppl.) 10, 87, 1936. [10] Grollman, A., Am. J. Physiol. 94:287, 1930. [11] Lambertsen, C. J., Ewing, J. H., Kough, R. H., Gould, R., and Stroud, M. W., J. Appl. Physiol. 8:255, 1956. [12] Fleisch, A., and Lehner, F., Helvet. physiol. pharm. acta 7:410, 1949. [13] Harris, A. S., Am. J. WADC Tech. Rept. 55-357, p 255, 1955.

121. EFFECTS OF BREATHING O2

All controls breathing air, unless otherwise specified. Values in parentheses are ranges, estimate "c" of the 95% range (cf Introduction).

Part I: ON VENTILATION: MAMMALS

Subjects Figure Subjects Reconstruction Minute yolume Replication Tital yolume Special Conditions Reference and minute yolume Respectable or recent years Tital yolume Special Conditions Reference and minute yolume Minute yolume Respectable or recent years Tital yolume Special Conditions Reference and minute with the yolume Reference and minute with the yolume Tital yolume Tital yolume (fill) (fill) <th< th=""><th></th><th></th><th></th><th></th><th>3</th><th></th><th></th><th></th><th></th></th<>					3				
Subjects Time				(Observed Cha	ange (% of Resting	Value)		
1.2 Faceptece and 100% 1.5 control breathing	Subjec no.			O2 Concentration	Minut	Respiratory Rate	Tidal Volume %	Special Conditions	Reference
1	(A)	(B)	(C)	(D)			(0)	(H)	(I)
1 2 Exceptice and 100% -3.1 (-22 to +23)					M	an			
1 Special mask 100% -15.8 -9.5 -6.3 Premature infants. 1.5 2.0 -14.6 -27.7 Premature infants. 1.5 -14.6 -27.7 Premature infants. 1.5 -14.6 -27.7 Premature infants. 1.5 -25.0 Premat		1-2	Facepiece and demand valve	100%	-3.1(-22 to +23)				-
1			Special mask	100%	-15.8	-9.5	-6.3	Premature infants.	2
1 1 1 1 1 1 1 1 1 1		7			0 0				
3 5 5 5 5 5 5 5 5 5		7			-34.0	1.12-		Fremature infants, preceding	
2 Special mask 60% 0 0 0 0 0 1 Special mask 100% 0 12.4 -11.3 Newborn infants. 2 Special mask 100% 1.2 2.0 Change of rate. 3 Special mask 100% 1.2 2.0 Change of rate. 4 Special mask 100% 1.2 1.2 0.0 5 Special mask 100% 1.2 1.2 0.0 5 Special mask 100% 1.2 1.2 0.0 6 Special mask 100% 1.2 1.2 0.0 7 Special mask 100% 1.2 1.2 0.0 8 Special mask 100% 1.2 1.2 0.0 9 Special mask 100% 1.2 1.2 0.0 1 Special mask 100% 1.2 0.0 1 Special mask 1.2 0.0 1 Specia		1 -			-25.0		-18.0	Normal infants, preceding	-1-
1 Special mask 60% -11 -0.6 -8.7 Newborn infants 100% 1.2 -1.1.3 Special mask 100% 1.2 -1.1.3 Special mask 100% 1.2 -2.0 Premature infants 1.2 -2.0 Premat		2			0			hypoxia.	
1	_	-	Special mask	%09	-11	9.0-	-8.7	Newborn infants.	3
1 100% 1.2 3.6 1.6.0 2 5 5.2 2.0 3 5 5.2 2.0 4 4 6 10.0 5 7 1.2 5.2 5 7 1.2 6.0 5 7 1.2 6.0 5 7 1.2 6.0 5 7 1.2 6.0 5 7 1.2 6.0 5 7 1.2 6.0 7 1.2 1.2 6.0 8 8 9 9 9 9 9 9 10 1.2 1.2 1.3 10 1.2 1.3 10 1.3 1.3 10 1.3 1.3 10 1.4 1.3 10 1.5 1.5 1.5 1.5 1.5 1.5 1.5		7			0	12.4	-11.3		
20 2 2 2 2 2 2 2 2 2		1		100%	-12	3.6	-16.0		
20 3 Special mask 100% 11.2 Almost entirely Almost e		2			3	5.2	-2.0		
1.6.0 1.6.		3	Special mask	100%	11.2			Premature infants.	7
13.5 2.5		4			16.0				
3 3 4 5 5 5 6 6 6 6 6 6 6					13.5				-
3 3 5 5 5 5 5 5 5 5		4,			15.8-25.0	Almost entirely change of rate.		Premature infants, preceding hypoxia.	
1	-	3	Special mask	%09	3	13.6	-5.3	Newborn infants.	6
100% 14 11.0 1.0 3 Special mask 100% 14 11.0 12.8 2.0 3 Special mask 100% 44.6 18.8 2.0 3 Special mask 100% 44.6 18.8 2.0 3 Special mask 100% 44.6 19.8 14.3(-24 to +24)² 14.3(-24 to +24)² 14.3(-24 to +24)² 14.3(-24 to +24)² 10.20 Rotometers and reservoir 100% 18 10.20 10.20 10.20 10.20 13.6(-8 to +33) 15-20 10.20 10.0% 13.6(-8 to +33) 15-20 10.20 10.0% 13.6(-8 to +33) 15-20 10.20 10.0% 15.4(8.5-29.8) 15.30 15.30 15.30 10.0% 16.4(8.5-29.8) 15.30 15.30 15.30 10.0% 16.4(8.5-29.8) 15.30 15.3		4			11	13.9	-0.7		
3 3 4 6 1.0 1.0 4.0 3 5 5 5 5 5 4 4 6 1.0 1.0 1.0 5 5 5 5 5 5 7 15-20 Tissot spirom - 100% 16.0(4-35) 8 5 15-30		5			5	13.6	-4.7		
31 5 5.0 Normal infants, preceding 31 5 5.6 8.5 -2.0 Normal infants, preceding 31 5 5 4.6 Normal infants, preceding hypoxia. 32 6.8 Facepiece and demand valve 100% 7.6(-29 to +39)l 14.3(-24 to +24)² hypoxia. 5 10 Douglas bag 100% 1.8 No significant 18 Normal. 6 10 10 1.8 Normal. Pregnant. 4 10-20 Rotometers and reservoir 66% -13(-2 to -14)³ Severe muscular work. 1 12-14 Douglas bag 100% -15(-11 to -23) Severe muscular work. 1 12-14 Douglas bag 100% -15(-11 to -23) Severe muscular work. 3 15-20 Tissot spirom- 100% 15(-11 to -23) Severe muscular work. 7 15-20 Anesthesia mask 100% 16.0(4-35) Anemia.5 Control breathing		3		100%	14	11.0	4.0		
Second mask 100% 44.6 100% 44.6 100% 44.6 100% 44.6 100% 44.6 100% 44.6 100%		4			11	12.8	2.0		
31 3 Special mask 100% 44.6 A4.6 Normal infants, preceding hypoxia. 33 6-8 Facepiece and demand valve demand valve 100% 7.6(-29 to +39)1 14.3(-24 to +24)2 Normal. 5 10 Douglas bag 100% 7.6(-29 to +39)1 14.3(-24 to +24)2 Normal. 6 10 18 Normal. Normal. 6 10 18 Normal. Normal. 4 10-20 Rotometers and reservoir 66% -13-2 to -28) Severe muscular work. 1 12-14 Douglas bag 100% 13.6(-8 to +33) Severe muscular work. 3 15-20 Tissot spiron- eter 100% 15.0(4-35) Anemia.5 Control breathing 7 15-20 Anesthesia mask 100% 16.0(4-35) Anemia.5 Control breathing		2			5	8.5	-2.0		
4 Hypoxia. 35. Eacepiece and demand valve demand valve 100% 7.6(-29 to +39)1 14.3(-24 to +24)2 hypoxia. 5 10 Douglas bag 100% 18 No significant orders and demand valve d	_	3	Special mask	100%	44.6			Normal infants, preceding	7
33 6-8 Facepiece and demand valve demand valve 100% 7.6(-29 to +39)1 14.3(-24 to +24)2 5 10 Douglas bag 100% 18 Normal. 6 10 Douglas bag 100% 18 Normal. 6 Rotometers and reservoir 66% -13(-2 to -28) Severe muscular work. 1 12-14 Douglas bag 100% -15(-11 to -23) Severe muscular work. 33 15-20 Tissot spirom- reter 100% 13.6(-8 to +33) Severe muscular work. 7 15-20 Anexthesia mask 100% 16.0(4-35) Anemia.5 Control breathing 7 15-20 Anexthesia mask 100% 16.4(8.5-29.8) Anemia.5 Control breathing		4			36.8			hypoxia.	
33 6-8 Facepiece and valve 100% 7.6(-29 to +39)l 14.3(-24 to +24)² 5 10 Douglas bag 100% 18 Normal. 6 10-20 Rotometers and reservoir 33% -8(-5 to -14)³ Severe muscular work. 1 12-14 Douglas bag 100% -13(-11 to -23) Severe muscular work. 3 15-20 Tissot spirom- reter 100% 13.6(-8 to +33) Anemia.5 Control breathing 7 15-20 Anesthesia mask 100% 16.0(4-35) Anemia.5 Control breathing	_	5			25.2				
5 10 Douglas bag 100% 18 No significant 18 Normal. 6 4 10-20 Rotometers and reservoir 33% -8(-5 to -14)³ change. 32 Fregnant. 1 12-14 Douglas bag 100% -13(-2 to -28) Severe muscular work. 3 15-20 Tissot spirom-reter 100% 13.6(-8 to +33) Severe muscular work. 7 15-20 Anesthesia mask 100% 16.0(4-35) Anemia.5 Control breathing 7 15-30 100% 16.4(8.5-29.8) Anemia.5 Control breathing		9-9	Facepiece and demand valve	100%	7.6(-29 to +39)1	14.3(-24 to +24)2			1
6 Rotometers and reservoir 33% -8(-5 to -14)³ change. 32 Pregnant. 4 10-20 Rotometers and reservoir -8(-5 to -14)³ Severe muscular work. 1 12-14 Douglas bag 100% -15(-11 to -23) Severe muscular work. 3 15-20 Tissot spirom-reter 100% 13.6(-8 to +33) Anemia.5 Control breathing 7 15-20 Anesthesia mask 100% 16.0(4-35) Anemia.5 Control breathing		10	Douglas bag	100%	18	No significant	18	Normal.	4
4 10-20 Rotometers and 33% -8(-5 to -14)³ reservoir 66% -13(-2 to -28) 1 12-14 Douglas bag 100% -354 33 15-20 Tissot spirom- 100% 13.6(-8 to +33) eter 7 15-20 Anesthesia mask 100% 16.0(4-35) 9 15-30 Lissot Spirom 100% 16.4(8.5-29.8) Revere muscular work. Severe muscular work. Severe muscular work.	_				32	change.	32	Pregnant.	
1 12-14 Douglas bag 100% -15(-11 to -23) 33 15-20 Tissot spirom-eter 100% 13.6(-8 to +33) 5evere muscular work. 7 15-20 Anesthesia mask 100% 16.0(4-35) Anemia.5 Control breathing 9 15-30 16.4(8.5-29.8) Anemia.5 Control breathing		10-20	Rotometers and	33%	-8(-5 to -14) ³			Severe muscular work.	ď
1 12-14 Douglas bag 100% -354 33 15-20 Tissot spirom- 100% 13.6(-8 to +33) 7 15-20 Anesthesia mask 100% 16.0(4-35) 9 15-30 Anemia-5 Control breathing			reservoir	66%	-13(-2 to -28)				
33 15-20 Tisset spirom- 100% 13.6(-8 to +33) 7 15-20 Anesthesia mask 100% 16.0(4-35) 9 15-30 Anemia-5 Control breathing	_	12-14	Douglas bag	100%	-354			Severe muscular work.	9
7 15-20 Anesthesia mask 100% 16.0(4-35) 9 15-30 Anemia.5 Control breathing		15-20	Tissot spirom- eter	100%	13.6(-8 to +33)				7
9 15-30 Anemia. 5 Control breathing	_	15-20	Anesthesia mask	100%	16.0(4-35)				80
	_	15-30		100%	16.4(8.5-29.8)			Anemia, 5 Control breathing	6

/1/ Assuming normal minute volume = 7.9 L/min. /2/ Assuming normal respiratory rate = 14 breaths/min. /3/ Approximate figures from graphs. /4/ At O2 consumption of 3 L/min. /5/ Four patients showed less hyperventilation as hemoglobin level increased.

121. EFFECTS OF BREATHING O2 (Continued)

All controls breathing air, unless otherwise specified. Values in parentheses are ranges, estimate "c" of the 95% range (cf Introduction).

Part 1: ON VENTILATION: MAMMALS (Concluded)

ų u			CHAIN LINE	200	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)		
Time Admin (B)	N. 9 - 4 - 4 - 5	((ann. 6	(Apren)		
(B)	Method of Administration	U2 Concentration	Minute Volume %	Rate %	Tidal Volume %	Special Conditions	Reference
	(C)	(D)	(E)	(F)	(G)	(H)	(1)
			Man (concluded)	cluded)			
15 Dou	Douglas bag and	350%6	23.4	-6.3	33,8		10
30	compression		42.0	14.8	20.2		
20-30 Oxy	Oxygen tent	42-74%	30(-15 to +134)		17.6(-20.4 to +75)	Newborn infants ⁷ . Discontinuous readings; neck seal	11
20-30 Spin	Spirometer	100%	15.4	11.9	2.9		12
30 Spin	Spirometer	100%	5.5				13
30 BL	BLB mask8	100%	14.2	9.7	1.8		14
30 BL	BLB mask8	100%	13.6			Acyanotic congenital heart disease.	14
			5.4			Cyanotic congenital heart disease.	
30-40 Dou	Douglas bag	100%	7.4(-10 to +36)			Normal.	15
		866	-5.3(-28 to +24)			Emphysema.	1
5		100%	20.0			Alveolar pCO2 also lowered.	16
80-240 Mas	Mask and spirometer	%66-96	Pneumograph records; hyperpnea in only 1 subject.	Increase in 1 subject during 4th hr.		Control breathing unspecified.	17
			Cat and Dog	d Dog			
1-4 Rub	Rubber bag	100%	Decrease towards end of test; return to normal.	Reduction of frequency and amplitude.	uency and	Chloralose; body plethysmo- graph.	® <u>-</u>
			Dog	B			
l Dou	Douglas bag	100%11	-31 to -11			Effect abolished by denervation of carotid and aortic bodies.	19
10		100%	-18.212 -13.613 8.014 2.015			Varying periods of chloral anesthesia.	20
			Rabbit	bit			
0.5-1		100%	Decrease.	Typical reduction of respiratory amplitude and rate.	of respiratory	Urethane anesthesia.	21

/6/ Pressure greater than 1 atmosphere. /7/ Controls not breathing air. /8/ Boothby, Lovelace, Bulbulian mask. /9/ Alveolar pO₂ greater than 80%. /10/ 12 cats, 1 dog. /11/ Arterial pO₂ greater than 100 mm. /12/ Anesthesia for 30-60 min. /13/ Anesthesia for 60-90 min. /14/ Anesthesia for 90-150 min. /15/ Anesthesia for 150-300 min.

Contributor: Shephard, R. J.

D. J., J. Physiol., Lond. 125:118, 1954. [6] Asmussen, E., and Nielsen, M., Acta physiol. scand. 12:171, 1946. [7] Shock, N. W., and Soley, M. H., Proc. Soc. Exp. Biol. 44:418, 1940. [8] Keys, A., Stapp, J. P., and Violante, A. Am. J. Physiol. 138:763, 1943. [9] Chiodi, H., Fasciolo, J. C., Suárez, J. R., and Taquini, A. C., J. Appl. Physiol. 1:148, 1948. [10] Lambertsen, C. J., Kough, R. H., Cooper, D. V., Emmel, G. L., Loeschcke, H. H., and Schmidt, C. F., ibid 5:471, 487, 803, 1952. [11] Howard, P. J., and Bauer, A. R., Am. J. Dis. Child. 79:611, 1950. [12] Alveryd, A., and Brody, S., Acta physiol. scand. 15:140, 1948. [13] Otis, A. B., Rahn, H., Brontman, M., Mullins, L. J., and Fenn, W. O., J. Clin. Invest. 25:413, 1946. [14] Shephard, R. J., J. Physiol., Lond. 127:498, 1955. [15] Prime, F. J., and Westlake, E. K., Clin. Sc., Lond. 13:321, 1954. [16] Edelmann, A. W., Whitehorn, W. V., and Hitchcock, F. A., Fed. Proc. 4:18, 1945. [17] Behnke, A. R., Fenimore, S. J., Poppen, J. R., and Molley, E. P., Am. J. Physiol. 110:565, 1935. [18] Von Euler, U. S., and Liljestrand, G., Acta physiol. scand. 4:34, 1942. [19] Watt, J. G., Dumke, P. R., and Comroe, J. H., Am. J. Physiol. 138:610, 1943. [20] Binet, L., and Strumza, M. V., C. rend. Soc. biol. 141:3, 1947. [21] Hejneman, E., Acta 3] Cross, K. W., and Warner, P., ibid 114:283, 1951. [4] Loeschcke, H. H., Pflugers Arch. 251:211, 1949. [5] Bannister, R. G., and Cunningham, References: [1] Dripps, R. D., and Comroe, J. H., Am. J. Physiol. 149:277, 1947. [2] Cross, K. W., and Oppé, T. E., J. Physiol., Lond. 117:38, 1952. physiol. scand. 6:333, 1943.

Part II: ON OTHER RESPIRATORY VARIABLES: MAN

Reference	(5)		-	2									c-		2					
Special Conditions	(F)			Some experiments at pressure of 3.5 atmospheres.	•										Some experiments at pressure of 3,5	atmospheres.				
Arterial Blood	(E)	Arterial Blood	No change observed in CO ₂ content, pCO ₂ , or pH.	O ₂ content = 10.5 CO ₂ content = -1.4	$pCO_2 = -5.0$	Hb saturation = 3.7	O2 content = 39.1	CO ₂ content = -6.2	$pO_2 = 2000$	$pCO_2 = -12.8$	Hb Saturation = 3.9	pH = 0.4	No change in CO ₂ content, pCO ₂ , or pll.	Cerebral Venous Blood	O2 content = 4.7	CO ₂ content = 0.5	$pO_2 = 8.1$	$pCO_2 = 2.0$	Hb saturation = 4.6	pH = no change
O ₂ Concentration	(D)		85-100%	100%			350%						100%	Cere	100%					
Method of Administration	(C)			Mouthpiece and demand valve									Demand mask ²		Mouthpiece and	demand valve				
Exposure Time min	(B)		15-30	09									1440		09					
Subjects no.	(A)		1 6	3 8	4. 0	0 9	7	00	6	10	11		13 28		14 8	15	10		00	19

(1) Change observed; % increase or decrease from resting value. (2) Alveolar pO2 mask checks.

121. EFFECTS OF BREATHING O2 (Concluded)

All controls breathing air, unless otherwise specified. Values in parentheses are ranges, estimate "c" of the 95% range (cf Introduction).

Part II: ON OTHER RESPIRATORY VARIABLES: MAN (Concluded)

Reference	(0)		2						4	5			9	7	œ			6	10	7		11		12	3			00	
Special Conditions	(F)		Some experiments at pressure of 3.5	atmospheres.						Heavy exercise.			Heavy exercise.		Decrease occurs mainly during first	2 hr.			Large correction for N ₂ elimination from 0-20 min. Control breathing	unspecified.					Complaints of substernal distress	after 14 hr with 75% and 100%.	Not seen in controls breathing air.	Control breathing unspecified.	
Effect on Variable ¹	(E)	Cerebral Venous Blood (concluded)	O2 content = 39,6	CO ₂ content = -0.9	pO2 = 97.0	pCO2 = 0.0 Hb saturation = 37.0	DH = -4.1	Alveolar CO, Pressure	-3.4	23	53	103	254	-11.2	-25		O ₂ Consumption	No change.	14-247		8% increase in other.	No change.	Vital Capacity	-3.0(-6.9 to +7.5)	Decreases 0-1480 ml;	mainly 200-300 ml.		5% decrease in one subject	and 30% decrease in other.
O ₂ Concentration	(D)	Cerebral	350%					Alve	100%	33%	66%	100%	100%	100%6	%06			%06	97%	9 2000	2007	45%		100%	50-100%			%06	
Method of Administration	(C)		Mouthpiece and	demand valve					Douglas bag	Rotometers and	reservoir		Douglas bag	BLB mask ⁵	Decompression	chamber		Spirometer	Helmet	4	DLD mask	O ₂ chamber		Spirometer	Mask and	demand valve		Decompression	chamber
Exposure Time min	(B)		09						5	10-20			12-14	30	099			15-30	20-240	00	00	168 hr		30-40	24 hr			65 hr	
Subjects no.	(A)		8 02	21	77	2.5	25		2 92	27 4	28	29	30 1	31 2	32 2			33	34 4		7 00	36 2		37 12	38 80			39 2	

/1/ Change observed; % increase or decrease from resting value. /3/ Approximate figure from graph. /4/ At O₂ consumption of 3 L/min. /5/ Boothby, Lovelace, Bulbulian mask. 16/ Alveolar pO2 greater than 80%. 77/ For first 20 min; subsequent return to normal.

Contributor: Shephard, R. J.

References: [1] Kety, S. S., and Schmidt, C. F., J. Clin. Invest. 27:484, 1948. [2] Lambertsen, C. J., Kough, R. H., Cooper, D. V., Emmel, G. L.,

Loeschcke, H. H., and Schmidt, C. F., J. Appl. Physiol. 5:471, 487, 803, 1952. [3] Comroe, J. H., Dripps, R. D., Dumke, P. R., and Deming, M., J. Am.

Loeschcke, H. H., and Schmidt, C. F., J. Appl. Physiol. 5:471, 487, 803, 1952. [3] Comroe, J. H., Dripps, R. D., Dumke, P. R., and Deming, M., J. Am. [8] Becker-Freysung, H., and Clamann, H. G., Klin. Wschr. 18:1382, 1939.
[9] Benedict, F. G., and Higgins, H. L., Am. J. Physiol. 28:1, 1911.
[10] Behnke, A. R., Fenimore, S. J., Poppen, J. R., and Motley, E. P., ibid 110:565, 1935.
[11] Richards, D. W., and Barach, A. L., Quart. J. M. 3:437, M. Ass. 128:710, 1945. [4] Dautrehande, L., and Haldane, J. S., J. Physiol., Lond. 55:296, 1921. [5] Bannister, R. G., and Cunningham, D. J., ibid 1934. [12] Alveryd, A., and Brody, S., Acta physiol. scand. 15:140, 1948.

122. PULMONARY N2 WASHOUT: MAN

Nitrogen reduction, by inhalation of O2 at constant tidal volume, can be measured by following continuously the N2 concentration of respired gas with a nitrogen meter.

Part 1: TABULAR

Alveolar gas at each breath is diluted 10%.

% Alveolar N ₂ at End of Each Inspiration	(D)	80 - 8.0 = 72	72 - 7.2 = 64.8	64.8 - 6.48 = 58.3	58.3 - 5.83 = 52.5	52.5 - 5.25 = 47.3	47.3 - 4.73 = 42.6	42.6 - 4.26 = 38.3
% Alveolar N ₂ at Resulting Decrease Beginning of in % Alveolar N ₂ in Each Inspiration	(C)	10 x 80 = 8.0	$10 \times 72 = 7.2$	$10 \times 64.8 = 6.48$	$10 \times 58.3 = 5.83$	$10 \times 52.5 = 5.25$	$10 \times 47.3 = 4.73$	10 x 42.6 = 4.26
% Alveolar N ₂ at Breath Beginning of Each Inspiration	(B)	80	72	64.8	58.3	52.5	47.3	42.6
Breath	(A)	l lst	2nd	3rd	4th	5th	6th	7 7th
		-	7	3	4	2	9	7

Part II: GRAPHIC

Each plateau represents the N₂ concentration of expired alveolar gas. The resulting washout curve is a single exponential curve, assuming the lungs function as a perfect mixing chamber and are washed out evenly.

Reference: Comroe, J. II., Jr., Forster, R. E., II, DuBois, A. B., Briscoe, W. A., and Carlsen, E., "The Lung," Chicago: The Year Book Publishers, Inc., 1956.

Venous blood from internal jugular vein. C = control period of air breathing at one

					ntent		Dissol			uration	O ₂ Pressur mm Hg	
				vol			vol			70		
	at	m	C	. E	С	E	C	E	C	E	C	E
	C	E	Arte	rial	Ven	ous	Arte	rial	Ver	ious	Ver	ious
	(A)	(B)	(C)	(D)	(E)	(F)	(G)	(H)	(1)	(J)	(K)	(L)
1	0.2	4.0	19.6	27.4	12.5	18.1	0.3	8.1	64.0	92.0		
2	0.2	4.0	18.3	25.8	11.4	18.0	0.3	6.8	63.4	92.9	36	82
3	0.2	4.0	18.0	25.2	9.4	19.0	0.3	6.4	51.3	100.0	27	100
4	0.2	3.5	18.9	26.1	10.2	19.0	0.3	6.2	54.5	93.6	32	85
5	0.2	3.5	18.2	25.5	12.3	18.0	0.3	6.5	64.2	89.7	35	79
6	0.2	3.5	19.3	25.6	11.7	17.5	0.3	6.6	61.0	90.8	35	72
7	0.2	3.5	16.5	23.9	9.4	12.0	0.3	6.4	56.9	67.6	36	41
8	0.2	3.5	18.0	24.8	11.5	17.0	0.3	6.0	62.1	88.7	37	70
9	0.2	3.5	19.1	26.5	12.9	18.0	0.3	6.6	64.6	88.5	38	66
10	0.2	3.5	18.6	25.7	13.0	17.4	0.3	7.2	69.3	89.1	40	64
11	0.2	3.5	18.7	25.7	13.7	18.4	0.3	6.6	73.2	96.0	42	97
12	0.2	3.5	18.2	25.7	13.2	18.4	0.3	5.6	65.1	89.7	36	67
13	0.2	3.5	18.9	26.4	12.9	19.6	0.3	6.5	64.7	96.8	36	100
14	0.2	3.5	20.7	28.5	14.5	18.5	0.3	6.9	66.8	84.5	39	58
15	0.2	3.5	19.5	27.3	16.4	20.2	0.3	6.8	79.9	96.7	50	100
16	0.2	3.4	17.9	25.7	12.0	16.7	0.3	6.6	66.8	86.4	38	61
17	0.2	3.0	20.5	26.8	13.6	17.8	0.3	5.7	63.9	84.3	37	59

Contributor: Behnke, A. R.

Reference: Lambertsen, C. J., Kough, R. H., Cooper, D. Y., Emmel, G. L., Loeschcke, H. H., Schmidt, C. F.,

124. EFFECT OF BREATHING AIR AT ONE ATMOSPHERE

Venous blood withdrawn from right

	Venous stood withdrawn 11 oin 11gin											
	Gas	Pressure	Exposure	O ₂ Co	ntent	O ₂ C	apacity	CO ₂ Co	ontent	CO ₂ C	Capacityl	
	Gas	atm		Arterial	Venous	Arterial	Difference	Arterial	Venous	Arterial	Difference	
			min	vol %	vol %	vol %	vol %	vol %	vol %	vol %	vol %	
	(A)	(B)	(C)	(D)	(E)	(F)	(G)	(H)	(1)	(J)	(K)	
1	Air	1	132			19.6				42.5		
2	Oz	3.00	132	25.6	20.4	20.5	+0.89	45.9	51.7	43.9	+1.4	
3	Air	1	100	20.5	12.1	20.3		44.3	49.1	41.0		
4	Oz	3.84	100	26.1	20.5	19.6	-0.76	42.3	48.5	40.0	-1.0	
5	Air	1	64			23.1				40.2		
6	O ₂	3.36	64	28.9	21.6	23.0	-0.03	39.9	44.3	40.2	0.0	
7	Air	1	67	19.0	14.3	19.1		42.4	45.5	43.8		
8	02	3.92	67	25.1	20.1	18.4		42.5	47.0	45.0	+1.2	
9	Air	1	193	21.7	16.7	23.5		45.3	48.6	41.5		
10	Oz	3.84	193	30.9	25.6	24.4	+1.11	38.8	41.7	41.0	-0.5	
1.1	Air	1	92	21.3	15.8	23.8		51.7	55.2	44.2		
12	Oz	3.89	92	31.9	24.5	25.4	+1.64	50.9	55.5	44.2	0.0	
13	Air	1	119	23.7	19.6	25.8		32.9	37.6	39.5		
14	O ₂	3.88	119	31.5	24.6	24.6	-1.17	39.1	46.3	39.2	-0.3	
15	Air	1	62	20.3	18.9	22.4		45.0	46.6	44.25		
16	Oz	3.89	62	29.3	25.9	22.8	+0.33	44.0	46.6	44.25	0.0	
17	Air	1	165	18.9	13.6	20.8		43.9	46.2	43.0		
18	OZ	3.88	165	24.6	16.2	20.8	-0.02	41.4	48.6	43.5	+0.5	

/1/ At 40 mm Hg. /2/ To calculate arterial volume, convert pO_2 values from mm Hg to atmospheres and multiply

Contributor: Behnke, A. R.

Reference: Behnke, A. R., Shaw, L. A., Shilling, C. W., Thomson, R. M., and Messer, A. C., Am. J. Physiol.

ATMOSPHERES ON BLOOD GASES: MAN

atmosphere, E = experimental period of O2 breathing at increased ambient pressure.

	CO ₂ Co				CO ₂ Pr			pH				
	vol					Hg	E		172	C	E	
C	E	C	E	С	E			C	E			
	erial		ous		erial		nous		rial		nous	
(M)	(N)	(O)	(P)	(Q)	(R)	(S)	(T)	(U)	(V)	(W)	(X)	
50.8	46.3	57.0	55.7									1
46.1	42.1	51.4	50.0	38	32	48	50	7.36	7.40	7.31	7.28	2
46.9	48.0	55.3	55.3	35	35	42	52	7.45	7.42	7.40	7.31	3
46.2	47.2	54.6	53.2	32	37	45	52	7.45	7.40	7.37	7.30	4
51.8	50.7	57.0	57.4	39	38	50	55	7.41	7.42	7.34	7.31	5
52.6	50.1	59.8	58.8	40	36	53	58	7.41	7.43	7.34	7.29	6
52.1	45.7	57.1	56.3	43	33	53	56	7.36	7.42	7.30	7.28	7
49.5	45.4	55.5	54.2	43	36	53	60	7.35	7.39	7.30	7.24	8
48.6	45.5	54.8	54.5	38	33	52	53	7.40	7.43	7.31	7.30	9
49.1	44.0	54.4	53.5	38	29	48	46	7.40	7.47	7.34	7.35	10
50.2	47.4	55.4	55.0	38	32	47	49	7.41	7.46	7.36	7.34	11
48.2	46.0	53.0	53.2	37	32	45	50	7.40	7.45	7.36	7.32	12
53.0	49.5	59.2	56.9	42	39	52	55	7.40	7.40	7.35	7.31	13
48.7	43.9	54.7	54.6	40	33	53	54	7.38	7.43	7.31	7.30	14
49.7	47.4	53.0	54.5	40	35	47	51	7.39	7.43	7.34	7.32	15
51.1	48.1	57.4	56.6	39	35	49	54	7.40	7.43	7.35	7.31	16
48.4	44.8	54.6	53.6	40	36	49	57	7.38	7.39	7.34	7.26	17

J. Appl. Physiol. <u>5</u>:471, 1953.

AND O_2 AT 3-3.92 ATMOSPHERES ON BLOOD GASES: DOG

ventricle via jugular vein cannula.

		2 in Physical	Solution			pC	02	pl	-1	
	Arteri	al		Ven	ous	-	- 2	-		
Observed vol %	Calculated ²	Difference vol %	pO2 mm lIg	Observed vol %	pO ₂ mm Hg	Arterial mm Hg	Venous mm Hg	Arterial	Venous	
(L)	(M)	(N)	(0)	(P)	(Q)	(R)	(S)	(T)	(U)	
5.47	5.61	-0.14	2190	0.36	130_	44.5	59.7	7.35	7.26	
6.95	7.07	-0.12	2827	1.39	555	47.0 45.0	54.0	7.33	7.30	
6.29	6.16	+0.13	2462	-	80	39.0	48.0	7.36	7.31	
7.18	7.22	-0.04	2888	2.22	880	37.0 34.0	41.0	7.40	7.37	
6.90	7.07	-0.17	2827	1.63	645	48.0 35.0	51.0 41.5	7.32 7.41	7.31 7.36	1
7.01	7.16	-0.15	2865		90	54.5 55.0	58.5 67.0	7.33	7.31]
7.31	7.14	+0.17	2857		160	24.8	31.5 59.0	7.50 7.36	7.47]
6.97	7.16	-0.19	2865	3.60	1440	45.0 43.5	48.0 50.0	7.34 7.35	7.33	
4.22	7.16	-2.94			45	40.0 35.0	41.5	7.38 7.41	7.38 7.35	1

by 1.9.

107:20, 1934.

125. EFFECT OF BREATHING O $_{\rm 2}$ at 3-4 ATMOSPHERES ON RESPIRATORY RATE, PULSE RATE, AND BLOOD PRESSURE: MAN

C = control period of air breathing at one atmosphere; E = experimental period of O₂ breathing at increased ambient pressure. Signs and symptoms: P = pallor, M = mental confusion, S = sweating, T = twitching movements of a myoclonic nature, G = generalized type of convulsions, O = no discernible signs or symptoms.

	Inspired (O ₂ Pressure	Respi	ratory	Pu	lse	Blood Pressure			re	
	-	oz i ressure	R	ate	R	ate	1	erial		Jugular	Signs and Symptoms
			breatl	ns/min	beats	s/min	mn	n Hg	mm	Hg	
_	C	E	C	E	C	E	C	E	C _	E	E
	(A)	(B)	(C)	(D)	(E)	(F)	(G)	(H)_	(I)	(J)	(K)
1	0.2	4.0	7	12	63	59	79	86	6.0	4.8	PM
2	0.2	4.0	19	19	79	78	85	89	6.5	5.4	PSTC
3	0.2	4.0	13	-	79	66	78	85	5.5		STM
4	0.2	3.5	20	12	75	51	87	91	10.0	9.6	PSTC
5	0.2	3.5	13	11	58	56	59	82	11.3	10.0	0
6	0.2	3.5	13	13	57	57	77	78	8.6	8.4	0
7	0.2	3.5	11	10	49	48	77	79	9.6	7.9	P
8	0.2	3.5	12	11	53	49	97	108	9.4	7.9	0
9	0.2	3.5	15	20	79	71	78	88	17.:	10.2	0
10	0.2	3.5	17	32	71	62	72	76	8.0	5.7	l T'
11	0.2	3.5	17	19	73	63	70	75	7.4	5	0
12	0.2	3.5	19	19	87	61	78	80	8.2	7.u	0
13	0.2	3.5	10	10	56	61	79	81	8.2	7.4	Tr
14	0.2	3.5	14	18	62	53	85	89	12.8	13.2	3
15	0.2	3.5	16	20	76	66	85	82	8.7	4.1	т
16	0.2	3.4	14		73		88	88	9.5		T
17	0.2	3.0	10	11	73	61	96	102	11.3	9.0	0

Contributor: Behnke, A. R.

Reference: Lambertsen, C. J., Kough, R. H., Cooper, D. Y., Emmel, G. L., Loeschcke, H. H., and Schmidt, C. F., J. Appl. Physiol. 5:471, 1953.

126. EFFECT OF BREATHING AIR, 6% O_2 in N_2 , AND 100% O_2 AT 3.5 ATMOSPHERES ON RESPIRATORY EXCHANGE: MAN

Values are for six subjects.

	Values are for six subjects.											
	Inspired	Ambient	Respiratory	Tidal	Minute	Alveolar	CO2					
	Gas	Pressure	Rate	Volume	Volume	pCO ₂	Production					
	Gas	atm	breaths/min	L,BTPS	L/min, BTPS	mm Hg	cc/min, STPD					
	(A)	(B)	(C)	(D)	(E)	(F)	(G)					
1	Air	1.0	12.8	0.401	5.15	41	176					
2	6% O2	3.5	12.7	0.483	6.12	42	214					
3	Air	3.5	12.5	0.463	5.78	38	190					
4	100% O2	3.5	10.3	0.677	7.00	35	213					
5	Air	1.0	12.5	0.511	6.34	38	216					
6	6% Oz	3.5	12.7	0.468	5.95	36	188					
7	Air	3,5	12.7	0.529	6.73	35	204					
8	100% O2	3.5	10.9	0.722	7.84	32	245					
9	Air	1.0	20.5	0.346	7.33	40	272					
10	6% Oz	3.5	16.1	0.389	6.25	38	201					
11	Air	3.5	18.1	0.388	7.03	42	205					
12	100% Oz	3,5	18.4	0.487	8.97	32	262					
13	Air	1.0	13.2	0.433	5.69	43	201					
14	6% O2	3.5	13.2	0.382	5.05	41	164					
15	Air	3.5	13.6	0.424	5.78	42	196					
16	100% O2	3,5	11.9	0.532	6,30	38	206					
17	Air	1.0	12,0	0.529	6.26	39	223					
18	6% O2	3.5	12.1	0.562	6.82	38	225					
19	Air	3.5	12.3	0.393	4.82	40	151					
20	100% O2	3.5	11.7	0.729	8.56	32	267					
21	Air	1.0	15.6	0.487	7.57	36	223					
22	6% O2	3.5	12.0	0.524	6.28	34	173					
23	Air	3.5	15.3	0.528	8.10	32	212					
24	100% Oz	3.5	17.7	0.546	9.65	28	215					

Contributor: Behnke, A. R.

Reference: Lambertsen, C. J., Stroud, M. W., III; Gould, R. A., Kough, R. H., Ewing, J. H., and Schmidt, C. F., J. Appl. Physiol. 5:487, 1953.

127. EFFECT OF RAPID DECOMPRESSION FROM A HIGH PRESSURE ATMOSPHERE ON BLOOD GASES: DOG

As a result of rapid decompression, from a gauge pressure of 65 lb/sq in. of air for 105 minutes' duration, nascent gas bubbles became macroscopically visible in the circulation. Massive embolization and tachypnea supervened after reduction of pressure to normal in 5-6 seconds (asphyxial period). Dogs were then recompressed at a gauge pressure of 30 lb/sq in. of air or oxygen for 84 minutes (recompression period), and finally decompressed by stages for 30 minutes until pressure was again normal (post-recompression period). Data for asphyxial period taken immediately prior to recompression; data for post-recompression period taken after breathing normal air for one hour.

	O ₂ Co		A-V	Oz	O ₂ Satu		pCO2
Period	Arterial	Venous	Difference	Capacity	Arterial	Venous	Arteria
	vol %	vol%	vol %	vol %	%	%	mm Hg
(A)	(B)	(C)	(D)	(E)	(F)	(G)	(H)
			Air Inhalation				
1 Control		7.3		15.7			
2 Asphyxial	6.8						
3 Recompression	17.8	12.0	5.8				
4 Post-recompression	10.5						
5 Control	19.3	15.2	4.1	22.4	86	68	
6 Asphyxial	18.4	8.7	9.7				
7 Recompression	25.8	11.5	14.3				
8 Post-recompression	24.3	8.8	15.5	29.0	84	30	
9 Control	15.9	10.1	5.8	17.7	90	57	45.0
0 Asphyxial	5.4	0.5	4.9	22.4	24	2	59.0
1 Recompression	17.9	7.9	10.0	20.3	88	39	
2 Post-recompression	5.9	2.3	3.6	22.8	26	10	
3 Control	14.6	12.0	2.6	15.9	92	75	38.0
4 Asphyxial	6.9	2.8	4.1	18.7	37	15	51.0
5 Recompression	16.0	11.3	4.7	16.8	95	70	
6 Post-recompression	Death			1		1	1
			O ₂ Inhalation				
7 Control	20.9	16.7	4.2	23.1	91	72	37.0
8 Asphyxial	23.5	17.1	6.4	26.7	88	64	46.0
9 Recompression		20.5					-
0 Post-recompression	26.7	16.9	9.8	28.5	94	59	
1 Control	20.6	17.0	3.6	22.8	90	75	
2 Asphyxial	14.6	7.7	6.9	26.1	56	30	
3 Recompression	31.7	20.0	11.7	31.51	100	64	
4 Post-recompression	26.9	7.3	19.6	29.8	90	24	
5 Control	19.3	14.6	4.7	22.2	87	66	50.0
6 Asphyxial	18.3	10.7	7.6	26.7	70	40	60.0
Recompression	29.0	15.9	12.1	29.61	95	54	
28 Post-recompression	22.0	11.4	10.6	24.5	90	47	

^{/1/ 4.2} vol % added to normal capacity by ${\rm O}_{\rm Z}$ in physical solution.

Contributor: Behnke, A. R.

Reference: Behnke, A. R., Shaw, L. A., Messer, A. C., Thomson, R. M., and Motley, E. P., Am. J. Physiol. 114:526, 1936.

128. EFFECT OF DECOMPRESSION IN 5 SECONDS FROM HIGH PRESSURE ATMOSPHERES ON RESPIRATORY RATE AND BLOOD PRESSURE: DOG

Compressio		Time Following	Respiratory	Blood 1	
Time	Air	Decompression	Rate	Pressure	Remarks
hr	lb/sq in	min	breaths/min	mm Hg	
(A)	(B)	(C)	(D)	(E)	(F)
1 4	45	12	20	110	Dog in good condition
2	45	36	20	110	following day.
3 1.5	60	4	24	120-130	Increased respiratory
4	60	8	22	120-130	rate subsided sponta-
5	60	14	34	120-130	neously.
6	60	17	24	120-130	
7	60	21	50	120-130	
8	60	25	54	120-130	
9	60	94	36	120-130	
10	60	200	19	, 120-130	
11 2	60	3	14	124	Decompression precipi-
12	60	7	14	120	tated massive emboli-
13	60	25	9	140	zation and respiratory
14	60	33	8	60	rate failure.

^{/1/} Recorded from a manometer connected to a cannula in femoral artery.

128. EFFECT OF DECOMPRESSION IN 5 SECONDS FROM HIGH PRESSURE ATMOSPHERES ON RESPIRATORY RATE AND BLOOD PRESSURE: DOG (Concluded)

	Compression	Compressed	Time Following	Respiratory Rate	Blood l Pressure	Remarks						
	Time	Air	Decompression	11 11	l i	Remarks						
	hr	lb/sq in	min	breaths/min	mm Hg							
	(A)	(B)	(C)	(D)	(E)	(F)						
15	2	60	37	7	40	Decompression precipi-						
16		60	45	7		tated massive emboli-						
17		60	46	Failure		zation and respiratory						
						rate failure.						
18	2	60	3	7	90	Spontaneous subsidence						
19		60	11	19		of tachypnea.						
20		60	14	20	112							
21		60	27	38								
22		60	19	69								
23		60	21	78								
24		60	26	92								
25		60	32	47		Į						
26		60	36	17	90							
27		60	58	11	90							
28	0.55	75	1	9	64	Precipitous respiratory						
29		75	3	Failure	110 to 25	rate failure which did						
30	Recompression				120	not respond to recom-						
31	Recompr	ession			92	pression.						
32	Recompr	ession			88							

/1/ Recorded from a manometer connected to a cannula in femoral artery.

Contributor: Behnke, A. R.

Reference: Behnke, A. R., Medicine 24:381, 1945.

129. EFFECT OF DECOMPRESSION AND RECOMPRESSION ON BLOOD PRESSURE, RESPIRATORY RATE, AND PULSE RATE: DOG

Alterations in blood pressure, respiratory rate and pulse rate of dog decompressed in ten seconds from a gauge pressure of 65 lb after $1\frac{1}{2}$ hours' exposure, followed by recompression (interval of ten minutes) to a pressure of 30 lb (oxygen) for twenty-five minutes. Pressure was then lowered to atmospheric in twelve minutes, and oxygen inhalation continued for seventeen minutes. Preceded by period of oxygen breathing (thirty minutes), compression of dog was again repeated at a pressure of 65 lb for period of forty-five minutes, followed by ten seconds' decompression. After interval of twelve minutes, dog was recompressed to a pressure of 30 lb for twenty minutes (oxygen inhalation).

Contributor: Behnke, A. R.

Reference: Behnke, A. R., U. S. Nav. M. Bull. 35:61, 1937.

130. EFFECT OF DECOMPRESSION ON INTERNAL PRESSURES: DOG

Unprotected dogs decompressed from 100-200 ft equivalent depth with trachea closed, developed pulmonary interstitial emphysema and air embolism when intratracheal pressure reached a critical level of approximately 80 mm Hg. However, it appears that the critical factor in this development is a transpulmonic pressure of 60-70 mm Hg, or a transatrial pressure in excess of 55-65 mm Hg, rather than an absolute level of the intratracheal pressure. Overdistension of the lung was prevented by application of thoraco-abdominal binders, but not by abdominal binders alone. Group A = animals without binders that developed air embolism; Group B = animals without binders that did not develop air embolism; Group C = animals with abdominal binders that developed air embolism; Group D = animals with thoraco-abdominal binders that did not develop air embolism. Values represent pressures in mm Hg based on means of all animals weighted by the number of ascents.

				Group A					Group F	3	
	Pressure	Subjects	Ascents	Com-	Decom-	Gradient	Subjects	Ascents	Com-	Decom-	Gradient
		no.	no.	pressed	pressed	max.	no.	no.	pressed	pressed	max.
	(A)	(B)	(C)	(D)	(E)	(F)	(G)	(H)	(1)	(J)	(K)
1	Intratracheal	7	8	1.9	88.6		5	9	2.0	59.0	_
2	Intrapleural	4	5	-3.0	9.4		3	5	-6.3	7.9	
3	Intra-abdominal	4	4	-1.5	18.8		4	6	0.9	11.8	
4	Pulmonary arterial	6	7	9.8	54.9		4	8	3.8	27.2	
5	Left atrial	6	7	1.7	19.8		4	6	-5.3	13.8	
6	Systemic arterial	7	8	103.2	22.8		5	9	90.7	36.0	
7	Systemic venous	5	6	1.1	17.1		5	9	-1.9	18.7	
8	Transpulmonaryl	4	5			68.1	3	5			54.2
9	Transatrial ²	5	7			63.6	4	6			43.3
10	Transcapillary ³	5	6			31.2	3	5			13.7

				Group C			Group D						
	Pressure	Subjects	Ascents	Com-	Decom-	Gradient	Subjects	Ascents	Com-	Decom-	Gradient		
		no.	no.	pressed	pressed	max.	no.	no.	pressed	pressed	max.		
	(A)	(L)	(M)	(N)	(O)	(P)	(Q)	(R)	(S)	(T)	(U)		
1	Intratracheal	2	2	5.0	130.0		2	8	3.6	82.1			
2	Intrapleural	2	2	-4.0	31.0		2	8	-4.2	55.4			
3	Intra-abdominal	1	1	5.0	30.0		2	8	4.2	42.0			
4	Pulmonary arterial	2	2	13.0	55.0		2	8	8.2	68.5			
5	Left atrial	2	2	-3.0	36.0		2	8	2.4	56.1			
6	Systemic arterial	2	2	97.5	43.0		2	8	125.4	104.1			
7	Systemic venous	2	2	9.5	30.0		2	8	5.4	71.8			
8	Transpulmonaryl	2	2			99.0	2	8			29.2		
9	Transatrial ²	2	2			94.0	2	8			26.0		
10	Transcapillary3	2	2			19.0	2	8			12.5		

^{/1/} Transpulmonary = intratracheal minus intrapleural. /2/ Transatrial = intratracheal minus left atrial.

Contributor: Schaefer, K. E.

Reference: Schaefer, K. E., McNulty, W. P., Jr., Carey, C., and Liebow, A. A., J. Appl. Physiol., in press.

^{/3/} Transcapillary = pulmonary arterial minus left atrial.

131. EFFECT OF DRUGS ON PULMONARY

Drugs are listed alphabetically, using a well-known name. Use of trade names is for informative purposes only and is expressed as % increase or decrease from the control value (100%). In a few instances only + or - signs are used wise indicated. When no significant difference exists over a dosage range, the data are averaged over the range.

Acetazolamide 25	Drug %	Control breaths/min	Premedication	Species	Mode of Administration	Dose	Drug	
Acetazolamide	(G)		(E)	(D)	(C)	(B)	(A)	
Section Sect	+11	9		Man	Oral	25	Acetazolamide	1
Sectic acid	0	6	Morphine and	Dog	Oral	25		2
A cetic acid	-7		pentobarb.	Dog	1V	5-100		3
5 Acetone 15 cc 15% IV Rabbit Urethane 42 7	-32				1V	5-100		4
Acetone	-20	60			1V		Acetic acid	5
15 cc 20% 1V Rabbit Urethane 48 2-Acetoxy- 200 Oral Cat 36 Oral Cat 42 Oral Cat Oral Oral Cat Oral Oral Cat Oral O	+67							
2 - Acetoxy	+150	1					110000	
2	+31	1	J.					
1	+3	1	Orethane				2-Acotovy-	-
3 - Acetoxy- 200	+17				1		-	-
Departmene 300	0	i i						
Acetylcodeine	0						_	- 1
HC HC 0.05-1.0 SC Rabbit 8% CO2								
2,0-10.0 SC Rabbit 8% CO2	-17	1	0.00					
Acetyldihydrocodeine	-16		8% CO2				HCI	
Acetyldihydrocodeine	- 39		24 22					
HC1	- 37		8% CO2					
Second S	-10							
Second S	-6		8% CO2	Rabbit			HC1	
Acetyldihydroiso- Codeine acid tartrate Codeine	-25			Rabbit	SC	5-20		9
Acetyldihydroiso- Codeine acid tartrate 0.2-1.0 SC Rabbit 8% CO2	-25		8% CO2	Rabbit	SC			0
Codeine acid tartrate 0.2-1.0 SC Rabbit 8% CO2 2.0-10.0 SC Rabbit Wrethane 68 CO2 CO	-11			Rabbit	SC	0.2-1.0	Acetyldihydroiso-	1
2,0-10.0 SC Rabbit 8% CO2	- 8		8% CO2	Rabbit	SC			2
2.0	-52		.,					
Acetylguanidine HCl 5.0 SC Rabbit Urethane 68	-55		8% CO2					_
Acetylhydroxycodeinone HCl	+53						Acetylmanidine HC1	
HC1	-19		Orechane					
3.0 SC Rabbit 8% CO2	-14		9# CO2					
3.0 SC Rabbit 8% CO2	1		0% CO2				nci	
Second S	-50		0.77					
Scalabit Scalabit	-50		8% CO2					
Acetylisocodeine HCl	-75							
0.1-0.5 SC Rabbit 8% CO2	-68		8% CO2					
1.0-2.0 SC Rabbit 8% CO2	-12						Acetylisocodeine HCl	
1.0-2.0 SC Rabbit 8% CO2	-7		8% CO2	Rabbit		0.1-0.5		
Scholon Scho	-39			Rabbit	SC	1.0-2.0		34
SC	- 29		8% CO2	Rabbit	SC	1.0-2.0		35
Alcohol (ethyl, 95%) 1.5-5 cc 1P Rabbit 56 Allopseudocodeine HCl 5-30 SC Rabbit CO2 66 Aminoguanidine HCl 2 SC Rabbit Urethane 180 Aminophylline 3 IV Man 11 Aminophylline 3 IV Man 2.1-6% CO2 15 6 IV Man 2.1-6% CO2 15 6 IV Man 2.1-6% CO2 15 6 IV Man 3% CO2 14 7 Z5 SC Man 3% CO2 14 8 SC Man 5% CO2 17 P-(2-Aminopropyl)- 70 mg Oral Man 11 Phenol 15-20 mg IM Man 11 Amobarbital 2.9-10.0 Oral Man 12 Amphetamine 10 mg Oral Man 12 Amphetamine 10 mg Oral Man 13 Sulfate 30 mg Oral Man 13 Amphetamine 10 mg Oral Man 13	-62			Rabbit	SC	5.0-10.0		6
Allopseudocodeine HCl 5-30 SC Rabbit CO2 66 Aminoguanidine HCl 2 SC Rabbit Urethane 180 Aminophylline 3 IV Man 2.1-6% CO2 15 Aminophylline 3 IV Man 2.1-6% CO2 15 Aminophylline 5 SC Man 3% CO2 14 Aminophylline 5 SC Man 3% CO2 14 Aminophylline 70 mg Oral Man 11 Amobarbital 2.9-10.0 Oral Man 12 Amphetamine 10 mg Oral Man 12 Amphetamine 10 mg Oral Man 13 Amyldihydro- 0.0001-0.005 SC Rabbit Rabbit SC Rabbit Amyldihydro- 0.0001-0.005 SC Rabbit Rabbit Sc Rabb	- 56		8% CO2	Rabbit	SC	5.0-10.0		7
Allopseudocodeine HCl 5-30 SC Rabbit CO2 66 Aminoguanidine HCl 2 SC Rabbit Urethane 180 Aminophylline 3 IV Man 2.1-6% CO2 15 Aminophylline 3 IV Man 2.1-6% CO2 15 Aminophylline 5 SC Man 3% CO2 14 Aminophylline 5 SC Man 3% CO2 14 Aminophylline 70 mg Oral Man 11 Amobarbital 2.9-10.0 Oral Man 12 Amphetamine 10 mg Oral Man 12 Amphetamine 10 mg Oral Man 13 Amphetamine 10 mg Oral Man 13 Amphetamine 10 mg Oral Man 13 Amyldihydro- 0.0001-0.005 SC Rabbit	- 4	56			1P		Alcohol (ethyl, 95%)	8
S-30 SC Rabbit CO2 66 Aminoguanidine HC1 2 SC Rabbit Urethane 180 Aminophylline 3 IV Man 2.1-6% CO2 15 Aman 2 25 SC Man 3% CO2 14 Aman 25 SC Man 5% CO2 17 Aman A	-11	56						9
Aminoguanidine HCl 2 SC Rabbit Urethane 180 Aminophylline 3 IV Man 2.1-6% CO2 15 Aminophylline 3 IV Man 2.1-6% CO2 15 Aminophylline 3 IV Man 2.1-6% CO2 15 Aminophylline 3 IV Man 2.1-6% CO2 15 By Co2 15 Constant Script Scr	- 3	1	CO ₂					
Aminophylline 3 IV Man 2.1-6% CO2 15 Aminophylline 3 IV Man 2.1-6% CO2 15 Aminophylline 3 IV Man 2.1-6% CO2 15 BY Man 2.1-6% CO2 15 BY Man 2.1-6% CO2 15 BY Man 3% CO2 14 BY BY BY BY BY BY BY BY BY BY BY BY BY B	+24						Aminoguanidine HCl	
3 IV Man 2.1-6% CO2 15 6 IV Man 2.1-6% CO2 15 6 IV Man 2.1-6% CO2 6 IV Man 2.1-6% CO2 7 SC Man 3% CO2 14 8 SC Man 5% CO2 17 9 P-(2-Aminopropyl)	0							
6 IV Man 2.1-6% CO2 13 13 14 15 16 17 17 17 18 18 18 19 19 19 19 19	-12		2 1-6% CO2				The state of the s	
10 10 10 10 10 10 10 10	+18		2.1-0/8 CO2		à contra de la contra del la contra del			
25 SC Man 3% CO2 14	+32		2 1-6% 000					
25 SC Man 3% CO2 14			2.1-0% CO2					
S	+8		2/1/20					
9 p-(2-Aminopropyl)- 70 mg Oral Man 11 0 phenol 15-20 mg IM Man 11 1 Amobarbital 2,9-10.0 Oral Man 12 2 Amphetamine 10 mg Oral Man 13 3 sulfate 30 mg Oral Man 10 mg IM Man 15 5 0 Oral Man 7 5 Aerosol Man 8 7 Amyldihydro- 0.0001-0.005 SC Rabbit	0							
0 phenol 15-20 mg 1M Man 11 1 Amobarbital 2.9-10.0 Oral Man 12 2 Amphetamine 10 mg Oral Man 13 3 sulfate 30 mg Oral Man 4 10 mg 1M Man 5 5-50 Oral Man 7 6 5% Aerosol Man 8 7 Amyldihydro- 0.0001-0.005 SC Rabbit	-19		5% CO2					
1 Amobarbital 2.9-10.0 Oral Man 12 2 Amphetamine 10 mg Oral Man 13 3 sulfate 30 mg Oral Man 4 10 mg 1M Man 5 50 Oral Man 7 6 5% Aerosol Man 8 7 Amyldihydro- 0.0001-0.005 SC Rabbit	+27							
2 Amphetamine 10 mg Oral Man 13 3 sulfate 30 mg Oral Man 4 10 mg IM Man 5 5-50 Oral Man 7 6 5% Aerosol Man 8 7 Amyldihydro- 0.0001-0.005 SC Rabbit	+10			Man	1M	15-20 mg	phenol	0
3 sulfate 30 mg Oral Man 10 mg IM Man 5 0 Oral Man 7 Amyldihydro- 0.0001-0.005 SC Rabbit	+14	12		Man	Oral	2.9-10.0	Amobarbital	1
3 sulfate 30 mg Oral Man 4 10 mg 1M Man 5 5-50 Oral Man 7 6 5% Aerosol Man 8 7 Amyldihydro- 0.0001-0.005 SC Rabbit	-2				Oral			2
4 10 mg IM Man 5 5-50 Oral Man 7 6 5% Aerosol Man 8 7 Amyldihydro- 0.0001-0.005 SC Rabbit	+5							
5 5-50 Oral Man 7 6 5% Aerosol Man 8 7 Amyldihydro- 0.0001-0.005 SC Rabbit	-21			ĺ				
6 5% Aerosol Man 8 8 7 Amyldihydro- 0.0001-0.005 SC Rabbit	- 34							
7 Amyldihydro- 0.0001-0.005 SC Rabbit	-27							
							Amuldibudus	
	-7		0.00					
	-6 -37	i e	8% CO2	Rabbit	SC	0.0001-0.005	morphinone HCl	58

/1/ Arterial. /2/ Alveolar.

FUNCTION: MAN AND LABORATORY ANIMALS

in no way implies endorsement by The National Academy of Sciences-The National Research Council. Drug response to indicate increase or decrease when quantitative data are not available. Dose is expressed in mg/kg, unless other-Values enclosed in parentheses show the highest and lowest % change for that particular dosage level.

	dal Volume		ute Volume		r Ventilation			pCC)2	Refer-
Control		Control		Control		Control		Control		ence
СС	%	L/min	%	L/min	%	cc/min	%	mm Hg		
(H)	(1)	(J)	(K)	(L)	(M)	(N)	(O)	(P)	(Q)	(R)
690	-11	6.39	0				-12	39.91	-21	
	-28		-28				- 2	53.71	-11	
	+28		+13				-7		+241	85
	+65		+15				-4		+121	85
15	+67	0.885						37.51		1
13	+8		+79					28.01	-111	
24	+17		+192					28.51	_9l	1
								33.51	-111	1
15	-7	0.975	+22					33.5	-111	
							}			2
										2
										2
				_ [2
			-10				+2			3
			-20							3
			-27				-9			3
			-44				'			3
			-5				+8			3
							TO			
			-8							3
			-12				+14			3
			- 30							3
			- 3				+3			3
			-8							3
			- 39				- 3			3
			- 59							3
				-		-				5
			-10				+2	-		4
							72			1
			-15				_			4
			-35				-2			4
			- 57							4
		1	- 56				-17			4
			-72					j		4
			-8				+4			3
			-9							3
			-25				-10			3
							-10			
			-31							3
			- 47				-12			3
			-61							3
9	-15	0.500	-17							6
21	+6	1.176	- 4			25	+8			7
45	0	2.970	-3							7
							-		-	5
689	+19	6.55	+19					37.52	-82	8
1258	+26	18.70	+16					45.02	-42	8
1230		10.70						45,02	4.2	
	-16		+10						-62	8
	-1		+36						-6 ²	8
630	+36	8.2	0							9
	+4	15.4	+5							9
1427	+21	24.7	- 3							9
363	-22	4.0	0			171	+8			18
572	-14	5.3	+6			259	0			18
						231	+3			11
481	-11	6.4	-13			264	-8			18
	+4	0.7	+9			204				
							+14			18
	+3		-19				-3			18
696	+49	5.0	-8		+3					19
743	+55	5.4	+6	3.9	+15					20
			-2				+6			10
			-7							10
										10

131. EFFECT OF DRUGS ON PULMONARY FUNCTION: Drug response is expressed in % increase or decrease from the control

	Drug	Dose	Mode of Administration	Species	Premedication	Control	tory Rate Drug
	(4)	(**)			(77)	breaths/min	%
60	(A) Amyldihydro-	(B) 0.01-0.02	(C)	(D) Rabbit	(E) 8% CO ₂	(F)	-32
61	morphinone HCl	0.05-0.50	SC	Rabbit	070 COZ		-79
62	(concluded)	0.05-0.50	SC	Rabbit	8% CO2		-86
63	Apomorphine	1.0	SC	Rabbit	070 002	28	+164
64	Atropine sulfate	0.05 mg	SC	Man		50	1201
65	Attoplie surface	0.05 mg	17	Man			
66		1.29 mg	Oral	Man			
67		1%	Aerosol	Man		13	-52
68		1%	Aerosol	Man		6	-4
69		0.4-2.0 mg	IV	Dog	Chloralose		•
70	Azure A	0.1-0.5	IV	Rabbit	Urethane		+3
71	712 41 6 71	1.0-5.0	iv	Rabbit	and		+19
72		7.5-10.0	īV	Rabbit	pentobarb.		+7
73	Barbital sodium	5-19	Oral	Man	pentobaro.	12	+15
74	2-(Benzhydryloxy)- N, N-dimethyl- ethylamine HCl	100 mg	IV		Pentobarb.		113
				Dog			
75 76	2-(-N-Benzylanilino- methyl)-imidazoline	100 mg	IV IM	Dog Mice	Pentobarb. 20% O2		0
77	memyi/-imidazoiiile	50	IM	Mice	16% O2		-6
78		50	IM	Mice	14-10% O2		-23
79	Benzyldihydrodesoxy-	0.2-5.0	SC	Rabbit	14-10/0 02		-8(+3 to -16)
80	morphine-D HCl	0.2-5.0	SC	Rabbit	8% CO2		-7(-2 to -12)
81	morphine-D ACI	10.0-40.0	SC	Rabbit	1076 COZ		-14(-11 to -17)
82		10.0-40.0	SC	Rabbit	9.00 CO2		-19(-14 to -26)
83	Benzyldihydromorphine		SC	Rabbit	8% CO2		-7(-3 to -13)
84	HC1	0.2-5.0	SC	Rabbit	8% CO2		-5(-3 to -6)
85	HCI	10-20	SC	Rabbit	676 COZ		-15
86		10-20	SC	Rabbit	90f CO2		-16(-13 to -19)
87		40	SC	Rabbit	8% CO2		+40
88		40	SC	Rabbit	8% CO2		+7
89	Benzyldihydro-	0.01-0.2	SC	Rabbit	678 CO2		-11(-2 to -23)
90	morphinone HCl	0.01-0.2	SC	Rabbit	CO2		-8(+0.4 to -19)
91	morphinone ner	0.5-2.0	SC	Rabbit	COZ		-41(-35 to -47)
92		0.5-2.0	SC	Rabbit	CO2		-37(-32 to -43)
93	Benzylethyl-	10%	Aerosol	Man	502	9	-78
94	methylamine	5%	Aerosol	Man		8	-47
95	Benzylmorphine HCl	0.1-3.0	SC	Rabbit			-3(+2 to -10)
96	Beilbyimorphine irer	0.1-3.0	SC	Rabbit	CO2		+0.2(+4 to -6)
97		5.0-10.0	SC	Rabbit	CO2		-9(-6 to -12)
98		5.0-10.0	SC	Rabbit	CO2		-9(-4 to -14)
99		20	SC	Rabbit	202		+16
100		20	SC	Rabbit	CO ₂		+12
101	Benzylmorphine-	0.5-20.0	SC	Rabbit	100		-10(-4 to -16)
102	6-methyl ether	0.5-20.0	SC	Rabbit	8% CO2		-7(-4 to -11)
103	acid sulfate	50.0	SC	Rabbit	1. 002		+14
104		50.0	SC	Rabbit	8% CO2		
105	Bromocodeinone	0.05-1.0	SC	Rabbit	1,002		-2(+6 to -12)
106	Butallylonal	0.05-1.0	SC	Rabbit	6-10% CO2		-3(+3 to -9)
107	sodium	42	1V	Dog		24	-17
108	Butethal	200 mg	Oral	Man			+3
109		300 mg	Oral	Man			+44
110		400 mg	Oral	Man			+10
111	Caffeine	5-10%	Aerosol	Man		11	+36
112		250 mg	SC	Man	3% CO2		+23
113		250 mg	SC	Man	5% CO2		+52
114		10	1M	Man	Morphine	9	+23
115		25 mg	IM	Man	1	12	+10
116		25 mg	1M	Man	3% CO2		+1
117		25 mg	IM	Man	5% CO2		+12
118		30	IV	Cat	Phenobarb.		+68
119		30	1V	Cat	Chlorbutanol		+31

MAN AND LABORATORY ANIMALS (Continued) value (100%). Dose is expressed in mg/kg, unless otherwise indicated.

Control cc (H) 14 (612 493 450 820 166 6	0 -15 +122 +5 -16 0	Control L/min (J) 0.395	% (K) -32 -60 -88 +167	Control L/min (L)	Drug % (M)	Control cc/min (N)		Control mm Hg (P)	Drug % (Q)	Reference (R)	60
14 (612 - 493 + 450 + 820 + 166 - 6	% (I) 0 -15 +15 +122 +5 -16 0 +10	L/min (J) 0.395	% (K) -32 -60 -88 +167	L/min	%	cc/min	% (O)	mm Hg	%	(R)	
(H) 14 (612 - 493 + 450 + 820 + 166 - 666 + 666	(I) 0 -15 +15 +122 +5 -16 0 +10	(J) 0.395	-32 -60 -88 +167				(O)			10	
14 (612 - 493 + 450 + 820 + 166 - 66	0 -15 +15 +122 +5 -16 0 +10	0.395	-32 -60 -88 +167						1 07	10	
612 493 450 820 166	-15 +15 +122 +5 -16 0 +10	5.62	-88 +167 +3				-27			10	
612 493 450 820 166	-15 +15 +122 +5 -16 0 +10	5.62	+167					1		10	61
612 493 450 820 166	-15 +15 +122 +5 -16 0 +10	5.62	+3							10	62
493 + 450 + 820 + 166 - 66 + 66 + 66 + 66 + 66 + 66 + 6	+15 +122 +5 -16 0 +10									12	63
450 H 820 H 166 -	+122 +5 -16 0 +10									13	64
820 H	+5 -16 0 +10									13	65
820 H	+5 -16 0 +10		17				+3			14	66
166 -	-16 0 +10	4.52	+7							15	67
1	0 +10		- 5	3.5	- 3					16	68
1	+10									13	69
										17	70
										17	71
	- 8							-		17	72
						211	- 3			11	73
			+44					1		26	74
			+16							26	74
			T10							27	76
										27	77
										27	78
			-0.4(-9 to +10)		<u> </u>		+6(+3 to +9)			28	79
			-7(+3 to -16)				, 0(13 (0 17)			28	80
			-13(-10 to -16)				+8(+6to+11)			28	81
			-25(-17 to -38)				/ (28	82
			-1.3(+5 to -9)				+4(+2 to +6)	-		28	83
			-6(+3 to -7)							28	84
į.			-17(-11 to -24)		1		+6(+4 to +8)			28	85
			-21(-16 to -26)							28	86
			+10				+14			28	87
			-12							28	88
			-2(+6 to -11)				+4(+11 to +2)			10	89
			-9(+4 to -23)							10	90
			-22(-14 to -26)				-7(-4 to -11)			10	91
			-43(-40 to -46)							10	92
	+218	4.95	- 29							15	93
695 +	+55	5.6	-14	3.4	+7					16	94
			+5(+2 to +14)				+6(+2 to +8)			28	95
			-0.6(+2 to -10)							28	96
			-9(-7 to -11)				+6(+3 to +9)			28	97
			-13(-11 to -16)							28	98
			-10				+14			28	99
			-8(-1 to -17)				+7(+3 to +14)			28 28	100
			-11(-3 to -25)				11(1510114)			28	101
			+13							28	103
			+17							28	103
			0(+5 to -6)				+9(+2 to +16)			4	105
			-6(+14 to -16)							4	106
220 0)	5.28	-17			150	-13			29	107
							-7			11	108
							+6			11	109
							-7			11	110
631 -	-28	6.45	+8	4.1	-5					16	111
										30	112
										30	113
	-3	4.5	+20							31	114
	-7	7.7	+3							9	115
	+11		+12							9	116
+	+3		+16							9	117
			+47 +40							32 32	118
											119

131. EFFECT OF DRUGS ON PULMONARY FUNCTION: Drug response is expressed in % increase or decrease from the control

	Drug	Dose	Mode of Administration	Species	Premedication	Control	Drug
		170		15	150	breaths/min	%
20	(A)	(B)	(C)	(D)	(E)	(F)	(G)
20	Caffeine (concluded)	30	IV	Dog	Phenobarb.		+14
21		30	IV	Dog	Pentobarb.		
122		200 mg	IV	Rabbit	Tribromo-		+150
1 2 2	Carbashal	0 5 30	Aamagal	Man	ethanol	7	+165
23.	Carbachol	0.5-2%	Aerosol	Man		14	+6
24	Carbon dioxide		Inhaled	Man		14	+10
125		3.5%	Inhaled	Man			+28
26		5.0%	Inhaled	Man		15	+53
27		3.0%	Inhaled	Man		15	T 33
128		5-7%	Inhaled	Man		30	+3
129		2.0%	Inhaled	Cat		30	+3
130		4.0%	Inhaled	Cat			+17
131		6.0%	Inhaled	Cat			
32		8.0%	Inhaled	Cat	0 4 - 3	1.2	+23
33	Carbon monoxide	1.0%	Inhaled	Dog	Amytal	13	+123
	Chlorallyl-nor-codeine	20	80	D. L. C.		3.2	1120
34	chlorhydrate	20	SC	Rabbit		23	+130
35	Chloralose	89.5	IV	Dog		18	-22
136		75	1P	Cat	3/1/ 000	34	-67
1 37		75	IP	Cat	2% COZ		-71
138		75	IP	Cat	4% CO2		-70
139		75	IP	Cat	6-8% CO2		-70
	Chlorprophen-						
140	pyridaminemaleate	0.4 mg	1V	Dog	Pentobarb.	13	-2
141	Codeine sulfate and	20 mg	SC	Man			
142	HC1	60 mg	SC	Man			
43		120 mg	SC	Man			
144		2-5	SC	Rabbit			-21
145		2-5	SC	Rabbit	CO2		-19
146		10-20	SC	Rabbit			-22
147		10-20	SC	Rabbit	CO2		-19
148		30	SC	Rabbit		30	+33
149	Cyclobarbital	200 mg	Oral	Man			+9
150		400 mg	Oral	Man			+9
151	1 0	600 mg	Oral	Man		143	+1
152 153	d-Desoxyephedrine	0.5-1.0	SC	Rat		143	+45
154	HC1	1.5-2.0	SC SC	Rat			+44
155		i contract of the contract of	SC	Rat		75	+19
156		20.0	SC	Guinea pig Guinea pig		7.5	+92
157	Diacetyldihydro-	0.3-1.0	SC	Rabbit			-9
158	hydroxycodeine-B	0.3-1.0	sc	Rabbit	6-10% CO2		-6
159	acid tartrate	3.0-5.0	SC	Rabbit	0-10/0 CO2		-40
160	acid taitrate	3.0-5.0	sc	Rabbit	6-10% CO2		-27
161		10.0-20.0	sc	Rabbit	0-10/0 002		-58
162		10.0-20.0	SC	Rabbit	6-10% CO2		-52
	Diacetyldihydro-	0.05-1.0	SC	Rabbit	0 10/0 002		-11
164	hydroxycodeine-C	0.05-1.0	SC	Rabbit	6-10% CO2		-6
165	acid tartrate	3.0-5.0	SC	Rabbit	101002		- 57
166	acid tartrate	3.0-5.0	SC	Rabbit	6-10% CO2		-43
167		10.0	sc	Rabbit	0 10/0 002		-76
168		10.0	sc	Rabbit	6-10% CO2		-77
169	Diacetyldihydro-	0.1-0.3	SC	Rabbit	10,002		-18
170	morphine HCl	0.1-0.3	SC	Rabbit	CO ₂		-2(0 to -4)
171	mor pinne rier	0.5-2.0	SC	Rabbit	002		-52
172		0.5-2.0	SC	Rabbit	CO2		-46
173		3.0-10.0	SC	Rabbit	202		-81
174		3.0-10.0	SC	Rabbit	CO2		-82
175	Diacetylmorphine HCl	0.01-0.1	SC	Rabbit	202		-28(-8 to -40
176	Diacetylinoi pinne nei	0.01-0.1	SC	Rabbit	CO2		-15
177		0.3-10.0	SC	Rabbit	CO2		-84
2 6 8		0.3-10.0	SC	Rabbit	CO2		-81
178							

Control	Drug	Control	ute Volume Drug	Control	ar Ventilation	Control	Drug	pC Control	Drug	Refer-	
cc	%	L/min		L/min		cc/min		mm Hg	%	ence	
(H)	(1)	(J)	(K)	(L)	(M)	(N)	(O)	(P)	(Q)	(R)	-
_(11)	(1)	(0)	+16	_/_/	1327	12.7	(0)	(-,	141	32	12
			+61							32	12
										33	12
800	-38	5.11	+43	3.75	+8			+		16	12
-000	30	3	1.13	3713						34	12
										34	12
										34	12
609	+120	9.4	+249	7.5	-1	1				35	12
/		''	+360			1				36	12
13	+45	0.382	+50			-	1			37	112
	+188		+197			1				37	1.3
	+380		+459							37	13
	+512		+654							37	, 13
85	-19	1.1	+82			- !				38	13
	- /	1		-		-					-
22	-32	0.510	+55							12	13
231	+5	4.16	-19			137	-17			29	1
11	+56	0.373								37	13
• •	+30	0.515	-62							37	113
	-4		-76							37	113
	-38		-82							37	13
	- 30		- 02	+			-			,	-1
106	+6	1.4	+4							26	14
100	10	1.4	-8	+	-		·			39	14
			-18			1				40	14
		1								40	14
		1	-31				1				14
	+7						- 1			7	
	-3						1			7	14
	+12					1	+31			7	14
	-14									7	14
8	+112	0.242	+186	+			-	+-		12	14
						i	-19			11	14
							+4			11	13
		L					0			11	1 !
2	+7	0.282								49	15
	+19		+70							49	15
	+3(+22 to -16)		+50							49	15
	-15(+9 to -28)		-2(-39 to +49)							49	15
	+15		+145							49	15
			-6				+1(+4 to -5)			4	15
			- 8							4	1
			-26				-2			4	1!
			-26							4	1
			-41				-10			4	16
			- 56				1			4	16
			-4(+5 to -11)				+2			4	1
			-7(+2 to -16)							4	116
			-31				- 4			4	16
			- 45							4	1
			- 55				-24			4	16
			-79							4	16
	+12		-8				+1(+3 to -1)			45	10
	-0.5(+1 to -2)		-2							45	1
	+31		-36				-10			45	1
	1-9		- 50							45	1
	+91		-65				-11(+13 to -2	3)		45	113
	1 / 4		-84					1		45	1
	-7		V 2								11
	-7 +21						-4(+7+0-12)			45	
	+21		-13(+4 to -29)				-4(+2 to -12)			45	
	+21 0(-4 to +2)		-13(+4 to -29) -15							45	11
	+21		-13(+4 to -29)				-4(+2 to -12) -23				17

131. EFFECT OF DRUGS ON PULMONARY FUNCTION: Drug response is expressed in % increase or decrease from the control

	Dose	Mode of Administration	Species	Premedication	Control breaths/min	Drug %
(A)	(B)	(C)	(D)	(E)	(F)	(G)
Diallylbarbituric acid	6.0	Oral	Man			-17
(concluded)	7.0	Oral	Man			+9
6,7-Diethoxy tetra-						
hydroisoquinoline			Cat, dog	Anesthetized		0
1, 2, 3-tri-(β-Di-	0.5 mg	IV	Man	Cyclopropane		
ethylamino-	1.0 mg	IV	Man	Cyclopropane		
ethoxy) benzene	1.5 mg	IV	Man	Cyclopropane		
triethiodide	2.0 mg	1V	Man	Cyclopropane		
(Flaxedil)						
Diethylaminomethyl	10%	Aerosol	Man		11	- 29
benzodioxane	1-30%	Aerosol	Man		9	-21
Ac-2, 2-Diethyl-						
aminomethyl tetra-						
hydronaphthol HCl	50	SC	Rabbit		37	+16
Digitolal	100 mg	IV	Man			
Digitoxin	1.4 mg	IV	Man			
	1.4 mg	1V	Man	CO2		
	2.2 mg	IV	Man			
	2.2 mg	IV	Man	CO ₂		
Dihydro-allo-	5.0-20.0	SC	Rabbit			-21
pseudocodeine acid	5.0-20.0	SC	Rabbit	CO ₂		-21
tartrate	30.0-40.0	SC	Rabbit			-42
	30.0-40.0	SC	Rabbit	CO ₂		- 32
Dihydrocodeine	30 mg	SC	Man			
acid tartrate	30 mg	SC	Man	5% CO2		
	2.0-3.0	SC	Rabbit			-10
	2.0-3.0	SC	Rabbit	CO ₂		-65
						- 30
				CO ₂		-28
			}			-48
				CO ₂		-47
		_				-28
			1	CO2		-19
Dihydrocodeinone				1002		
		SC	à contra de la contra del la contra del la contra del la contra de la contra del			-19
Startiate			1	CO2		-14
		_				-40
				002		- 39
						-63
			1	CO2		- 57
Dihydrocodeinone				302		-11
				8% CO2		-4
enor acceate	l l			370 002		-37
				8% CO2		-30
				070 002		-62
	1			8% CO2		-68
Dihadashadasa			-	070 002		-3(+3 to -10
				6-10% CO2		-4(+4 to -8)
				0-10 % CO2		+3
				6 10% 000		+1
coderne-B				0-10% CO2		
				4 100 00-		-18
				6-10% CO2		-13
				(10# 00		-43
				6-10% CO2		-34
	10.0-20.0	SC	Rabbit	/		-70
	10.0-20.0	SC	Rabbit	6-10% CO2	-	-65
Dihydrohydroxy-	0.1-1.0	SC	Rabbit			-5
		SC	Rabbit	6-10% CO2		-4
codelne-C	0 1-1.0	1	1			
	3.0-10.0	SC	Rabbit			-38
		1	1	6-10% CO ₂		
	(concluded) 6,7-Diethoxy tetrahydroisoquinoline 1,2,3-tri-(β-Diethylaminoethoxy) benzene triethiodide (Flaxedil) Diethylaminomethyl benzodioxane Ac-2,2-Diethylaminomethyl tetrahydronaphthol HCl Digitolal Digitoxin Dihydro-allopseudocodeine acid tartrate Dihydrocodeine	(concluded) 7.0 6, 7-Diethoxy tetrahydroisoquinoline 0.6-2.6 1, 2, 3-tri-(β-Diethylamino-ethoxy) benzene triethiodide (Flaxedil) 1.0 mg Diethylaminomethyl benzodioxane 1.5 mg Ac-2, 2-Diethylaminomethyl tetrahydronaphthol HCl 50 Digitolal 100 mg Digitoxin 1.4 mg 1.4 mg 1.4 mg 1.4 mg 2.2 mg 2.2 mg 2.2 mg 2.2 mg 30.0-40.0 30.0-40.0 30.0-40.0 30.0-40.0 30.0-40.0 30 mg 2.0-3.0 2.0-3.0 2.0-3.0 5.0-10.0 5.0-10.0 5.0-10.0 5.0-30.0 50.0 50.0 Dihydrocodeinone 5 mg bitartrate 0.1-0.5 0.1-0.5 0.1-0.5 0.1-0.5 0.1-0.5 0.1-0.5 0.5-5.0 Dihydrocodeinone 0.1-0.2 enol acetate 0.1-0.2 0.5-2.0 5.0 0.5-2.0 5.0	(concluded) 7.0 Oral 6,7-Diethoxy tetra-hydroisoquinoline 0.6-2.6 IV 1,2,3-tri-(β-Di-qethoxy) benzene 1.0 mg IV 1.0 mg IV 1.0 mg IV 1.5 mg IV 1.5 mg IV 1.5 mg IV 1.5 mg IV 1.5 mg IV 1.5 mg IV 1.5 mg IV 1.5 mg IV 1.5 mg IV 1.5 mg IV 1.5 mg IV 1.5 mg IV 1.5 mg IV 1.5 mg IV 1.6 mg IV 1.7 mg IV 1.8 mg IV 1.9 mg IV 1.9 mg IV 1.9 mg IV 1.9 mg IV 1.0 mg	(concluded) 7.0 Oral Man	(concluded) 7.0 Oral Man 6.7-Diethoxy tetrahydroisoquinoline 1.2.3-tri-(β-Di-qtorisoquinoline 1.2.3-tri-(β-Di-qtorisoquinoline 1.0 mg IV Man Cyclopropane ethoxy) benzene 1.5 mg IV Man Cyclopropane triethiodide (Flaxedil)	Concluded 7.0 Oral Man

/1/ Alveolar.

MAN AND LABORATORY ANIMALS (Continued) value (100%). Dose is expressed in mg/kg, unless otherwise indicated.

Tid	al Volume	Min	ute Volume	Alveola	r Ventilation	O ₂ C	onsumption	pCC)2	Refer-	
Control		Control	Drug	Control	Drug	Control		Control		ence	
cc_	%	L/min	%_	L/min	%	cc/min		mm Hg	%		-
(H)	(1)	(J)	(K)	(L)	(M)	(N)	(O)	(P)	(Q)	(R)	18
							+11 +5			11	18
						 	13			111	- 10
	_									44	18
			-11							78	18
			-35							78	18
			-50							78	18
			-88							78	18
775	+32	8.14	-6							15	18
648	+42	5.73	-8	4.12	- 1					16	18
29	+3	1.069	+20			30	+93			46	18
						241	+2			47	19
			-1							48	19
			-16					42.01	01	48	19
			-1					42.01	+41	48	13
			-30	1			17/12 4 - 10)	42.01	01	48	13
	+6		-17				+7(+3 to +9)			43	10
	0		-21				-5(0 to -9)			43	1
	+22 0		-28 -33				-3(010-9)			43	l'
	U	9.7	-4					-	-	42	1
		16.7	-10							42	2
	+2	16.7	-8				0			43	2
	+4		-3				0			43	2
	+15		-20				0			43	2
	-3		-30							43	2
	+32		-33				+4			43	2
	-7		-51				1		-	43	2
	+43		+4				+40			43	2
	-11		-28				10			43	2
<u>.</u>	- 4 4		-4	<u> </u>		+				39	- z
	+12		1				0			41	2
	-1									41	2
	+15						+9		1	41	2
	-16									41	2
	+71						+14			41	2
	+2									41	_ 2
			-5				+0.2			10	2
			-7							10	2
			-23	1			-8			10	2
			-34							10	2
			-48				-17			10	2
			-76							10	_ 2
			-0.2(+3 to -7)				+3(-9 to +17)			4	2
			-0.5(+15 to -9)							4	_ 2
			+7				+5			4	2
			+6							4	2
			-9				+3			4	2
			-12							4	2
			-33				- 2		1	4	2
			- 42							4	2
			-50				-11			4	2
			-67							4	_ 2
			+6				+3(+9 to -3)			4	2
			-2							4	1
			-30				-3			4	1
			-46							4	2
			-52				- 22			4	2
			-69							4	1

131. EFFECT OF DRUGS ON PULMONARY FUNCTION: Drug response is expressed in % increase or decrease from the control

		7			 	Respira	tory Rate
	Drug	Dose	Mode of	Species	Premedication	Control	Drug
	6		Administration			breaths/min	%
	(A)	(B)	(C)	(D)	(E)	(F)	(G)
238	Dihydrohydroxy-	0.01-0.1	SC	Rabbit			-7
239	codeinone HCl	0.01-0.1	SC	Rabbit	6-10% CO2		- 3
240		0.3-1.0	SC	Rabbit			~ 30
241		0.3-1.0	SC	Rabbit	6-10% CO2		-28
242		3.0-5.0	SC SC	Rabbit Rabbit	6-10% CO2		-73 -76
244		10	SC	Rabbit	0-10% CO2		-84
245		10	SC	Rabbit	6-10% CO2		-94
246	Dihydroisocodeine	30 mg	SC	Man			
247	acid tartrate	30 mg	SC	Man	5% CO2		
248		1.0-2.0	SC	Rabbit			-22
249		1.0-2.0	SC	Rabbit	CO ₂		-12
250		5.0-20.0	SC	Rabbit			- 55
251		5.0-20.0	SC	Rabbit	CO2		-50
252		35.0-50.0	SC	Rabbit	.00		-61 -62
253 254	Dihydromorphine	35.0-50.0 0.1-2.0	SC SC	Rabbit Rabbit	CO2		-02 -25(+1 to -37)
255	HCl	0.1-2.0	SC	Rabbit	COZ		-22
256	.10.	3.0-10.0	SC	Rabbit	002		-56
257		3.0-10.0	SC	Rabbit	CO ₂		- 50
258	Dihydromorphinone	0.01-0.25	SC	Rabbit			-27(-8 to -44)
259	HC1	0.01-0.25	SC	Rabbit	COz		-19(-3 to -39)
260		0.5-10.0	SC	Rabbit			-62
261		0.5-10.0	SC	Rabbit	CO2		-61
262	Dihydropseudo-	50.0-150.0	SC	Rabbit	co.		-7(+20 to -19) -9(-2 to -14)
263	codeine HCl 5,6-Dihydroxy tetra-	50.0-150.0	SC	Rabbit	CO2		-9(-210-14)
264	hydroisoquinoline	0.24-4.5	ıv	Cat, dog	Anesthetized		_
201	6,7-Dihydroxy tetra-	0.21	• •	cat, dog	THE STITE THE CO		
265	hydroisoquinoline	0.24-4.5	IV	Cat, dog	Anesthetized		-
266	Dimenhydrinate	10 mg	1V	Dog	Pentobarb.	11	+10
	5, 6-Dimethoxy tetra-						
267	hydroisoquinoline	1.0-5.1	1V	Cat, dog	Anesthetized		-
2/0	6,7-Dimethoxy tetra-		117		A - 41 - 42 1		
268	hydroisoquinoline Ac-2, 2-Dimethyl-	1.0-5.1	IV	Cat, dog	Anesthetized		-
	aminomethyl tetra-						
269	hydronaphthol HCl	150	SC	Rabbit		35	+9
270	Dimethyl guanidine HCl		SC	Rabbit	Urethane	70	+26
271	Dimethyltoluthionine Cl		IV	Rabbit	Pentobarb.		0
272		0.5-2.0	IV	Rabbit	and		+4
273		5.0-7.5	IV	Rabbit	urethane		+18
274		10.0	IV	Rabbit	Pentobarb. and		-6
275	Dinitrophenol	10.0-20.0	SC	Dog	urethane Pentobarb.	16	+275
276	Dimtrophenoi	10.0-20.0	SC	Dog Rabbit	Morphine	10	+11
277		20.0	SC	Rabbit	Morphine		+96
278		40.0	SC	Rabbit	Morphine		+43
279		20.0	SC	Rabbit	Chloral		+59
280		20.0	SC	Rabbit	Alcohol		+49
281		20.0	SC	Rabbit	Pentobarb.		+36
282		5.0	IM	Rabbit			+6
283		10.0	1M	Rabbit			+8
284 285		20.0-60.0	IM	Rabbit			+23
286	2, 4-Dinitrophenyl-	0.02-0.50	IM SC	Rabbit Rabbit			-15(-2 to -35)
287	morphine HCl	0.02-0.50	SC	Rabbit	8% CO2		-8(-1 to -24)
288		1.0-20.0	SC	Rabbit			-39(-28 to -55)
289		1.0-20.0	SC	Rabbit	8% CO2		-34(-15 to -56)
	Diphenyl guanldine						
290	symm. HCl	1	SC	Rabbit	Urethane	136	+10
291	Ephedrine	5.0-50.0	Oral	Man	24	8	-3
292		0.5	SC	Man	Morphine	7	+28

Tic	dal Volume	Min	ute Volume	Alveol	ar Ventilation	02 0	Consumption	pCC)2		
Control		Control		Contro		Control		Control		Refer-	
cc	%	L/min		L/min		cc/min		mm Hg		ence	
(H)	(1)	(J)	(K)	(L)	(M)	(N)	(O)	(P)	(Q)	(R)	-
(11)	147	(0)	+5	+ \2/	(412)	(21)	+6		(40)	4	238
			-1							4	239
			-20	1			-3			4	240
			-33							4	241
			- 57				- 3			4	242
			-77							4	243
			-62				-15			4	244
			-93				-13			4	245
		9.8	-17					-	-	42	246
		16.3	-25							42	
		10.5	-16								247
	+8						0			43	248
	-2		-14				10			43	249
	+29		-42				-10			43	250
	- 3		- 50							43	251
	+19		- 53				+9			43	252
	- 30		-73							43	253
	+8(-2 to +17)		-19(0 to -31)				+1(0 to +4)			41	254
	0(+10 to -12)		-22							41	255
	+29		- 40				-3(+5 to -10)			41	256
	-4(+5 to -14)		-52							41	257
	+11(+2 to +25)		-21(-7 to -30)				+4(0 to +5)			41	258
	-3(0 to -4)		-21(-6 to -39)							41	259
	+26(+3 to +60)		-52				-2(+5 to -8)			41	260
	-16(-4 to -30)		-67							41	261
	0(+13 to -13)		-8(+5 to -18)				+5(0 to +9)			43	262
	-5(-2 to -7)		-15(-7 to -20)					1		43	263
		i — — — — —									
	_		_							44	264
								-			
	_		_							44	265
124	+10	1.40	+21			 		-		26	266
	1.20		1171			-		-			- 200
	0		0							44	267
											1
	0		0							44	268
										**	- 200
18	+11	0.627	+19			37	+3			46	269
10	111	0.021	117			31	13			5	270
	0						<u> </u>			17	271
	+4										272
										17	1
	+10									17	273
	-20									17	274
147	1221	1.7/	11.000			0/	1.721	-		5.0	255
147	+321	1.76	+1809			86	+731			50	275
			. 22/							6	276
	+107		+306							6	277
	-70		-57							6	278
	+22		+93							6	279
	+68		+150							6	280
	+46		+100							6	281
	-11		-6							51	282
	+43		+49							51	283
	+55		+135							51	284
	+209		+272							51	285
			-2(+2 to -8)				-0.2			28	286
			-6(+5to-25)							28	287
			-21(-6 to -31)				-5.5(-12 to +2)			28	288
			-35(-11 to -57)							28	289
										5	290
738	+15	5.55	+4	3.78	+4					19	291
728	1+1		+29						- 1	31	292
					1						

131. EFFECT OF DRUGS ON PULMONARY FUNCTION: Drug response is expressed in % increase or decrease from the control

			1		The first state of		tory Rate
	Drug	Dose	Mode of	Species	Premedication	Control	Drug
	6		Administration			breaths/min	%
	(A)	(B)	(C)	(D)	(E)	(F)	(G)
293	Ephedrine (concluded)	0.5-1.0	IM	Fox			
294		0.05	IM	Dog			
295		0.25-0.85	IM	Dog			
296	Epinephrine HCl	0.1-1.0%	Aerosol	Man		7	- 30
297		20 µg	IV	Man			
298		160 µg/kg	SC	Fox			
299		160 µg/kg	1P	Fox			
300		5 µg/kg	IM	Dog			
301		10-20 µg/kg	IM	Dog			
302		50 μg/kg	IM	Dog			
303		80 μg/kg	IM	Dog			
304		125 µg/kg	IM	Dog			
305	Ergotamine	0.05	IV	Cat	Chloralose		
306		0.05	IV	Cat	Chloralose		
					and CO2		
307	Ethalolguanidine HCl	5.0	SC	Rabbit	Urethane	40	+20
308	Ether (Diethyl)		lnhaled	Dog		24	+242
309	Ethinamate	1.5 g	Oral	Man		20	- 5
	6-Ethoxy-6-methoxy						
	tetrahydro-						
310	isoquinoline	0.7-3.0	IV	Cat, dog	Anesthetized		0
	6-Ethoxy-7-methoxy						
	tetrahydro-						
311	isoquinoline	0.7-2.4	IV	Cat, dog	Anesthetized		-
312	2-Ethoxy	200	Oral	Cat		45	+18
313	phenanthrene	300	Oral	Cat		48	-8
314	3-Ethoxy	300	Oral	Cat		39	-10
315	phenanthrene	400	Oral	Cat			+8
	6-Ethoxy tetrahydro-						
316	isoquinoline	0.6-2.1	IV	Cat, dog	Anesthetized		-
317	Ethyldihydro-	0.01-0.1	SC	Rabbit	0.00		-10
318	morphinone HCl	0.01-0.1	SC	Rabbit	8% CO2		-9
319		0.2-0.5	SC	Rabbit	0.00		-41
320		0.2-0.5	SC	Rabbit	8% CO ₂		-38
321		1.0	SC	Rabbit	000		-64
322	Ed. 1 11 HOL	1.0	SC	Rabbit	8% CO ₂	160	-65
323	Ethylguanidine HCl	10.0	SC	Rabbit	Urethane	168	+21
324	Ethylmorphine HCl	0.5-20.0	SC	Rabbit	000		-18(+2 to -23)
325	Glycerine	0.5-20.0	SC	Rabbit Man	8% CO2	7	-14(0 to -32) +133
327	Glycerine Guanidine HCl	20 %	Aerosol SC	Rabbit	Urethane		+8
- 1	Hexobarbital	60	IV		Orethane	14	0
329	Histamine	1%	Aerosol	Dog		7	- 55
330	Hordenine sulfate	0.6-1.2	IV	Cat, dog	Anesthetized		0
331	1-3-Hydroxy-N-allyl-	0.0108	IV	Man Man	Theorietized		
332	morphinan	1.0-4.0	IV	Rabbit			
333		10.0	IV	Rabbit			
334	Hydroxycodeinone HCl	0.05-3.0	SC	Rabbit			+5(-0,5 to +14
335	and the state of t	0.05-3.0	SC	Rabbit	6-10% CO2		-1(+6 to -9)
336	1-3-Hydroxy-N-	0.054	IV	Man		10	-2
337	methylmorphinan	0.5-1.0	IV	Rabbit	Pentobarb.		
338	3-Hydroxy-N-methyl-	5 mg	1M	Man		11	-25
339	morphinan	5 mg	IM	Man	CO2		-17
340	hydrobromide	7.5 mg	IM	Man			-6
341		7.5 mg	IM	Man	CO2		-4
342		0.5	1V	Rabbit			-12
343		1.0	IV	Rabbit			-48
		2.0	IV	Rabbit			-76
344		2.0					
		1.5-20.0	IV	Rabbit	Local anesth.		-83
344 345	2-!lydroxy			Rabbit	Local anesth.		-83
344	2-llydroxy phenanthrene			Rabbit	Local anesth.	40	-83
344 345		1.5-20.0	1V		Local anesth.	40	

/1/ Expired.

MAN AND LABORATORY ANIMALS (Continued) value (100%). Dose is expressed in mg/kg, unless otherwise indicated.

Control Drug Control Tida	al Volume	Min	ute Volume	Alveola	r Ventilation	O2 C	Consumption	pCC)2			
Color Colo							Control	Drug	Control	Drug	Refer-	
(H) (J) (J) (K) (L) (M) (N) (O) (P (Q) (R) (S) 52											ence	
1-16(-10 to -23) 52 52 52 52 52 52 52 5											(R)	
+ -14(-1) to -22) 52 52 52 52 52 52 52		, ,								1 0.		293
671												294
671					ì			-14(-11 to -22)				295
1	1 4	+44	4.58	-8	3.35	- 5					16	296
				+73				+32			53	297
1			}					+37			52	298
1						1		+90			52	299
-15												300
13												301
												302
										1		303
												304
			0.816	-48				7.01			1	305
												306
218			2								74	300
218	-								 	-	5	307
	3 -	-31	5.25	+65			127	+27				308
										_		309
											-	- 507
	0	0		0							44	310
					<u> </u>							j
	-	_		_							44	311
					1				1			312
												313
								-			2	314
												315
-6									ļ		-	1 313
-6	-	_		_							44	316
-8 -30 -44 -50 -71 10 10 10 10 10 10 10 10 10 10 10 10 10				-6				+31+2+0-71				317
-30 -44 -50 -71 -22 -10 10 10 10 10 -71 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7					}			13(12(0-1)				318
-44					1			- 7				319
-50								- 1				
-71 10 5 5 28 28 818 -34 5.20 +44 -20 15,16 5 29 975 +67 5.53 -22 3.82 -8 16 -111 59 59 111 59 59 59 111 59 59								22				320
Company								- 22				321
10 15 15 28 28 28 28 28 28 28 2	-			- (1					<u> </u>			322
818 -34				641540 151				(110/124-115)	-	-		323
818 -34 5.20 +44 -20 15,16 239 -23 3.34 -23 995 +67 5.53 -22 3.82 -8 16 16 -29 -11 -44 -44 -29 -11 -57 -59 -57 -59 -59 -44 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>+10(+3 (0 +15)</td> <td></td> <td></td> <td></td> <td>324</td>								+10(+3 (0 +15)				324
239	-	2.4						20		-		325
239 -23 3.34 -23 29 995 +67 5.53 -22 3.82 -8 16 44 44 -5 57 59 59 11 60 61 61 62 62 12 12 12 12	, -	-34	5.20	144				- 20	ļ	-		326
995 +67		23	3 3 4	22	-		-		_			327
					2.02	0						328
-9 -11 +58 -9 -11 +58 -9 -11 +58 -7 -7 -7 -70 -70 -70 -70 -70	1	TO 7	5.53		3.82	- 8						329
-11 +58 -59 -59 -50 -70 -516 +7 -30 +11 -20 -55 -28 -48 -63 -59 -59 -59 -50 -50 -50 -50 -28 -48 -63 -50 -63 -50 -50 -28 -48 -63	-								ļ			330
+58 59 +50 +13(+2 to +27) 4 694 -31 6.6 -32 57 -70 58 58 516 +7 5.5 -20 -91 60 -30 -50 -91 60 -91 60 +11 +2 -35 -28 48 61 61 -48 -63 61 61 61 62 2												331
+5 0 +13(+2 to +27) 4 4 694 -31 6.6 -32 57 -70 516 +7 5.5 -20 -50 451 +41 60 -30 +20 -35 -28 -48 -63 61 61 61 62												332
0								112/12/12/12	-			333
694 -31 6.6 -32 57 516 +7 5.5 -20 451 +41 60 -30 +11 +2 -91 60 +11 -20 -35 +41 60 61 -28 -48 61 61 61 -63 62 2								+13(+2 to +27)				334
-70 516 +7 -30 +11 -20 -35 -38 -38 -38 -38 -38 -38 -48 -63 -63 -50 -50 -50 -91 60 -91 60 61 61 61 61 62		2)							ļ			335
516 +7 5.5 -20 -50 +11 -20 -35 -28 -48 -63 -63 -63 -63 -63 -63 -63 -63 -63 -63	-	- 51	0.0									336
-30 +11 -20 -35 -28 -48 -63 -63 -50 -28 -48 -63 -63									151	1-1-		337
+11									454			338
-20									(n 1	-91		339
-28 -48 -63 -63 -63 -63 -63	+	+11							681	+151		340
-48 -63 61 61 62	-	-20								+41		341
-63 61 62 2												342
62												343
2				-63								344
											62	345
											2	346
											2	347

131. EFFECT OF DRUGS ON PULMONARY FUNCTION: Drug response is expressed in % increase or decrease from the control

	Drug	Dose	Mode of	Species	Premedication	Control	lory Rate Drug
			Administration			breaths/min	%
	(A)	(B)	(C)	(D)	(E)	(F)	(G)
348	6-Hydroxy-tetra- hydroisoguinoline	0.04-4.1	1V	Cat, dog	Anesthetized		_
349	Isocodeine acid	3.0-10.0	SC	Rabbit	Title Builetta eu		-15
350	tartrate	3.0-10.0	SC	Rabbit	CO ₂		-16
351		15.0-50.0	SC	Rabbit	"		- 50
352		15.0-50.0	SC	Rabbit	CO2		-44
353	lsopropyl dihydro-	0.05-0.2	SC	Rabbit			-13
354	morphinone HCl	0.05-0.2	SC	Rabbit	8% CO ₂		-10
355		0.5-2.0	SC	Rabbit	000		-41
356 357	la-manulaninanhuina	0.5-2.0	SC	Rabbit	8% CO2	9	-41
351	Isopropylepinephrine 5-Isopropyl-3-methyl-	0.5-10.0%	Aerosol	Man		7	1-02
358	2-cyclohexen-1-one	200 mg	1M	Man			
359	Lobelin	0.1%	Aerosol	Man		9	-67
360	200001111	10 mg	SC	Man		17	+12
361	Meperidine HCl	100 mg	IV	Man			+15
362		150 mg	IV	Man		12	+8
363		75	SC	Dog		30	-60
364	Methadone	1.25 mg	SC	Man			
365		2.50 mg	SC	Man			
366		5.00 mg	SC	Man			
367		7.50 mg	SC	Man			
	6-Methoxy-7-ethoxy-						
368	tetrahydro- isoquinoline	0.6-2.4	IV	Cat, dog	Anesthetized		_
369	Methoxymethyl-	0.05-1.0	SC	Rabbit	Anesthetized		-5(+1 to -12)
370		0.05-1.0	SC	Rabbit	8% CO2		-4(+2 to -11)
371	uniyar omor piline irer	3.0-20.0	sc	Rabbit	070 002		-24
372		3.0-20.0	SC	Rabbit	8% CO2		-24
373	2-Methoxy	200	Oral	Cat			-16
374	phenanthrene	300	Oral	Cat			+3
375	3-Methoxy	300	Oral	Cat			-7
376	phenanthrene	400	Oral	Cat			+3
	6-Methoxy-tetrahydro-						
377	isoquinoline	0.6-5.3	IV	Cat, dog	Anesthetized		-
	N-Methyl-6, 7-diethoxy						
378	tetrahydro-	0.5.1.4	737	Cat day	A a a the ation and		
379	isoquinoline Methyldihydrocodeine	0.5-1.4	IV SC	Cat, dog Rabbit	Anesthetized	-	-1((+17 to -11)
380	HC1	0.3-10.0	SC	Rabbit	8% CO2		-2(-10 to +8)
381	Methyldihydro-	0.3-5.0	SC	Rabbit	0,0002		-19(-8 to -34)
382	codeinone	0,3-5.0	SC	Rabbit	8% CO2		-19
383		10.0	SC	Rabbit			- 24
384		10.0	SC	Rabbit	8% CO2		-20
385	Methyldihydro	0.2	SC	Rabbit			-10
386	codeinone enol	0.2	SC	Rabbit	8% CO2		-4
387	acetate	0.5-10.0	SC	Rabbit			-23
388	12	0.5-10.0	SC	Rabbit	8% CO2		-19
389	Methyldihydro-	0.2-5.0	SC	Rabbit	99 00		-17
390	morphine HCl	0.2-5.0	SC	Rabbit	8% CO ₂		-10 -48
391 392		10.0-20.0	SC SC	Rabbit Rabbit	8% CO2		- 42
393	Methyldihydro-	4.0	SC	Dog	0,0 002	33	+12
394	morphinone HCl	0.01	SC	Rabbit		33	-4
395	The product of the same of the	0.01	SC	Rabbit	8% CO2		-4
396		0.03-0.3	SC	Rabbit			-27
397		0.03-0.3	SC	Rabbit	8% CO2		-21
		0.5	SC	Rabbit			- 52
		0.5	SC	Rabbit	8% CO2		-57
398 399		0.5	SC	10000014			
398		1.0	SC	Rabbit	8% CO2		-76 -78

Control	al Volume Drug	Control	ute Volume Drug	Control	Drug	Control	onsumption Drug	Control	Drug	Refer-	
cc	%	L/min		L/min	%	cc/min		mm Hg		ence	
(H)	(1)	(J)	(K)	(L)	(M)	(N)	(O)	(P)	(Q)	(R)	
(11)	(2)	(0)	(11)	(2)	(141)	1247	(0)	(-)	(4)	(10)	1
	-		_							44	3
	-3(+4 to -8)	-	-18				-3(0 to -8)	+		7	3
	-4(+6 to -11)		-18							7	3
	+30		-36				-7(0 to -14)			7	3
	-6(0 to -11)		-45							7	3
			-2				+4(+9 to -5)			10	3
			-13							10	3
			-29				-13			10	3
			-48							10	1 3
663	+141	5.51	-23	3.85	- 3					16	1 3
		-									
				1		234	+3	1		47	1 3
	+43	7.87	- 5							15	7 3
	+18	5.12	+31				1			63	_1 3
	-75		-75							65	7 3
519	-18	6.15	-10							66	-
										67	_ :
			+4							39	
			+20			4				39	
			+43							39	
			-12							39	
	-		24.26.4- 51	-			1./			44	4
			-3(+16 to -5)				+6			28	
			-3(+4 to -17)							28	
			-18				+5			28	
			-25	-			+			28	
j										2	
		1						-		2	
										2	
										2	ı
										44	
			-	+				+		77	٦.
	_		_							44	
			-1(+9 to -7)				+2(-3 to +7)			10	٦;
			-3(+15 to -12)				,			10	
			-9			_	+2(-5 to +7)			10	
			-21							10	
			+2				+17			10	
			+83							10	
			-5				-1		1	10	7
			-6							10	
			-16				0(+8 to -10)			10	
			-22							10	
			-5				+3			10	7
			-10							10	
			- 39				-16			10	
		1	-47							10	
										64	
			0				+16			10	
		1	- 5							10	
			-18				- 4			10	
			-23							10	
			-41				-13			10	1
			-62							10	1
			-57				- 29			10	14
			-31				-67			10	

131. EFFECT OF DRUGS ON PULMONARY FUNCTION: Drug response is expressed in % increase or decrease from the control

					d III % Increase (
			Mode of	g .	n 11 11		tory Rate
	Drug	Dose	Administration	Species	Premedication	Control	Drug
	(A)	(D)	101	(D)	(E)	breaths/min (F)	% (C)
	N-Methyl-5, 6-di-	(B)	(C)	(D)	(E)	(F)	(G)
	hydroxy tetrahydro-						
402	isoquinoline	0.6-3.5	IV	Cat, dog	Anesthetized		_
	N-Methyl-6,7-di-						
	hydroxy tetrahydro-						
403	isoquinoline	0.05-3.8	IV	Cat, dog	Anesthetized		~
	N-Methyl-5, 6-di-						
	methoxy tetrahydro-						
404	isoquinoline	0.7-3.9	IV	Cat, dog	Anesthetized		-
	N-Methyl-6,7-di-						
	methoxy tetrahydro-						
405	isoquinoline	0.7-3.9	IV	Cat, dog	Anesthetized		-
	N-Methyl-5-ethoxy-6-						
406	methoxy tetrahydro-	0.7-1.3	IV	Cat day	Amanthaticad		
400	isoquinoline N-Methyl-6-ethoxy-7-	0.7-1.3	1 4	Cat, dog	Anesthetized		-
	methoxy tetrahydro-						
407	isoquinoline	0.9-1.3	IV	Cat, dog	Anesthetized		_
408	Methylguanidine HCl	5.0	SC	Rabbit	Urethane	66	+9
-00	N-Methyl-6-hydroxy				1		
	tetrahydro-						
409	isoquinoline	0.6-3.2	IV	Cat, dog	Anesthetized		-
	N-Methyl-6-methoxy-						
	7-ethoxy tetrahydro-						}
410	isoquinoline	0.9-1.5	IV	Cat, dog	Anesthetized		-
	N-Methyl-6-methoxy-						
	tetrahydro-						
411	isoquinoline	0.6-3.5	IV	Cat, dog	Anesthetized		-
41.2	N-Methyl-tetrahydro-	0505	***				
412	isoquinoline	0.5-9.5	IV SC	Cat, dog	Anesthetized		-34
413	Monoacetyl- dihydromorphine HCl	0.1-1.0	SC	Rabbit Rabbit	CO ₂		- 27
415	diffydrolliorphille ACI	2.0-10.0	SC	Rabbit	COZ		-76
416		2.0-10.0	SC	Rabbit	CO2		-78
417	Monoacetyl-a-iso-	0.0005-0.01	SC	Rabbit	202		-5
418	morphine HCl	0.0005-0.01	SC	Rabbit	8% CO2		+4
419		0.02-0.05	SC	Rabbit	1,, 0,2,		-14
420		0.02-0.05	SC	Rabbit	8% CO2		-11
421		0.1-0.2	SC	Rabbit			- 42
422		0.1-0.2	SC	Rabbit	8% CO2		-37
423		0.5-2.0	SC	Rabbit			- 67
424		0.5-2.0	SC	Rabbit	8% CO2		-71
425	Monoacetyl-	0.01-0.3	SC	Rabbit	00		-31
426	morphine HCl	0.01-0.3	SC	Rabbit	CO2		-23
427		0.5-10.0	SC	Rabbit	CO-		-82
428	Monnhino quifete	0.5-10.0	SC	Rabbit	COZ		- 85
429	Morphine sulfate	16.2 mg 10.0 mg	Oral SC	Man Man			
431		10.0 mg	SC	Man	CO ₂		
432		0.5	IV	Man	202		-33
433		10.0 mg	IV	Man			-9(-1 to -15)
434		10.0 mg	IV	Man	CO2		
435		15.0 mg	IV	Man	5% CO2		
436		15.0-60.0 mg	1V	Man			-2(+4 to -5)
437		75.0-90.0 mg	IV	Man			-17
438		5.0	IV	Rat			- 47
439		6.0	IV	Rabbit	Anesthetized		
440		4.0-32.0	IV	Rabbit			-60
441		0.5	IV	Rabbit			
442		5.0-40.0	SC	Rabbit			-79
443		0.1-0.5	SC	Rabbit	CO2		-9
444	1	0.1-0.5	SC	Rabbit	CO2		-11

/1/ Alveolar. /2/ Arterial.

MAN AND LABORATORY ANIMALS (Continued) value (100%). Dose is expressed in mg/kg, unless otherwise indicated.

ontrol	al Volume				me Minute Volume Alveolar Ventilation of Control Drug Control Drug				Control	onsumption Drug	pCO2 Control Drug		Refer-	
	Drug			L/min						ence				
CC	%	L/min			%	cc/min		mm Hg						
(H)	(1)	(J)	(K)	(L)	(M)	(N)	(O)	(P)	(Q)	(R)				
	_		_							44	40			
				-						11	- 10			
	_		_							44	40			
		1						† 			- 1			
										İ				
	ļ_		_							44	4			
		1									-			
	-		-							44	4			
											7			
	-		0							44	4			
				1							1			
	-		-							44	4			
										5	4			
	0		-	1						44	4			
				1										
			0							4.4	١,			
	-		0			-				44	4			
	_									44	4			
				-						7.1	- 4			
	44		_							44	4			
	+24		-20				- 2			45	4			
	-3		-28							45	4			
	+74		-66				-24			45	4			
	0(+26 to -27)		- 81							45	4			
			+3				+1			3	4			
			+8							3	4			
			-9				+1			3	4			
			-11							3	4			
			- 30	1			-12			3	4			
			- 39							3	4			
			- 57				-17			3	4			
			-76							3	4			
	+22		-18				-2			45	4			
	0 + 7 9		-23 -70				11/1104- 211			45	4			
	+8		-70 -84				-11(+19 to -31)			45 45	4			
	10		-18				~ 5	-		14	4			
			-23				- 3			40,42	4			
			-23							42	4			
			-28							31	4			
	-19		-9							65.66	4			
	- 30		-20						+71	23,65	4			
			-27							23	4			
	-14		-18(-1 to -28)		-23(+1 to -36)		-3(+10 to -7)		+102	21	4			
	-13		-35		-40		-6		+202	21	4			
			-60							70	4			
			-68							58	4			
			-54							59,61	4			
										69	4			
			- 20							07				
	+61		-73							6,14	4			
	+61 +5 +1						+6							

131. EFFECT OF DRUGS ON PULMONARY FUNCTION: Drug response is expressed in % increase or decrease from the control

	Drug	Dose	Mode of Administration	Species	Premedication	Control breaths/min	tory Rate Drug %
	(A)	(B)	(C)	(D)	(E)	(F)	(G)
445	Morphine sulfate	0.75-3.0	SC	Rabbit	\	, - <i>,</i>	-43
446	(concluded)	0.75-3.0	SC	Rabbit	CO ₂		-42
447	(00.1012404)	5.0-10.0	SC	Rabbit			-55
448		5.0-10.0	SC	Rabbit	CO ₂		-63
449	Nalorphine HCl	1.0-5.0 mg	IV	Man	002		-10
450	The state of the s	10.0 mg	IV	Man			-3(+12 to -18
451		5.0 mg	iv	Man	5% CO2		1 (11110 11
152		2.0 mg	iv	Man	7,0002	11	-6
453		2.0 mg	iv	Man	100% Oz	12	- 5
454		2.0 mg	IV	Man	2.8% CO2	13	- 1
155		2.0 mg	IV	Man	4.3% CO2	15	-9
156		30.0	IV	Dog	Pentobarb.		+80
157	Neutral red	0.1	IV	Rabbit	Pentobarb.		+1
158	(2-Methyl, 3-amino,	0.5	IV	Rabbit	and		+41
159	6-dimethylamino-	1.0-10.0	iv	Rabbit	urethane		+37
237	phenazine HCl	1.0-10.0	14	Taboit	uremane		1737
160	Neutral violet	0.1-2.0	IV	Rabbit	Pentobarb.		+4
161	(2-Dimethylanilino,	5.0-10.0	iv	Rabbit	and		-5(+7 to -16)
101	amino, 3-amino, 6-	3.0-10.0	1 4	TOUT	urethane		-3(17 to -107
	dimethyl amino-				urethane	}	
	phenazine HCl						
162		250.0 mg	SC	Man			
163	Nikethamide	7.5	IM	Man	Morphine		+26
-	Norepinephrine	20 μg	IV	Man	Morphine		1720
			IV	Rabbit	Urethane	-	+1
165	β-Oxybutyrate sodium β-Oxybutyric acid	10 cc 0.10 N 20 cc 0.15 N	IV	Rabbit	Urethane		+28
	p-Oxybutyric acid		lV lV	Rabbit	Urethane		+18
467		10 cc 0.10 N					
168	0	20 cc 0.10 N	IV	Rabbit	Urethane		+22
469	Oxygen	100%	Inhaled	Man			+1
470		33%	Inhaled	Man			
471		8-100%	Inhaled	Man			-
172	Papaverine HCl	0.4-1.0	IV	Cat, dog	Anesthetized	42	±
173	Pentobarbital sodium	10.0	lP	R. monkey		43	- 5
174		30.0	IV	Dog	2# 00		2.0
175		35.0	IP	Cat	2% CO2		- 38
176		35.0	IP	Cat	4-8% COz		- 37
177		200	SC	Rabbit			- 56
178		5.0	IV	Rabbit fetus			-54
179		10.0	IV	Rabbit fetus			-62
480	Pentylenetetrazol	7-100 mg	SC	Man			
181		100 mg	SC	Man			
182		10%	Aerosol	Man			+150
483		5.0	IM	Man	Morphine		+50
484		5.0-7.0	IV	Dog	Alcohol		+4500
185	Peptone	20%	Aerosol	Man			+59
186	Phenobarbital	3.1-8.0	Oral	Man		10	+6
87	Phenyldihydro-	0.01-0.05	SC	Rabbit			-7
88	morphinone HCl	0.01-0.05	SC	Pabbit	8% CO2		-1
89		0.1-0.2	SC	Rabbit			-13
190		0.1-0.2	SC	Rabbit	8% CO ₂		-16
191		0.5-1.0	SC	Rabbit			-45
192		0.5-1.0	SC	Rabbit	8% CO2		-42
193		2.0	SC	Rabbit			-72
194		2.0	SC	Rabbit	8% CO2		-73
	Phenyl-methyl-						
195	aminopropane	5%	Aerosol	Man		6	-61
496	Phosgene	1.38 mg	IV	R. monkey			-23

/1/ Arterial. /2/ Alveolar.

MAN AND LABORATORY ANIMALS (Continued) value (100%). Dose is expressed in mg/kg, unless otherwise indicated.

	dal Volume Drug	Control	ute Volume Drug	Control	r Ventilation Drug		Drug	Control	D	Kefer-
сс	%	L/min	%	L/min		cc/min		mm Hg	%	
(H)	(1)	(J)	(K)	(L)	(M)	(N)	(O)	(P)	(Q)	(R)
	+23	, , ,	-32		, , , ,		0			41
	+1		-41							41
	+20		-46				-9			41
	-20		-70				'			41
	-30		-28		- 32		+33		+61	21
			-45(-48 to -42)							21,22
	-36(-15 to -58)				-44		+54			
		, _	-25							23
552	+3	6.3	- 3							24
520	+2	6.3	- 3							24
1031	-25	13.1	-26							24
1246	- 25	18.7	-31							24
	- 5		+160				+27			25
	0									17
	+3									17
	-22									17
								1		
	+5									17
	+8(-6 to +17)									17
	10(-010+17)									Y 4
								1		
					1		+1			47
	+10		+38							31
			+49				+8			53
	+2		+4						-Z ¹	1
	+35		+80						-101	
	+21		+43						-101	
	+46		+79						+61	
	+10		+12(+7 to +16)							36,71,72
			-8						+12	
			+							74
	±		±							44
/ 0		2 / 4						1		
60	- 5	2.64	-10						1	75
									+471	
	-17		-48							37
	-49		-68							37
	+42		-38							6
										77
										77
			-7							39
						264	- 5			47
	+106		+415			201				15
	-16		+26							31
	-10		T20			1				
	2.4		1.5					-		68
	-34		+5							15
							+4(-7 to +14)			11
			-3				-0.5			10
			0							10
			- 4	1			+6			10
			-16							10
			-32				-5			10
			-45							10
			- 56				-26			10
			-76				53			10
			-10	-						10
712	1120	4.40	1.4	3.05	1.7.4					16
713	+129	4.48	-14 -51	2.85	+14					16 75

131. EFFECT OF DRUGS ON PULMONARY FUNCTION: Drug response is expressed in % increase or decrease from the control

		1		•	1	Pacnina	tony Pata
	Drug	Dose	Mode of	Species	Premedication	Control	tory Rate Drug
	Di ug	Dosc	Administration	Species	T C III C GI C G I C G I	breaths/min	%
	(A)	(B)	(C)	(D)	(E)	(F)	(G)
497	Picrotoxin	0.3	lV	Dog	Phenobarb.		-13
498		0.6	ıv	Cat	Phenobarb.		+6
499		0.7	1V	Cat	Phenobarb. and		+10
					morphine		
500		0.7	IV	Cat	Chlorbutanol		+7
501	Pilocarpine	5.3%	Aerosol	Man		53	+190
	Ac-2, 2-Piperidino						
	methyltetra-hydro-						
502	naphthol HCl	100	SC	Rabbit		44	+27
503	Plperidione	105 mg	Oral	Man			
504	Piperoxan HCl	20%	Aerosol	Man		8.5	+76
505	(F-933)	0.1-30%	Aerosol	Man		9.5	-9
506	Placebo	2 cc	1V	Man		12	+9
507		2 cc	1V	Man			
508		2 cc	SC	Man			
509		2 cc	SC	Man	5% CO2		
510		H ₂ O	Aerosol	Man			+16
511	Prisilidene HCl	60 mg	SC	Man			-15
512	Probarbital sodium	100 mg	Oral	Man			+37
513		200 mg	Oral	Man			+12
514		300 mg	Oral	Man			-11
515		400 mg	Oral	Man			+18
516	Procaine	1%	Aerosol	Man		6	-58
517		2%	Aerosol	Man		6	- 29
518	Pseudocodeine HCl	20.0-40.0	SC	Rabbit			0
519		20.0-40.0	SC	Rabbit	CO2		+4
520		60.0-80.0	SC	Rabbit			-4
521		60.0-80.0	SC	Rabbit	CO2		-4
522		100.0-300.0	SC	Rabbit			-15
523		100.0-300.0	SC	Rabbit	CO2		- 20
524	Pyribenzamine	10 mg	1V	Dog	Pentobarb.		+60
525	7	100 mg	1V	Dog	Pentobarb.		
526	Pyruvic acid	0.15 cc	IV	Dog	Pentobarb.		+48
	cyanohydrin	0.1 M/kg	***		l n		. 50
527		0.15 cc	IV	Cat	Phenobarb.		+50
528	C1	0.1 M/kg	01	Man			
529	Scopolamine	0.65 mg	Oral			20	-3
530	Seconal sodium Sodium acetate	300 mg	Oral IV	Man Rabbit	Urethane	20	0
531		1-10%		Man	Orethane		-41
532	Sodium nitrite Sodium phosphate	10%	Aerosol Aerosol	Man		13	-35
533	Sodium phosphate Sodium salicylate	2 g	IV	Man		8	+1
534	Sodium Sancylate	2 g	1V	Man	3-5% CO2	Ů	+12
535		3 g	Oral	Man	3 70 002		+17
536		3 g	Oral	Man	3-5% CO2		+30
537		100 g	IV	Dog	Pentobarb.	10	+25
	Strychnine nitrate	1-2 mg	SC	Man	- circoda b.		
	Tetrahydro-	····g	1				
539	isoquinoline HCl	0.55-4.8	IV	Cat, dog	Anesthetized		_
540	Thiopental	500 mg	1V	Dog			
541		20-30	IV	Dog			- 45
542		40	IV	Dog			-80
543		100	IV	Monkey			+76
544		20	1V	Cat			- 82
545		20	IV	Rabbit			-75
546	Tribromoethanol	710 mg	Rectal	Rabbit			-50
547	Trichloroacetaldehyde	500-1000	SC	Rabbit			-19
548	Triphenylguanidine HCl		SC	Rabbit	Urethane		+9
		4-	1				

/1/ Arterial. /2/ Alveolar.

MAN AND LABORATORY ANIMALS (Continued) value (100%). Dose is expressed in mg/kg, unless otherwise indicated.

Control	al Volume	Control	ute Volume Drug	Control	Drug	Control	onsumption Drug	pCO Control	Drug	Refer-	
cc	Drug %	L/min		L/min	%	cc/min		mm Hg	%	ence	
(H)	(I)	(J)	(K)	(L)	(M)	(N)	(O)	(P)	(Q)	(R)	
(П)	+15		+1	(2)	(101)	12.7	107	1-1-		79	14
	+24		+32							79	4
	+23		+35							7 9	4
	723		733							17	
	. 50									70	١,
	+59		+70							79	- :
821	-47	4.28	+44	3.07	+7	-				16	_] :
							}				ı
3	-8	0.576	+16			32	+50			46	
	-7									39	
900	-9	7.65	+62	1						15	1
661	+32	6.22	-5	4.36	- 2					16	1
	-9		+1.5(+1 to +2)							23,66	7
			- 3			1				40	
			-1	:						42	
			- 5							42	
	-12		-2		-3					16	1
	-11	 		+	- 3	-				65	
	- 30		-35				- 8			11	4
											1
							+2			11	1
							-16			11	
							-6			11	4
725	+52	4.35	-37				Ì	1		15	
	+104	4.62	- 20	3.25	-7					16	
	-1		- 1				-2			7	
	+1		+5							7	
	- 3		-6				+5			7	1
	o		-4							7	
	-2		-18			ļ	-7			7	
	-13		-32			· ·	'			7	
	-14		+37	-						26	1
	-14		1							26	
			+82			-					
	+13		+66							80	
	+48		+120							80	
						ļ					4
		<u> </u>	+14				+2			14	
										55	
	- 5_		- 4						01	1	
	+56		-15		+2					15,16	_
	+74		+13							15	
		6.33	+15	239	+10			40.92	-52	81	
			+15						-42	81	-
			+18						-72	81	1
			+25						-72	81	-
		2.01		127	170					81	
		2.01	+65	127	+70				-01	47	-
				245	U					21	4
										4.4	
	0		-						1.00.7	44	4
					-42				+292		
										83	
										83	
										83	
										83	
										83	
		1		+	-	1	 			33	+
		1	-16	+					-	6	4
			-10	1		-				5	4

131. EFFECT OF DRUGS ON PULMONARY FUNCTION: Drug response is expressed in % increase or decrease from the control

			Mode of			Respira	tory Rate
	Drug	Dose Administra		Species	Premedication	Control breaths/min	Drug %
	(A)	(B)	(C)	(D)	(E)	(F)	(G)
549	d-Tubocurarine	0.23	IV	Man	Cyclopropane		
550	_	0.11	IV	Man	Ether		
551	Urethane	1000	1P	Cat			0
552		1000	IP	Cat	2-8% CO2		+9(+6 to +15)

Contributors: (a) Huggins, R. A., (b) Deavers, S.

References: [1] Gollwitzer-Meier, K., Arch. exp. Path., Lpz. 125:278, 1927. [2] Eddy, N. B., J. Pharm. Exp. Oswald, H. R., ibid 73:229, 1941. [5] Alles, G. A., ibid 28:251, 1926. [6] Tainter, M. L., and Cutting, W. C., Kough, R. H., Gould, R. A., and Schmidt, C. F., ibid 114:461, 1955. [9] Richmond, G. H., J. Appl. Physiol. 2:16, M. Y., and Leake, C. D., ibid 40:215, 1930. [12] Rikl, A., Arch. exp. Path., Lpz. 127:173, 1928.

Anesthesiology 3:24, 1942. [15] Dautrebande, L., and Stalport, J., Arch. internat. pharm. dyn., Par. 76:213, 1948. T. J., and Leitch, J. L., ibid 93:341, 1953. [18] Altschule, M. D., and Iglauer, A., J. Clin. Invest. 19:497, 1940. Par. 68:451, 1942. [20] Dautrebande, L., Phillippot, E., Charlier, R., Dumoulin, E., and Nogarede, F., ibid 1957. [22] Salomon, A., Marcus, P. S., Herschfus, J. A., and Segal, M. S., Am. J. M. 17:214, 1954. [23] N. England J. M. 249:886, 1953. [25] Vivante, A., Kao, F. F., and Belford, J., J. Pharm. Exp. Ther. 111:436, and Szebehelyi, J., Arch. internat. pharm. dyn., Par. 76:397, 1948. [28] Sumwalt, M., Wright, C. I., and Miller, 259:177, 1954. [30] Richmond, G. H., Fed. Proc. 8:327, 1949. [31] Handley, C. A., and Ensberg, D. L., Deut. med. Wschr. 54:1044, 1928. [34] Loeschcke, H. H., and Wendel, H., Arch. exp. Path., Lpz. 215:241, 1952. Sc., Lond. 13:321, 1954. [37] Wang, S. C., and Nims, L. F., J. Pharm. Exp. Ther. 92:187, 1948. [38] Von [39] Trendelenburg, U., Acta physiol. scand. 21:174, 1950. [40] Lasagna, L., and Beecher, H. K., J. Pharm. Exp. G. M., Sphire, R. D., Isaacs, J. P. and Beecher, H. K., N. England J. M. 254:877, 1956. [43] Wright, C. I., J. and Barbour, F. A., ibid 54:25, 1935. [46] Woods, G. G., and Eddy, N. B., ibid 48:175, 1933. [47] Liljestrand, 125:80, 1955. [49] Blume, W., and Zoliner, R., Arch. exp. Path., Lpz. 202:21, 1943. [50] Hall, V. E., Field, J., Cutting, W. C., J. Pharm. Exp. Ther. 48:410, 1933. [52] De Moerloose, J., Arch. internat. pharm. dyn., Par. 67:1, scand. 15:198, 1948. [55] Gruber, C. M., Jr., Kohlstaedt, K. G., Moore, R. B., and Peck, F. B., Jr., J. Pharm. [57] Thomas, D. V., and Tenney, S. M., J. Pharm. Exp. Ther. 113:250, 1954. [58] Yim, G. K., Keasling, H. H., ibid 115:350, 1955. [60] Eckenhoff, J. E., Helrich, M., Hege, M. J., and Jones, R. E., ibid 113:332, 1954. [61] 78:808, 1951. [63] Marshall, W. R., Arch. Int. M. 42:180, 1928. [64] Epling, G. P., and Rankin, A. D., Am. J. [66] Loeschcke, H. H., Sweel, A., Kough, R. H., and Lambertsen, C. J., J. Pharm. Exp. Ther. 108:376, 1953. [68] McCrea, F. D., and Taylor, H. M., ibid 68:41, 1940. [69] Gruninger, U., Arch. Exp. Path., Lpz. 126:77, Soley, M. H., Proc. Soc. Exp. Biol. 44:418, 1940. [72] Shephard, R. J., J. Physiol. 127:498, 1955. [73] 149:277, 1947. [75] Karel, L., and Weston, R. D., Proc. Soc. Exp. Biol. 61:291, 1946. [76] Susking, M., and [78] Artusio, J. F., Jr., Marbury, B. E., and Crews, M. A., Ann. N. York Acad. Sc. 54:512, 1951/52. [79] E. K., Jr., and Rosenfeld, M., ibid 59:222, 1937. [81] Tenney, S. M., and Miller, R. M., Am. J. M. 19:498, 1955. P. A., French, D. M., and Rhodes, C., J. Pharm. Exp. Ther. 98:207, 1950. [84] Gruber, C. M., ibid 60:143, 1937.

MAN AND LABORATORY ANIMALS (Concluded)

value (100%). Dose is expressed in mg/kg, unless otherwise indicated.

Tid	al Volume	Min	ute Volume	Alveola	r Ventilation	O ₂ Co	onsumption	pCC)2	Refer-	
Control	Drug	Control	Drug	Control	Drug	Control	Drug	Control	Drug		
cc	%	L/min	%	L/min		cc/min	%	mm Hg	%	ence	
(H)	(1)	(J)	(K)	(L)	(M)	(N)	(0)	(P)	(Q)	(R)	
			-70							78	549
			-70							78	550
	-13		-13							37	551
			-15							37	552

Ther. 51:75, 1934. [3] Sumwalt, M., Oswald, H. R., and Lush, H. A., ibid 73:274, 1941. [4] Sumwalt, M., and ibid 49:187, 1933. [7] Wright, C. I., ibid 51:327, 1934. [8] Strond, M. W., Ill, Lambertsen, C. J., Ewig, J. H., 1949. [10] Sumwalt, M., and Oswald, H. R., J. Pharm. Exp. Ther. 73:258, 1941. [11] Anderson, H. H., Chen, [13] Severinghouse, J. W., and Stupfel, M., J. Appl. Physiol. 8:81, 1955. [14] Wangeman, C. P., and Hawk, M. H., [16] Dautrebande, L., Philippot, E., Charlier, R., Dumoulin, E., and Nogarede, F., ibid 68:117, 1942. [17] Haley, [19] Dautrebande, L., Philippot, E., Charlier, R., Dumoulin, E., and Nogarede, F., Arch. internat. pharm. dyn., 68:247, 1942. [21] Huggins, R. A., Spencer, W. A., Geddes, L. A., Deavers, S., and Moyer, J. H., ibid 111:275, Lasagna, L., and Beecher, H. K., J. Pharm. Exp. Ther. 112:356, 1954. [24] Tenney, S. M., and Mithofer, J. C., 1954. [26] Burkhardt, W. L., Eastman, B. R., and Hale, H. B., J. Appl. Physiol. 3:29, 1950. [27] Fabinyi, M., A. T., J. Pharm. Exp. Ther. 73:246, 1941. [29] Brendel, W., Koppermann, E., and Thauer, R., Pflügers Arch. Anesthesiology 6:561, 1945. [32] Le Messurier, D. H., J. Pharm. Exp. Ther. 57:458, 1936. [33] Herzberg, M. H., [35] Holman, J., and Shire, G. T., Am. Heart. J. 37:1101, 1949. [36] Prince, F. S., and Westlake, E. K., Clin. Oettingen, W. F., Donahue, D. D., Valaer, P. J., and Miller, J. W., Pub. Health Bull. 274:1, 1941. Ther. 112:306, 1954. [41] Wright, C. I., and Barbour, F. A., ibid 53:34, 1935. [42] Gravenstein, J. S., Smith, Pharm. Exp. Ther. 51:343, 1934. [44] Fassett, D. W., and Hjort, A. M., ibid 63:253, 1938. [45] Wright, C. 1., G., and Nylin, G., Acta physiol. scand. 1:328, 1940. [48] Riggert, H., and Schwab, M., Zschr. ges. exp. Med. II, Sahyun, M., Cuttlng, W. C., and Tainter, M. L., Am. J. Physiol. 106:432, 1933. [51] Tainter, M. L., and 1942. [53] Whelan, R. F., and Young, L. M., Brit. J. Pharm. 8:98, 1953. [54] Liljestrand, A., Acta physiol. Exp. Ther. 112:480, 1954. [56] Albers, C., Brendel, W., and Usinger, W., Arch. exp. Path., Lpz. 226:278, 1955. Gross, E. G., and Mitchell, C. W., ibid 115:96, 1955. [59] Miller, J. W., Gilfoil, T. M., and Shideman, F. E., Randall, L. O., and Lehmann, G., ibid 99:163, 1950. [62] Halasey, T. G., and Dille, J. M., Proc. Soc. Exp. Biol. Vet. Res. 15:338, 1954. [65] Orkin, L. R., Egge, R. K., and Rovenstine, E. A., Anesthesiology 16:699, 1955. [67] Winter, C. A., Orahovats, P. D., Flataker, L., Lehman, E. G., and Lehman, J. T., ibid 111:152, 1954. 1927. [70] Cook, L., Navis, G., and Fellows, E. J., J. Pharm. Exp. Ther. 112:473, 1954. [71] Shock, N. W., and Loeschcke, G. C., Pflügers Arch. 257:349, 1953. [74] Dripps, R. D., and Comroe, J. H., Jr., Am. J. Physiol. Rahn, H., J. Appl. Physiol. 7:59, 1954. [77] Drelsbach, R., and Snyder, F. F., J. Pharm. Exp. Ther. 79:250, 1943. Marshall, E. K., Jr., Walzl, E. M., and Le Messurier, D. H., J. Pharm. Exp. Ther. 60:472, 1937. [80] Marshall, 82] Ament, R., Suskind, M., and Rahn, H., Proc. Soc. Exp. Biol. 70:401, 1949. [83] Booker, W. M., Molano, [85] Tomashefki, J. F., Chinn, H. l., and Clark, R. T., Jr., Am. J. Physiol. 177:451, 1954.

132. RESPIRATORY ACTION OF DRUGS INFLUENCING AFFERENT END-ORGANS: CAT, DOG, RABBIT Drugs influencing baroreceptors have not been included in this table.

i.v. = intravenous; i.c.a. = intracarotid artery; i.c.b.a. = intracarotid-body artery; rt.at. = right atrium.

Sodium mo Adenosine Adenosine Potassium Citrate (so Veratrum Veratridin Veratrine Antichollnes- terases Tetra-ethy Diisoproppo fluoride Caffeine	cyanide Ifide ophenol ³ accetic acid ono-iodo-acetate triphosphate (chloride) odium)	Dog Cat Dog Cat Dog Cat Dog Cat Dog Cat Dog Cat Dog Cat Dog Cat Cat Cat Dog Cat Dog Cat Dog Cat Dog Cat Dog Cat Dog Cat Dog Cat Dog Cat Dog Cat Dog Cat Dog Cat Dog Cat Dog Cat Dog Cat Dog Cat Dog Cat Dog Cat Dog Cat	Dose and Route (D) ody Chemoreceptors 0.1-0.2 mg i.c.a. 0.1 mg i.v. 0.5 mg i.c.a. 1 mg i.v. 0.1-0.5 mg i.c.a. 2-10 µg i.c.b.a. 1-2 mg i.c.a. 0.02% infused i.v. 1-2 mg i.c.a. 0.4 mg i.c.a. 0.4 mg i.c.a. 3-7 x 10-4% perfused 2.0 mg i.c.a. 1-10 mg i.c.a. 1.2-10 mg i.c.a. 1.2-10 mg i.c.a. 1.2-200 µg i.c.a. 125-25 mg i.c.a.	End-organ Response (E) Stimulation Stimulation Stimulation Stimulation Stimulation Stimulation Stimulation	Respiratory Response (F) Stimulation Stimulation Stimulation Stimulation Stimulation Stimulation Stimulation Stimulation Stimulation Stimulation	ence (G) 1 2 1 2 3 4,5 1 2 1 6 7 8 4 7 9,10
Ganglionic stimulants Ganglionic stimulants Metabolic inhibitors and stimulants Mono-iodo Sodium mod Adenosine lons Veratrum Veratridin Veratridin Veratrine alkaloids Antichollnes- terases Tetra-ethy Diisoproppo fluoride Caffeine? Coniine Ethyl alcol Homo-ison Sodium mod Adenosine Citrate (so	Drugs Influencing line ² cyanide Iffide cophenol ³ cacetic acid cno-iodo-acetate triphosphate (chloride) codium)	Carotid-b Dog Cat Dog Cat Dog Cat Dog Cat Dog Cat Dog Cat Dog Cat Dog Cat Dog Cat Cat Dog Cat Dog Cat Dog Cat Dog Cat Dog Cat Dog Cat Dog Cat Dog Cat Dog Cat Dog Cat Dog Cat Dog Cat Dog Cat Dog Cat Dog Cat Dog Cat Dog Cat	ody Chemoreceptors 0.1-0.2 mg i.c.a. 0.1 mg i.v. 0.5 mg i.c.a. 1 mg i.v. 0.1-0.5 mg i.c.a. 2-10 µg i.c.b.a. 1-2 mg i.c.a. 0.02% infused i.v. 1-2 mg i.c.a. 0.4 mg i.c.a. 3-7 x 10 ⁻⁴ % perfused 2.0 mg i.c.a. 1-10 mg i.c.a. 1.2-10 mg i.c.a.	Stimulation Stimulation Stimulation Stimulation Stimulation Stimulation Stimulation	Stimulation Stimulation Stimulation Stimulation Stimulation Stimulation Stimulation Stimulation Stimulation	(G) 1 2 1 2 3 4,5 1 2 1 6 7 8 4 7
Ganglionic stimulants Acetylchol Potassium Sodium sul 2,4-Dinitr Sodium mo Adenosine Potassium Adenosine Potassium Mono-iodo Sodium mo Adenosine Potassium Citrate (so Veratrum alkaloids Veratrine Eserine sa Neostigmir Tetra-ethy Diisopropo fluoride Caffeine? Coniine Ethyl alcol Homo-ison 5-Hydroxy Isolobinine Papayerine	cyanide Ifide ophenol ³ accetic acid ono-iodo-acetate triphosphate (chloride) odium)	Dog Cat Dog Cat Dog Cat Dog Cat Dog Cat Dog Cat Dog Cat Dog Cat Cat Cat Dog Cat Dog Cat Dog Cat Dog Cat Dog Cat Dog Cat Dog Cat Dog Cat Dog Cat Dog Cat Dog Cat Dog Cat Dog Cat Dog Cat Dog Cat Dog Cat Dog Cat Dog Cat	0.1-0.2 mg i.c.a. 0.1 mg i.v. 0.5 mg i.c.a. 1 mg i.v. 0.1-0.5 mg i.c.a. 2-10 µg i.c.b.a. 1-2 mg i.c.a. 0.02% infused i.v. 1-2 mg i.c.a. 0.4 mg i.c.a. 0.4 mg i.c.a. 3-7 x 10 ⁻⁴ % perfused ⁴ 2.0 mg i.c.a. 1.2-10 mg i.v. 20-200 µg i.c.a.	Stimulation Stimulation Stimulation Stimulation Stimulation Stimulation	Stimulation Stimulation Stimulation Stimulation Stimulation Stimulation Stimulation	2 1 2 3 4,5 1 2 1 6 7 8 4
Ganglionic stimulants Acetylchol Potassium Sodium sul 1, 4-Dinitr Sodium mo Adenosine Potassium Mono-iodo Sodium mo Adenosine Potassium Citrate (so Veratrum alkaloids Veratridin Antichollnes- terases Tetra-ethy Diisopropo fluoride Caffeine? Coniine Ethyl alcol Homo-ison Ethyl alcol Homo-ison Sodium sul 2, 4-Dinitr Adenosine Potassium Veratridin Eserine sa Neostigmir Caffeine? Coniine Ethyl alcol Homo-ison 5-Hydroxy Isolobinine	cyanide Ifide ophenol3 accetic acid ono-iodo-acetate triphosphate (chloride) odium)	Cat Dog Cat Dog Cat Dog Cat Dog Cat Dog Cat Dog Cat Dog Cat Cat Dog Cat	0.1 mg i.v. 0.5 mg i.c.a. 1 mg i.v. 0.1-0.5 mg i.c.a. 2-10 µg i.c.b.a. 1-2 mg i.c.a. 0.02% infused i.v. 1-2 mg i.c.a. 0.4 mg i.c.a. 0.4 mg i.c.a. 3-7 x 10-4% perfused 2.0 mg i.c.a. 1-10 mg i.c.a. 1.2-10 mg i.v. 20-200 µg i.c.a.	Stimulation Stimulation Stimulation Stimulation Stimulation Stimulation	Stimulation Stimulation Stimulation Stimulation Stimulation Stimulation Stimulation	2 1 2 3 4,5 1 2 1 6 7 8 4
Ganglionic stimulants Ganglionic stimulants Acetylchol Potassium Sodium sul 2,4-Dinitr 3 Mono-iodo Sodium mo Adenosine Potassium Citrate (so Veratrum alkaloids Veratridin galkaloids Veratridin Eserine sa Neostigmir Caffeine? Coniine Ethyl alcol Homo-ison 5-Hydroxy Isolobinine Papaverine	cyanide Ifide cophenol ³ pacetic acid cono-iodo-acetate triphosphate (chloride) odium)	Dog Cat Dog Cat Dog Cat Dog Cat Dog Cat Dog Cat Dog Cat Dog Cat Cat Dog Cat Dog Cat Dog Cat Dog Cat Dog Cat Dog Cat Dog Cat Dog Cat Dog Cat Dog Cat Dog Cat Dog Cat Dog Cat	0.5 mg i.c.a. 1 mg i.v. 0.1-0.5 mg i.c.a. 2-10 µg i.c.b.a. 1-2 mg i.c.a. 0.02% infused i.v. 1-2 mg i.c.a. 0.4 mg i.c.a. 0.4 mg i.c.a. 3-7 x 10-4% perfused 2.0 mg i.c.a. 1.210 mg i.c.a. 1.2-10 mg i.v. 20-200 µg i.c.a.	Stimulation Stimulation Stimulation Stimulation Stimulation Stimulation	Stimulation Stimulation Stimulation Stimulation Stimulation Stimulation	1 2 3 4,5 1 2 1 6 7 8 4 7
4 stimulants Acetylchol Potassium Metabolic inhibitors and stimulants Mono-iodo. Sodium mono-iodo.	cyanide Ifide Tophenol ³ Dacetic acid Dron-iodo-acetate triphosphate (chloride) Ddium) December 1	Cat Dog Cat	1 mg i.v. 0.1-0.5 mg i.c.a. 2-10 μg i.c.b.a. 1-2 mg i.c.a. 0.02% infused i.v. 1-2 mg i.c.a. 0.4 mg i.c.a. 0.4 mg i.c.a. 3-7 x 10-4% perfused 4 2.0 mg i.c.a. 1-10 mg i.c.a. 1.2-10 mg i.c.a.	Stimulation Stimulation Stimulation Stimulation Stimulation	Stimulation Stimulation Stimulation Stimulation Stimulation Stimulation	2 3 4,5 1 2 1 6 7 8 4 7
Acetylchol Acetylchol Potassium Metabolic inhibitors and stimulants Mono-iodo Sodium mo Adenosine lons Veratrum Alkaloids Antichollnes- terases Tetra-ethy Disopropo fluoride Caffeine? Contine Ethyl alcoh Homo-ison Ethyl alcoh Homo-ison Sodium mo Adenosine Potassium Veratridin Eserine sa Neostigmir Caffeine? Coniine Ethyl alcoh Homo-ison Sodium mo Adenosine Potassium Citrate (so Veratridin Eserine sa Neostigmir Fetra-ethy Disopropo fluoride Caffeine? Coniine Ethyl alcoh Homo-ison S-Hydroxy Isolobinine	cyanide Ifide ophenol ³ acetic acid ono-iodo-acetate triphosphate (chloride) odium)	Dog Cat Dog Cat Dog Cat Dog Cat Dog Cat Dog Cat Dog Cat Dog, cat Cat Cat Cat Dog	0.1-0.5 mg i.c.a. 2-10 µg i.c.b.a. 1-2 mg i.c.a. 0.02% infused i.v. 1-2 mg i.c.a. 0.4 mg i.c.a. 0.4 mg i.c.a. 0.4 mg i.c.a. 2-10 mg i.c.a. 1-10 mg i.c.a. 1.2-10 mg i.v. 20-200 µg i.c.a.	Stimulation Stimulation Stimulation Stimulation Stimulation	Stimulation Stimulation Stimulation Stimulation Stimulation	3 4,5 1 2 1 6 7 8 4 7
Acetylchol Read Potassium Read Potassium Read Read Read Read Read Read Read Read	cyanide Ifide cophenol ³ pacetic acid cono-iodo-acetate triphosphate (chloride) odium)	Cat Dog Cat Dog Cat Dog Cat Dog Cat Dog Cat Dog, cat Cat Cat Cat Cot	2-10 µg i.c.b.a. 1-2 mg i.c.a. 0.02% infused i.v. 1-2 mg i.c.a. 0.4 mg i.c.a. 0.4 mg i.c.a. 3-7 x 10 ⁻⁴ % perfused ⁴ 2.0 mg i.c.a. 1-10 mg i.c.a. 1.2-10 mg i.v.	Stimulation Stimulation Stimulation Stimulation	Stimulation Stimulation Stimulation Stimulation Stimulation	4,5 1 2 1 6 7 8 4 7
Metabolic inhibitors and stimulants Mono-iodo Sodium mode Adenosine lons Potassium Citrate (so Veratrum Veratriding alkaloids Veratrine Antichollnes terases Tetra-ethy Caffeine 7 Coniine 8 Ethyl alcole Homo-ison Sodium sultants Mono-iodo Sodium mode Adenosine Potassium Veratriding Veratrine Eserine sa Neostigming Caffeine 7 Coniine 8 Ethyl alcole Homo-ison Sodium sultants Sodium sultants Sodium sultants Mono-iodo Caffeine 5 Caffeine 7 Coniine 8 Ethyl alcole Homo-ison Sodium sultants	cyanide Ifide cophenol ³ cacetic acid cono-iodo-acetate triphosphate (chloride) codium)	Dog Cat Dog Cat Dog Cat Dog Cat Dog, cat Cat Cat Cat Dog	1-2 mg i.c.a. 0.02% infused i.v. 1-2 mg i.c.a. 0.4 mg i.c.a. 0.4 mg i.c.a. 3-7 x 10 ⁻⁴ % perfused ⁴ 2.0 mg i.c.a. 1-10 mg i.c.a. 1.2-10 mg i.v.	Stimulation Stimulation Stimulation Stimulation	Stimulation Stimulation Stimulation Stimulation	1 2 1 6 7 8 4 7
Metabolic inhibitors and stimulants Mono-iodo Sodium sul 2,4-Dinitr Mono-iodo Sodium mod Adenosine Potassium Citrate (so Veratrum Alkaloids Veratridin Sodium mod Adenosine Potassium Citrate (so Veratridin Veratridin Veratridin Sodium mod Adenosine Potassium Citrate (so Veratrum Sodium mod Adenosine Potassium Citrate (so Veratridin Veratridin Veratridin Sodium sul Adenosine Potassium Mono-iodo Sodium sul Adenosine Potassium Potassium Potassium Mono-iodo Sodium sul Adenosine Potassium Potassium Potassium Potassium Potassium Sodium mod Adenosine Potassium Potassium Potassium Potassium Potassium Sodium sul Adenosine Potassium Potassium Potassium Sodium sul Adenosine Potassium Potassium Potassium Potassium Potassium Sodium sul Adenosine Potassium Potassi	lfide cophenol ³ cacetic acid cono-iodo-acetate triphosphate (chloride) codium)	Cat Dog Dog Cat Dog Cat Dog, cat Dog, cat Cat Cat Cat Dog	0.02% infused i.v. 1-2 mg i.c.a. 0.4 mg i.c.a. 0.4 mg i.c.a. 3-7 x 10 ⁻⁴ % perfused ⁴ 2.0 mg i.c.a. 1-10 mg i.c.a. 1.2-10 mg i.v. 20-200 µg i.c.a.	Stimulation Stimulation Stimulation	Stimulation Stimulation Stimulation Stimulation	2 1 6 7 8 4 7
Metabolic inhibitors and stimulants Mono-iodo. Sodium mono-iodo. Sodium mono-iodo. Sodium mono-iodo. Sodium mono-iodo. Sodium mono-iodo. Sodium mono-iodo. Sodium mono-iodo. Sodium mono-iodo. Sodium mono-iodo. Sodium mono-iodo. Sodium mono-iodo. Sodium mono-iodo. Sodium mono-iodo. Sodium mono-iodo. Sodium sulla interval proposition in the stimulants of the second proposition in th	ophenol ³ cacetic acid cono-iodo-acetate triphosphate (chloride) codium)	Dog Dog Cat Dog Cat Dog, cat Dog, cat Cat Cat Cat Dog	1-2 mg i.c.a. 0.4 mg i.c.a. 0.4 mg i.c.a. 3-7 x 10-4% perfused ⁴ 2.0 mg i.c.a. 1-10 mg i.c.a. 1.2-10 mg i.v. 20-200 µg i.c.a.	Stimulation Stimulation Stimulation	Stimulation Stimulation Stimulation	1 6 7 8 4 7
Metabolic inhibitors and stimulants Mono-iodo Sodium mo Adenosine lons lons Veratrum Veratridin Veratrine alkaloids Antichollnes terases Antichollnes Caffeine Coniine Caffeine Coniine Ethyl alcol Homo-ison Sodium mo Adenosine Potassium Veratridin Veratridin Veratrine Eserine sa Neostigmir Tetra-ethy Diisopropo fluoride Caffeine Coniine Ethyl alcol Homo-ison Sodium mo Adenosine	cophenol ³ cacetic acid cono-iodo-acetate triphosphate (chloride) codium)	Dog Cat Dog Cat Dog, cat Dog, cat Cat Cat Cat Dog	0.4 mg i.c.a. 0.4 mg i.c.a. 3-7 x 10 ⁻⁴ % perfused ⁴ 2.0 mg i.c.a. 1-10 mg i.c.a. 1.2-10 mg i.v. 20-200 µg i.c.a.	Stimulation Stimulation	Stimulation Stimulation	6 7 8 4 7
inhibitors and stimulants Mono-iodo. Sodium mo Adenosine Potassium Citrate (so Veratrum Veratridin Antichollnes- terases Antichollnes- terases Caffeine? Coniine Ethyl alcoh Homo-ison Sodium mo Adenosine Potassium Veratridin Eserine sa Neostigmir Caffeine? Coniine Ethyl alcoh Homo-ison Sodium mo Adenosine Potassium Citrate (so Veratrum Veratridin Caffeine? Coniine Ethyl alcoh Homo-ison S-Hydroxy Isolobinine Papayerine	pacetic acid pno-iodo-acetate triphosphate (chloride) pdium)	Cat Dog Cat Dog, cat Dog, cat Cat Cat Cat Dog	0.4 mg i.c.a. 3-7 x 10 ⁻⁴ % perfused ⁴ 2.0 mg i.c.a. 1-10 mg i.c.a. 1.2-10 mg i.v. 20-200 µg i.c.a.	Stimulation Stimulation	Stimulation	7 8 4 7
stimulants Mono-iodo Sodium mo Adenosine Potassium Citrate (so Reference sa Antichollnes - terases Antichollnes - terases Caffeine? Coniine Ethyl alcol Homo-ison Sodium mo Adenosine Potassium Citrate (so Veratrine Eserine sa Neostigmir Caffeine? Coniine Ethyl alcol Homo-ison Sodium mo Adenosine Citrate (so Eserine sa Neostigmir Soliconine Fabruarine Soliconine Solicon	acetic acid ono-iodo-acetate triphosphate (chloride) odium)	Dog Cat Dog, cat Dog, cat Cat Cat Dog	3-7 x 10 ⁻⁴ % perfused ⁴ 2.0 mg i.c.a. 1-10 mg i.c.a. 1.2-10 mg i.v. 20-200 µg i.c.a.	Stimulation Stimulation		8 4 7
Sodium mo Adenosine Potassium Citrate (so Veratrum alkaloids Veratrime Eserine sa Neostigmir terases Tetra-ethy Diisopropo fluoride Caffeine? Coniine8 Ethyl alcol Homo-ison 5-Hydroxy Isolobinine	ono-iodo-acetate triphosphate (chloride) odium)	Cat Dog, cat Dog, cat Cat Cat Dog	2.0 mg i.c.a. 1-10 mg i.c.a. 1.2-10 mg i.v. 20-200 µg i.c.a.	Stimulation		7
Adenosine Potassium Citrate (so Veratrum alkaloids Antichollnes- terases Tetra-ethy Disopropo fluoride Caffeine? Coniine Ethyl alcol Homo-ison 5-Hydroxy Isolobinine Papaverine	triphosphate (chloride) odium)	Dog, cat Dog, cat Cat Cat Dog	1-10 mg i.c.a. 1.2-10 mg i.v. 20-200 µg i.c.a.	Stimulation	Stimulation	7
lons Citrate (so Veratrum Veratridin alkaloids Veratrine Eserine sa Antichollnes- terases Tetra-ethy Diisopropo fluoride Caffeine? Conline Ethyl alcol Homo-ison 5-Hydroxy Isolobinine Papaverine	(chloride)	Dog, cat Cat Cat Dog	1.2-10 mg i.v. 20-200 µg i.c.a.		Stimulation	
Ions	odium)	Cat Cat Dog	20-200 μg i.c.a.	Stimulation	i aniiatian	9,10
Citrate (so By Veratrum Veratriding By Antichollnes - terases Caffeine Coniine Caffeine Coniine odium)	Cat Dog		Sumulation			
Veratrum Veratriding veratrine Antichollnes Tetra-ethy Antichollnes Caffeine Coniine Ethyl alcolumnosis Shydroxy Shydroxy	ie ⁵	Dog				7
alkaloids Veratrine Eserine sa Neostigmir Tetra-ethy Diisopropo fluoride Caffeine? Coniine Ethyl alcol Homo-ison 5-Hydroxy Isolobinine Papaverine				Stimulation	Stimulation	7
Eserine sa Neostigmir terases Tetra-ethy Disopropo fluoride Caffeine? Coniine8 Ethyl alcol Homo-ison 5-Hydroxy Isolobinine Papaverine			1-2 μg i.c.a.	Chi	Stimulation	11
Antichollnes- terases Tetra-ethy Disopropo fluoride Caffeine? Coniine Ethyl alcol Homo-ison 5-Hydroxy Isolobinine Papaverine		Cat	10-40 μg i.c.a.	Stimulation		7
Antichollnes- terases Tetra-ethy Diisopropo fluoride Caffeine? Contine Ethyl alcol Homo-ison 5-Hydroxy Isolobinine Papaverine		Cat	50-500 μg i.c.a.	Stimulation	C4:1-4:	12
Tetra-ethy Diisopropo fluoride Caffeine? Coniine Ethyl alcol Homo-ison 5-Hydroxy Isolobinine Papaverine		Dog	0.1-1 mg locally	Sai1-ai	Stimulation	13
Diisopropo fluoride Caffeine? Coniine Ethyl alcol Homo-ison 5-Hydroxy Isolobinine Papaverine		Cat	0.25 mg i.c.a.	Stimulation Stimulation		12
fluoride Caffeine? Coniine Ethyl alcol Homo-ison 5-Hydroxy Isolobinine Papaverine		Cat	0.2 mg i.c.a.	Stimulation		12
Conline Ethyl alcol Homo-ison 5-Hydroxy Isolobinine		Cat	0.1 mg i.c.a.	Stimulation		12
Ethyl alcol Homo-ison F-Hydroxy Isolobinine Papaverine		Cat	1.8 mg i.c.b.a.	Stimulation		4
Homo-ison 5-Hydroxy Isolobinine Papaverine		Cat	0.05 mg l.v.		Stimulation	14
5-Hydroxy Isolobinine Papayerine	hol9	Cat	18-76 mg i.c.a.	Stimulation		15
Isolobinine Papaverine	muscarine 10	Dog	10 mg/kg i.v.		Stimulation	16
Papaverine	tryptamine 11	Dog	50~100 μg i.v.		Stimulation	17
Papaverine		Dog	10 μg/kg i.v.		Stimulation	18
	e .	Cat, dog	0.25-1 mg i.c.a.		Stimulation	19
Miscellaneous Phenyl dig	uanide 12	Dog	10 μg/kg iv	Stimulation	Stimulation	20
Piperidine	HC1	Cat	0.3-1 mg i.v.	Stimulation	Stimulation	21
Tetrameth iodide 13	ylammonium	Cat	1:10,000 perfused ⁴		Stimulation	14
	ylammonium		period period			
chloride		Cat	0.5-1.0 mg i.c.a.			22
Hexametho		Cat	0.25-0.5 mg i.c.a.	Sensitiza-		22
Pendiomid		Cat	0.25-0.5 mg i.c.a.	tion	(22
Pentameth		Cat	0.25-0.5 mg i.c.a.			22
			y Stretch Receptors 15			
Veratrine		Rabbit	50-100 μg/kg	Stimulation		23
Verstridin		Cat	5-10 μg/kg i.v.	Stimulation		24
Veratrum		Cat	26-400 µg i.v.	Stimulation		25
	ie		, , , , ,			
Veriloid	e, germerine,				Apnea	26
Trichloret	ie	Cat, dog	10-20 μg/kg i.v.	Stimulation		27
Volatile Chloroform	e, germerine, germitrine	Cat, dog	10-20 μg/kg i.v.		n .,	4
anesthetics Ethyl ether	e, germerine, germitrine		10-20 µg/kg i.v. 0.5-2% inhaled 16	Sensitiza-	Rapid,	27
6 Divinyl eth	ne e, germerine, germitrine	Cat	0.5-2% inhaled 16		Rapid, shallow	
	ne e, germerine, germitrine chylene m	Cat Cat	0.5-2% inhaled 16 1% inhaled	Sensitiza-		27

/1/ Also a- and β -nlcotine, 0.1-0.3 mg i.c.a. in dogs, and other nicotine derivatives [33,34]. /2/ Also many other choline derivatives [5,35-37]. /3/ Also 2,4-dinitrocresol and p-nitrophenol, 0.4 mg i.c.a. in dogs [6]. /4/ Isolated perfused carotid sinuses and bodies. /5/ Doses possibly excessive [43]. /6/ Somewhat controversial [13]. /7/ Probably also theophylline (1.5 mg i.c.b.a.) and theobromine (1 mg i.c.b.a.) in cats [4]. /8/ Also cytisine (0.2 mg i.v.) and anabasine in cats [14]. /9/ Also acetone, ethyl ether and chloroform, and various alcohols [15]. /10/ Also acetyl-salicylamide and many derivatives of both substances [16,38]. /11/ Creatinine SO₄; controversial [39]. /12/ Also 2-a-naphthyl ethyl isothiourea; controversial [40]. /13/ Also various derivatives [35,41,42]. /4/ Tris(diethylamino-ethyl)amine tri HCl. /15/ Slowly adapting receptors mediating the "Hering-Breuer inflation reflex." /16/ Also i.v. in unspecified dose. /17/ Greater concentrations cause inhibition.

132. RESPIRATORY ACTION OF DRUGS INFLUENCING AFFERENT END-ORGANS: CAT, DOG, RABBIT (Concluded)

Drugs influencing baroreceptors have not been included in this table.

i.v. = intravenous; i.c.a. = intracarotid artery; i.c.b.a. = intracarotid-body artery; rt.at. = right atrium.

		· ·		•			
	Drug Group	Drug	Test Animal	Dose and Route	End-organ Response	Respiratory Response	Refer-
	(A)	(B)	(C)	(D)	(E)	(F)	(G)
_		Drugs Influencing Pulm	onary Stre	tch Receptors (Conclud	ed) 15		
7	Volatile	Cyclopropane	Cat	50% inhaled	Sensitiza- tion	Slow, shallow	27
8	anesthetics (concluded)	Nitrous oxide	Cat	80% inhaled	Sensitiza- tion		27
9	Local	Novocaine	Rabbit	20-100 mg/kg i.v.	Inhibition	Inspiration prolonged	
0	anesthetics	Diphenhydramine HCl	Cat, dog	6 mg/kg i.v.	Inhibition		29
		Drugs Influencing I	Pulmonary	Deflation Receptors 18			
51		Phenyl diguanide 19	Cat Cat	50-100 μg/kg rt.at. 25-100 μg/kg rt.at.	Sensitiza-	Apnea or rapid,	24, 30 30
53		5-Hydroxytryptamine 21	Cat	1-50 µg/kg rt.at.		shallow	30, 31
4		Urethane	Cat	225 mg rt.at.	Sensitiza- tion		30
55	26: 11	Acetylcholine	Cat	175 μg rt.at.	Sensitiza- tion		30
6	Miscellaneous	2, a-Naphthyl ethyl isothiourea ²² , 23	Cat, rabbit	4-60 μg/kg i.v.		Apnea	24
57		Vonatridine 23	Rabbit	5-10 μg/kg i.v.		followed	24
8		Diphenhydramine HCl ²³ , ²⁴	Cat, dog, rabbit	0.4-3 mg/kg i.v.		by rapid,	29, 32
59		Mepyramine maleate ²³	Cat, dog, rabbit	5-10 mg/kg i.v.		shallow	29,32

/15/ Slowly adapting receptors mediating the "Hering-Breuer inflation reflex." /18/ Possibly responsible for the "Hering-Breuer deflation reflex" and the "pulmonary respiratory chemo-reflex"; this has not been established [43]. /19/ Probably also 18 other guanides [44]. /20/ Sulphate. /21/ Creatinine SO₄. /22/ Also 13 other isothioureas. /23/ Not established by nervous action-potential records. /24/ Also 20 similar substances in dogs.

Contributors: (a) Widdicombe, J. G., (b) Loew, E. R.

References: [1] Heymans, C., Bouckaert, J. J., and Dautrebande, L., Arch. internat. pharm. dyn., Par. 40:54, 1931. [2] Von Euler, U. S., Liljestrand, G., and Zotterman, Y., Skand. Arch. Physiol., Berl. 83:132, 1939. [3] Heymans, C., Bouckaert, J. J., Farber, S., and Hsu, F. J., Arch. internat. pharm. dyn., Par. 54:129, 1936. [4] Landgren, S., Liljestrand, G., and Zotterman, Y., Acta physiol. scand. 30:149, 1953. [5] Liljestrand, G., and Zotterman, Y., ibid 31:203, 1954. [6] Shen, T. C., and Hauss, W. II., Arch. internat. pharm. dyn., Par. 63:251, 1939. [7] Jarisch, A., Landgren, S., Neil, E., and Zotterman, Y., Acta physiol. scand. 25:195, 1952. [8] Winder, C. V., Am. J. Physiol. 118:389, 1937. [9] Hauss, W. H., and Shen, T. C., Arch. internat. pharm. dyn., Par. 62:411, 1939. [10] Douglas, W. W., J. Physiol. 118:373, 1952. [11] Aviado, D. M., Pontius, R. G., and Schmidt, C. F., J. Pharm. Exp. Ther. 97:420, 1949. [12] Landgren, S., Liljestrand, G., and Zotterman, Y., Acta physiol. scand. 26:264, 1952. [13] Heymans, C., Delaunois, A. L., Martini, L., and Janssen, P., Arch. internat. pharm. dyn., Par. 96:209, 1953. [14] Anitschkow, S. V., ibid 55:61, 1937. [15] Landgren, S., Liljestrand, G., and Zotterman, Y., Arch. exp. Path., Lpz. 219:185, 1953. [16] Philippot, E., and Dallemagne, M. J., Arch. internat. pharm. dyn., Par. 81:427, 1950. [17] Douglas, W. W., and Toh, C. C., J. Physiol. 117:71P, 1952. [18] Pannier, R., and De Backer, J., Arch. internat. pharm. dyn., Par. 70:110, 1945. [19] Nims, R. G., Severinghaus, J. W., and Comroe, J. H., J. Pharm. Exp. Ther. 109:58, 1953. [20] Dawes, G. S., Mott, J. C., and Widdicombe, J. G., Arch. internat. pharm. dyn., Par. 90:203, 1952. [21] Gernandt, B. E., Acta physiol. scand. 11:(suppl 35) 1, 1946. [22] Dontas, A. S., and Nickerson, M., Arch. internat. pharm. dyn., Par. 106:312, 1956. [23] Meier, R., Bein, H. J., and Helmich, H., Experientia, Basel 5:484, 1949. [24] Dawes, G. S., Mott, J. C., and Widdicombe, J. G., J. Physiol. 115:258, 1951. [25] Paintal, A. S., ibid 135:486, 1957. [26] Dawes, G. S., Mott, J. C., and Widdicombe, J. G., Brit. J. Pharm. 6:675, 1951. [27] Whitteridge, D., and Bulbring, E., J. Pharm. Exp. Ther. 81:340, 1944. [28] Bucher, K., Helvet. physiol. pharm. acta 5:348, 1947. [29] Jones, J. V., Brit. J. Pharm. 7:450, 1952. [30] Paintal, A. S., Quart. J. Exp. Physiol., Lond. 42:56, 1957. [31] Mott, J. C., and Paintal, A. S., Brit. J. Pharm. 8:238, 1953. [32] Aviado, D. M., Pontius, R. G., and Li, T. H., J. Pharm. Exp. Ther. 99:425, 1950. [33] Heymans, C., and Bouckaert, J. J., Arch. internat. pharm. dyn., Par. 65:196, 1941. [34] Mercier, F., Rizzo, C., and Delphaut, J., C. rend. Soc. biol. 115:546, 1934. [35] Dallemagne, M. J., and Philippot, E., Arch. internat. pharm. dyn., Par. 79:413, 1949. [36] Philippot, E., ibid 57:357, 1937. [37] Schweitzer, A., Weizmann, M., and Wright, S., Cardiologia, Basel 2:193, 1938. [38] Philippot, E., and Dallemagne, M.J., Arch. internat. pharm. dyn., Par. 80:451, 1949. [39] Heymans, C., and Van den Heuval-Heymans, G., ibid 93:95, 1953. [40] Heymans, C., Hyde, J. E., Terp, P., and De Vleeschhouwer, G., ibid 90:140, 1952. [41] Dallemagne, M. J., and Philippot, E., ibid 87:127, 1951. [42] Pannier, R., and Verbeke, R., ibid 74:364, 1947. [43] Dawes, G. S., and Comroe, J. H., Physiol. Rev. 34:167, 1954. [44] Dawes, G. S., and Mott, J. C., Brit. J. Pharm. 5:65, 1950.

133. DIRECT ACTION OF DRUGS ON THE BRONCHI

Drugs are listed alphabetically, using a well-known name. Inclusion of trade names is for informative purposes only and in no way implies endorsement by The National Academy of Sciences-The National Research Council. For all "effects" included in this table, there is reasonable evidence the drug in fact acted on the bronchial musculature. Where there was evidence that an effect was mediated by the respiratory center or adrenal glands, it was excluded. Drug actions influencing only anaphylactic or asthmatic bronchospasm, or other pathological states of the bronchi, were also excluded. Concentrations of drugs are given in $\mu g/ml$ for local action on isolated preparations, and doses in mg/kg for drugs administered systemically. Parentheses in Columns D and F indicate action is slight, irregular, or doubtful, and the original literature should be consulted. A = active, but action complex (original literature should be consulted); C = constricts; D = dilates; I = inactive.

	Compound			Effe			
	(Synonym)	Species	Local		Syster		Reference
			μg/ml	Action	mg/kg	Action	
_	(A)	(B)	(C)	(D)	(E)	(F)	(G)
1	Acacia (Gum arabic)	Guinea pig	17,000	1			1
2	Acetic acid	Dog		Dl			2
3	Acetylcholine	Man	0.2-40	С			3-28
4		Cat	0.1-10	С	0.002-1.0	С	
5		Dog	0.01-1.0	С	0.002-0.5	С	
6		Guinea pig	0.1-200	С	0.01-0.05	C	
7		Monkey	4-40				
8		Ox	0.7	С			
9		Pig		C			
ó		Rabbit	0.5-10	C	 		
ì		Rat	1-10	C	-		
2		Frog	10-6-100	C	-		
3	Acetylmorphine	Dog	10 -100			C	29
4	Aconitine	Frog	300	C	0,1-1,0	C	30
5	Acommie	Turtle	300		0.1-1.0	C	30
6	Adenine (6-Aminopurine)		10-100	D			15,31
	Adenine (o-Aminopurine)	Guinea pig					15,31
7	4.	Pig	<1	D			15.00
8	Adenosine (9-Adenine ribofuranoside)	Cat	10.100		5	D	15,32
9		Guinea pig	10-100	D	1	D	
	Adenosine triphosphate	Cat				I	15,33
l		Guinea pig	200-400	D			
	Adenylic acid, muscle (Adenosine-5-	Cat			10	(D)	15,34
3	phosphoric acid)	Guinea pig	10-200	D_			
4	Adenylic acid, yeast (Adenosine-3-	Cat .			10	1	15,32,34
5	phosphoric acid)	Guinea pig	<400	I		D	
6	Agar	Guinea pig	10,000	C	15-50	С	1,35,36
7	Agaricin	Dog				(D)	37
8	Agmatine	Guinea pig		С			38
9	Alcohol (Ethanol)	Cat			500	D	31,39,40
0		Ox		A			
1		Pig		D			
2	Allantoin	Guinea pig	1-20	I			15
3	Alloxan (2, 4, 5, 6-Tetraoxopyrimidine)	Guinea pig	20-40	D			15
	Alphaprodine (Nisentil; Nu-1196; a-1,3-	Guinea pig		I			41
	Dimethyl-4-phenyl-4-propionoxy-piperidine			-			
5	Alstonine (Chlorogenine)	Dog		,	3-5	D	42
6		Guinea pig	25,000	I			1
7	Alypin	Pig	23,000	D			31
8		Man	10-100	D	4-10	D	17.21.43-
9	miniophymine (meophymne-emylenediamine)	Cat	1000	D	10		53
0			100-500	D	12-75	D	,,,
		Dog		D	_	D	
1		Guinea pig	5-200		50-100	I)	
2		Rabbit	1,000-10,000	D			
3	2 4	Rat	100	D			
4		Guinea pig	10-100	D			15
5	Aminopyrine (Pyramidon)	Guinea pig	1000	D			54
16		Rabbit			25	I	55
17	Ammonium chloride	Ox	1500	D			10,31,39,
48		Pig	800	C			55

^{/1/} At pll 6.

A = active, but action complex (original literature should be consulted); C = constricts; D = dilates; I = inactive. Parentheses in Columns D and F indicate action is slight, irregular, or doubtful, and the original literature should be consulted.

Compound			Effe			D.C.
(Synonym)	Species	Loca		Syste		Reference
(Synonym)		μg/ml	Action	mg/kg	Action	
(A)	(B)	(C)	(D)	(E)	(F)	(G)
Ammonium chloride (concluded)	Rabbit		1	50	D	10,31,39,5
	Frog	300-1000	С			
Amyl nitrite	Guinea pig	5000	D			56
Anagyrine	Guinea pig	50-100	(C)			16
Andromedotoxin	Guinea pig	20	C	1	-	57,58
Andromedotoxin		1-4	C	-	-	37,50
	Rabbit					50 / 0
Antazoline (Antistine; Histostab; N-Benzyl-	Man	800	D		-	59,60
N-phenyl-aminomethylimidazoline)	Cat			5	С	
	Guinea pig	5-40	C			
	Guinea pig	100-1000	D			
Antergan (Lergitin; RP2339; N-Benzyl-N-	Cat			0.5-5.0	C	59-61
phenyl-N', N'-dimethyl-ethylenediamine)	Dog			1.0	С	
Antipyrine (Phenazone; 1,5-Dimethyl-2-	Pig		C			31
phenyl-3-pyrazolone)						
Apocodeine	Cat			1	C	62
	Rabbit		-	1	C	†
Anothegin	Pig		I	•		31
Apothesin		0 2 2 5	C	0.02-3.0	C	5,12,19,3
Arecoline	Cat	0.3-2.5				
	Dog		С	0.02-0.5	С	63-71
	Guinea pig		С			
	Ox	1-170	C			
	Rabbit		С	0.1-0.45	C	
Arsphenamine	Guinea pig	100-200	1			1
Aspidiospermine	Cat			<u> </u>	I	72
Aspidiosperiime	Ox	-	1		+	
A 12	+		1	+	1	72
Aspidiosamine	Cat				1	16
	Ox		1	-		
Atropine	Man	<10	1	1		6,8,10,24
	Cat	-	D			26,36,3
	Dog	5	(D)	<2	I	39,43,5
	Guinea pig	<10	I	+		60,64,6
	Guinea pig	100-1000	† C		_	73-77
		100-1000	+ c	+	1-	13 11
	Monkey	3.0		-	+	4
	Ox	30	D		+	
	Rabbit		D	-	_	
	Rat		D			
	Frog	10-20	D			
Azapetine (Ilidar; Ro Z-3248; 6-Allyl-6,7-	Guinea pig	10	C			78
dihydro-5H-dibenz-[c,e]-azepine)						
Barbituric acid	Guinea pig	10	(D)			15
Barium chloride	Man		C			10,15,31,
Dat Ivili Cilio Ivi	Cat		C	10-100	C	39,43,
	-	50		3-20	C	77,79-
	Dog		C	3-20		- 11,19-
	Guinea pig		С	1		
	Ox	10-30	C			
	Pig	800	C			
	Rabbit	30-3000	C			
	Sheep		C			
	Frog	25-2500	C			
Benzoylcholine	Cat	<1000	1			86
Denzoylenomie			I	1		
	Rabbit	<1000		-		121
Benzyl acetate	Pig	5000	D			31
Benzyl alcohol	Pig	400-800	D			31
Benzyl benzoate	Dog				(C)	31,87,88
	Pig		D			1
I-Benzyl-3-β-diethylaminoethyl-5, 5-diallyl barbituric acid	Cat			6-10	С	61
Benzyl nitrite	Pig	400	D			31
		100		2	C	29
Benzylmorphine (Peronine)	Dog			2	C	
Benzyltrimethylammonium iodide	Guinea pig		С		1	89
Betaine hydrazide	Dog				C	90
Bradykynin (Kallidin)			1			15,91

A = active, but action complex (original literature should be consulted); C = constricts; D - dilates; I = inactive. Parentheses in Columns D and F indicate action is slight, irregular, or doubtful, and the original literature should be consulted.

	Compound	Species	Loca	al	Syste	mic	Reference
	(Synonym)		µg/ml	Action	mg/kg	Action	
	(A)	(B)	(C)	(D)	(E)	(F)	(G)
08	Bradykynin (Kallidin) (concluded)	Cat	(-)	I	, , , ,	, , , ,	15,91
09	Drug ny min (manipulati) (contract)	Guinea pig	1-100	C		-	13,71
10	Bromal hydrate	Dog	1 100	 	20	C	92
11	y-Bromohomocholine bromide (y-Bromo-	Dog			20	C	93
11	propyltrimethylammonium bromide)	Dog					73
12	Cadaverine	Guinea pig		C		-	38
13	Caffeine (Theine; Trimethylxanthine)	Cat		D		D	10,15,37,
14	Caneme (Ineme, IIImemyixanimie)	Dog		- D		D	56,84,9
15		Guinea pig	20-1000	D	10-1000	D	96
16		Ox	1000	D	10-1000	D	96
17			400	D			1
		Pig	400	D		-	
18	C-l-i	Frog	L	C		-	10.3/.30
19	Calcium chloride	Guinea pig	5000			1	10,36,39,
20		Ox	5000	С			
21		Frog	800	C		-	
22	Camphor ¹	Ox	100-500	D		-	98
23			1000	С		1	
24	Caramiphen (Parpanit; Diethylaminoethyl	Guinea pig		(C)			99
	1-phenyl-cyclopentyl-1-carboxylate)						
25	Carbachol (Doryl; Carbaminoylcholine)	Man	0.1-1	C			17,20
26		Guinea pig	5-50	С			
27	Carbaminoyl-β-methylcholine	Cat			0.2-2.0	C	100
28		Guinea pig		C			
29	Chelidonine	Cat			5-10	D	31,101-1
30		Dog			5-10	D	
31		Guinea pig		D			
32		Pig	800	D		†	
33		Rabbit			50	D	
34	Chlorcyclizine (Di-Paralene, Histantin;	Cat			2-10	C	60
35	Perazil; 47-282; N-(4-Chlorbenzhydryl)-N'-	Guinea pig	5-100	C			
36	methyl-piperazine)	Guinea pig	100-1000	D		-	
37	Chloral hydrate	Dog				I	39,92
38		Ox	100	A			_ ,,,,_
39	Chloroform	Guinea pig	3000	D			2,31,39,5
40		Ox		C			104
41		Pig		A			
42	Chloroguanide (Guanatol; Paludrine;	Guinea pig			0,5-10	I	105
	Proguanil; N ₁ -(p-Chlorophenyl)-N ₅ -	Games Pig					
	isopropyl-biguanide)						
43	Chlorothen (Chloropyrilene; Tagathen;	Cat			3	(C)	60
44	N-(5-Chloro-2-thenyl)-N-(2-pyridyl)-	Dog			5	C	00
45	N', N'-dimethyl-ethylenediamine)		1-160	C		-	
46	N', N'-dimethyl-ediylehediammer	Guinea pig	200-1000	D			
	Chlorpheniramine (Chlorprophenpyridamine;		200-1000	 	10	C	40
47 48	Chlor-Trimeton; 1-(p-Chlorophenyl)-1-	Cat	1-400	-	10	С	60
48 49		Guinea pig	1-400	C			
_ :	(2-pyridyl)-3-dimethylamino-propane)	Guinea pig	1000	ת		(D)	16 37 5/
	Choline chloride	Dog	10 1000	-		(D)	16,37,56,
51		Guinea pig	10-1000	C	50		106,10
52		Rabbit		(C)	50	C	-
	Choline ethyl ether	Cat				(C)	7
4		Cat				(C)	7
55	Choline nitrite	Cat				(C)	39
: 6		Ox	>1	С			
	Citrinin	Guinea pig		C			108
57	Clupeine	Guinea pig		C			38
57 58		0 .		С			30,31,37,
57 58		Cat		1			20 40
57 58 59		Dog		C		I	39,68
			1000	C D		I	37,08
5 7 58 59 60		Dog	1000			1	37,08

^{/1/} See also sodium camphorate.

A = active, but action complex (original literature should be consulted); C = constricts; D = dilates; I = inactive. Parentheses in Columns D and F indicate action is slight, irregular, or doubtful, and the original literature should be consulted.

	Compound	Species	Loca	Effe	Syste	mic	Reference
	(Synonym)	Species	μg/ml	Action	mg/kg	Action	Keierence
	(A)	(B)	μg/IIII (C)	(D)	(E)	(F)	(C)
164	Cocaine (concluded)		100-1000	C (D)	0.5-5	C	(G) 30,31,37,
165	Cocame (concruded)	Frog Turtle	100-1000				
166	Codeine (Methyl morphine)			100	0.5-5	(D)	39,68
167	Codeme (Methyl morphine)	Dog		(C)		-	29,31,79,
168	Colchiceine	Pig		(C)	-	-	109,110
		Pig		(D)			31
169	Colchicine	Pig	40	(D)			31
170	Compound 48/80 ((p-Methoxyphenylethyl)- methylamine formaldehyde polymers)	Guinea pig	40	С			111
71	Congo red	Guinea pig	1000	1			1
72	Coniine	Guinea pig	10-100	C			16
73	Cotarnine (Stypticine)	Dog				(D)	29,66
74	Creatinine	Guinea pig	10-100	I			15
75	Cryptopeine (Cryptopine)	Dog				I	29,109
76		Pig		1			1
77	Cularine	Guinea pig	20-200	1			112
78	Curarel	Cat				A	62,80,96,
79		Dog				C	114,115
80		Guinea pig				C	
81		Rabbit		1		C	1
82	Curarine	Cat	300-600	C			114,116,1
83		Dog		1	0.5-2.0	C	
84		Guinea pig		+	0.5 2.0	C	
85	Cyanuric acid (s-Triazinetriol)	Guinea pig	10-100	(D)		 	15
86	Cytisine	Guinea pig		C			16
87	Darmstoff	Ox	30 200				118
88	Decamethonium (Eulissin)	Man	10	(D)			15
89	2, 6-Diaminopurine	Guinea pig	20-80	D	1	+	15
90		Guinea pig		I		-	
91	Dextromethorphan (Ro 1-5470/5; d-3-	Cat	10,000	1	1		1
91	Methoxy-N-methyl-morphinan)	Cat			1	С	119
92	Dextrorphan (Ro 1-6794; d-3-Hydroxy-N-methyl-morphinan)	Cat			1	C	119
193	Dibenzyline (Dibenyline; SKF 688; N-Phenoxy- isopropyl-N-benzyl-β-chloroethylamine)	Guinea pig	1-10	1		1	16
94		Rabbit		С			107
95	Diethylaminoethanol	Guinea pig		C			120
96	Diethylaminoethyl diphenylhydroxythioacetate		3-5	D			83,121
97	(Ro 3-0226) Diethylaminoethyl diphenylthioacetate	Guinea pig	10-30	(D)		-	83
	(Ro 3-0235)						
98	2-(2'- Diethylaminoethylthio)-1, I-diphenyl-	Guinea pig	10-30	D			83,121
99	ethanol (Ro 3-0326)	Rabbit	1-5	(D)			
00	Diethylmorphine	Cat		С			68,76
01		Dog		С	1-4	C	
:02		Rabbit		I			
03	Digitalin	Cat			1	С	40,80
04	Dihydroergotamine methanesulphonate	Guinea pig	0.4-1.0	C			16
:05	Dihydro-β-erythroidine	Dog			2	1	114
06	Diisopropylfluorophosphate (DFP)	Dog			7-20	C	122-124
07		Guinea pig		C		1	
80	N, N- Dimethylhexahydronicotinic acid methyl ester iodide	Cat			0.3	С	125
09	N-Dimethyl-histamine	Guinea pig	0.2-1.0	С			124
10	Diphenhydramine (Benadryl; β-Dimethyl-		0.2-1.0	-	2-10	C	126
11		Cat			2-10	C	43,60,127
	aminoethyl benzhydryl ether)	Dog	0.3.400		2	С	
12		Guinea pig	0.3-400	С			
13	D	Guinea pig	1000	D			
14	Emetine	Guinea pig	10,000	I			39,128
15		Ox	300	D			
16	Ergot ²	Cat				I	77,80,129

^{/1/} Including introcostrin. /2/ Including ergotine and secacornine.

A = active, but action complex (original literature should be consulted); C = constricts; D = dilates; l = inactive. Parentheses in Columns D and F indicate action is slight, irregular, or doubtful, and the original literature should be consulted.

	Compound	Species	11	Effe		uio.	Defe
	(Synonym)	Species	Local	Action	Syster		Reference
	(A)	(B)	μg/ml		mg/kg	Action	(6)
17	Ergot ¹ (concluded)		(C)	(D)	(E)	(F)	(G)
18	Engot- (concluded)	Dog Rabbit		1	350	(C)	77,80,129
	Partoning / Partoning			-	250	C	16 22 26
19	Ergotamine (Femergin)	Cat		C	2	С	16,22,26,
20		Dog		С	2	С	68,76,97
21		Guinea pig	1-10	С		1	
22		Pig		С			
23		Rabbit		С			
24	Ergotoxine ethanesulphonate2	Cat		С	10	С	15,31,42,62
25		Dog		С		(C)	68,76,
26		Guinea pig	1-5	С			130-132
27		Pig	80	C			
28		Rabbit		C			4
29	Ether (Diethyl ether)	Guinea pig	3000	D			2,31,39,56
30	Buier (Bremyremer)	Ox	3000	D	-		2,31,37,30
31						-	
	Tab. 1.1.1.	Pig		A			
	Ethylcholine	Dog			1	С	133
33		Guinea pig		С			
	Ethylenediamine	Guinea pig	10-250	С			15,50,53
35		Rabbit		1			
36	N-Ethyl-histamine	Guinea pig			2	С	126
37	Ethyl-β-methylcholine	Dog			1	1	133
38		Guinea pig		С			
39	Ethylmorphine (Dionine)	Dog			3	С	29.79
	Ethyl-urethane (Urethane, q.v.)	Ox		D			39
	a-Eucaine	Pig		D			31
			0.0	D			
	β-Eucaine (Benzamine; Betacaine)	Pig	80				31
	(a-Furfurylethyl)trimethylammonium iodide	Guinea pig		С			89
44	Furfuryltrimethylammonium iodide	Guinea pig		С			89
	(Furmethide; Furtrethonium)						
45	Gallamine (Flaxedil)	Man	1000	1			15
46	Gelatin	Guinea pig	10,000	1			1
47	Gelsemine	Pig		D			31
48	Gitalin	Cat		1			84
	Glyceryl trinitrate (Nitroglycerin;	Dog				D	129
50	Trinitrin)	Rabbit			1.3	D	10/
51		+	1000	ī	1.5		1
	Gold chloride	Guinea pig	1000	I .			
		Cat	200 1000	-		С	80
53		Guinea pig	200-1000	С	_		15,38
54	Guanine (2-Amino-6-oxo-purine)	Guinea pig	<40	1			15,31
55		Pig		D			
	Guanosine (9-Guanine-ribofuranoside)	Guinea pig	20-100	D			15,31
57		Pig		1			
58	lleptyl aldehyde sodium bisulphite (Hepbisul)	Guinea pig	10,000-20,000	(C)			134
	Heptyl isothiourea	Guinea pig	1			(C)	135
	Heroine (Diacetylmorphine)	Dog			2	C	29,31
61	, , , , , , , , , , , , , , , , , ,	Pig		(C)			
62	Hexaethyltetraphosphate (HETP)			(0)	0 6-1 3	C	136
		Dog	200 900	101	0.6-1.3	С	136
	Hexamethonium	Guinea pig		(C)	0.1		16
	Histamine (Ergamine; β-lmidazolylethylamine		0.1-10	C	0.1	С	1,3,4,6,8,10
65		Man	1000	(D)			12,15,17
66		Cat	2-10	(C)	0.003-1	С	21,32,39
67		Dog	1-1000	C	0.001-4.0	С	45,53,55,
68		Guinea pig	0.2-100	C	0.0001-1.0	C	56,62,66,
69		Guinea pig	100-10,000	(C)			68,77,79,
70		Monkey		C			84,95,10
71		Ox	10	(C)			126,128,
72			10				137-151
		Pig	41000	_ C	10	- ; -	137-131
73		Rabbit	< 1000	(1)	40	_ I	
74		Rabbit			0.04-2.0	C	
75		Rat	_	(1)		100	
76			0.01-20	C	1-10	C	

^{/1/} Including ergotine and secacornine. ./2/ Mainly ergocornine, plus a little ergocristine and ergocryptine.

A = active, but action complex (original literature should be consulted); C = constricts; D = dilates; I = inactive. Parentheses in Columns D and F indicate action is slight, irregular, or doubtful, and the original literature should be consulted.

	Compound	Species	Loca	Effect	Systen	nic	Reference
	(Synonym)	Species				Action	recier ence
			μg/ml	Action	mg/kg		(C)
	(A)	(B)	(C)	(D)	(E)	(F)	(G)
277	Homatropine (Tropine mandelate)	Dog			0.2	D	74
278	Homatropine methylbromide (Novatropine;	Guinea pig	10	I	!		43
	Tropine-N-methylbromide mandelate)						
279	Hydantoin	Guinea pig	10-100	Ī			15
280	Hydrastine	Guinea pig		1			112
281	Hydrastinine	Dog			1	D	66
282	Hydrochloric acid	Guinea pig					10,31,36,39
283	inyar ochior ic acid	Ox		(D)			60,152
		Pig		C			00,135
284				D	-		
285		Frog		Ь		D	80
	Hydrocyanic acid	Cat			1.5		
287	Hydroquinone	Dog			15	(D)	131
	<u>d</u> -3-Hydroxy-N-allylmorphinan (Ro 1-7059)	Cat			1	1	119
289	1-3-Hydroxy-N-allylmorphinan (Ro 1-7700)	Cat			1	I	119
290	m-Hydroxybenxyldimethylamine methyl-	Cat				(C)	27
	carbamate						
291	p-Hydroxybenzyldimethylamine	Cat				(C)	27
	methylcarbamate					` ′	
202	o-Hydroxybenzyldimethylamine	Cat		-		(C)	27
272	methylcarbamate methiodide	Cat				(0)	
		D		-	0.5	С	122
293	(2-Hydroxy-5-phenylbenzyl)trimethylam-	Dog			0.5		122
	monium dimethylcarbamate (Nu-683)			1	ļ		150
294	(m-Hydroxyphenyl)diethylmethylammonium	Guinea pig	<100	1			153
	bromide (Ro 2-2980)						
295	(m-Hydroxyphenyl)dimethylethylammonium	Guinea pig	<100	I			153
	bromide (Ro 2-3198)						
296	[a-(m-Hydroxylphenyl)-ethyl] dimethylamine	Cat			0.4	С	27,154
2,0	methylcarbamate (Mlotine)						
297	(m-Hydroxyphenyl)trimethylammonium	Guinea pig	<100	1	 	 	153
471		Odinea pig	1100	1			133
200	bromide (Ro 2-2561)	Man		D			13,91,119,
298	5-Hydroxytryptamine creatinine sulphate	Man			0.002.1.0	-	
299	(Serotonin)	Cat		С	0.003-1.0	С	144,155-
300		Guinea pig	5	С	0.003-0.2	С	160
301		Rabbit		С	-		
302	Hypoxanthine (6-Oxo-purine)	Guinea pig	4-40	1			15,31
303		Pig		D			
304	Kallikrein (Padutin)	Cat		D			34,85
305	Kalmia angustifolia ² extract	Guinea pig		С			161
306	Kaolin	Guinea pig	10.000	C	1		36
307	Khellin	Cat	10,000		40-70	D	44,162
308	Mieim	Guinea pig	2-10	D	10 10		1 /
200		Gumea big	2 10	_1			152
200	Non-Richard R	Cuinas nia		D			135
	Lactic acid	Guinea pig		D	1	1	1110
	Levomethorphan (Ro 1-7788; 1-3-Methoxy-	Guinea pig Cat		D	1	1	119
310	Levomethorphan (Ro 1-7788; 1-3-Methoxy- N-methyl-morphinan)	Cat		D			
	Levomethorphan (Ro 1-7788; 1-3-Methoxy- N-methyl-morphinan) Levorphan (Ro 1-5431/7; Levo-dromoran;	. 0		D	1	l D	119
310	Levomethorphan (Ro 1-7788; 1-3-Methoxy- N-methyl-morphinan) Levorphan (Ro 1-5431/7; Levo-dromoran; 1-3-Hydroxy-N-methyl-morphinan)	Cat		D			119
310	Levomethorphan (Ro 1-7788; 1-3-Methoxy- N-methyl-morphinan) Levorphan (Ro 1-5431/7; Levo-dromoran;	Cat		I			119
310	Levomethorphan (Ro 1-7788; 1-3-Methoxy- N-methyl-morphinan) Levorphan (Ro 1-5431/7; Levo-dromoran; 1-3-Hydroxy-N-methyl-morphinan)	Cat					119
310 311 312	Levomethorphan (Ro 1-7788; 1-3-Methoxy-N-methyl-morphinan) Levorphan (Ro 1-5431/7; Levo-dromoran; 1-3-Hydroxy-N-methyl-morphinan) Lithium chloride Lobelanidine	Cat Cat Pig			1	D	119
310 311 312 313 314	Levomethorphan (Ro 1-7788; 1-3-Methoxy-N-methyl-morphinan) Levorphan (Ro 1-5431/7; Levo-dromoran; 1-3-Hydroxy-N-methyl-morphinan) Lithium chloride Lobelanidine Lobelanine	Cat Cat Pig Cat Cat			1	D D	39 163 163
310 311 312 313 314 315	Levomethorphan (Ro 1-7788; 1-3-Methoxy-N-methyl-morphinan) Levorphan (Ro 1-5431/7; Levo-dromoran; 1-3-Hydroxy-N-methyl-morphinan) Lithium chloride Lobelanidine	Cat Pig Cat Cat Cat Cat			3	D D (D) (D)	39 163 163 5,16,31,80
310 311 312 313 314 315 316	Levomethorphan (Ro 1-7788; 1-3-Methoxy-N-methyl-morphinan) Levorphan (Ro 1-5431/7; Levo-dromoran; 1-3-Hydroxy-N-methyl-morphinan) Lithium chloride Lobelanidine Lobelanine	Cat Pig Cat Cat Cat Cat Cat Dog	10-50	1	3	D D (D)	39 163 163 5,16,31,80 97,163,
310 311 312 313 314 315 316 317	Levomethorphan (Ro 1-7788; 1-3-Methoxy-N-methyl-morphinan) Levorphan (Ro 1-5431/7; Levo-dromoran; 1-3-Hydroxy-N-methyl-morphinan) Lithium chloride Lobelanidine Lobelanine	Cat Pig Cat Cat Cat Cat Cat Cat Cat Dog Guinea pig		I C	3	D D (D) (D)	39 163 163 5,16,31,80
310 311 312 313 314 315 316 317 318	Levomethorphan (Ro 1-7788; 1-3-Methoxy-N-methyl-morphinan) Levorphan (Ro 1-5431/7; Levo-dromoran; 1-3-Hydroxy-N-methyl-morphinan) Lithium chloride Lobelanidine Lobelanine	Cat Pig Cat Cat Cat Cat Cat Count Co	80-100	I C D	3	D D (D) (D)	39 163 163 5,16,31,80 97,163,
310 311 312 313 314 315 316 317 318 319	Levomethorphan (Ro 1-7788; 1-3-Methoxy-N-methyl-morphinan) Levorphan (Ro 1-5431/7; Levo-dromoran; 1-3-Hydroxy-N-methyl-morphinan) Lithium chloride Lobelanidine Lobelanine	Cat Pig Cat Cat Cat Cat Cat Cat Dog Guinea pig Guinea pig Ox		I C D D	3	D D (D) (D)	39 163 163 5,16,31,80 97,163,
310 311 312 313 314 315 316 317 318 319 320	Levomethorphan (Ro 1-7788; 1-3-Methoxy-N-methyl-morphinan) Levorphan (Ro 1-5431/7; Levo-dromoran; 1-3-Hydroxy-N-methyl-morphinan) Lithium chloride Lobelanidine Lobelanine Lobeline	Cat Pig Cat Cat Cat Cat Cat Dog Guinea pig Guinea pig Ox Pig	80-100	I C D D D	3	D D (D) (D)	39 163 163 5,16,31,80 97,163, 164
310 311 312 313 314 315 316 317 318 319 320 321	Levomethorphan (Ro 1-7788; 1-3-Methoxy-N-methyl-morphinan) Levorphan (Ro 1-5431/7; Levo-dromoran; 1-3-Hydroxy-N-methyl-morphinan) Lithium chloride Lobelanidine Lobelanine Lobeline	Cat Cat Pig Cat Cat Cat Cat Dog Guinea pig Guinea pig Ox Pig Dog	80-100 150-250	I C D D D D D	3	D D (D) (D)	39 163 163 5,16,31,80 97,163, 164
310 311 312 313 314 315 316 317 318 319 320	Levomethorphan (Ro 1-7788; 1-3-Methoxy-N-methyl-morphinan) Levorphan (Ro 1-5431/7; Levo-dromoran; 1-3-Hydroxy-N-methyl-morphinan) Lithium chloride Lobelanidine Lobelanine Lobeline	Cat Pig Cat Cat Cat Cat Cat Dog Guinea pig Guinea pig Ox Pig	80-100 150-250	C D D D D D D	3	D D (D) (D)	39 163 163 5,16,31,80 97,163, 164
310 311 312 313 314 315 316 317 318 319 320 321	Levomethorphan (Ro 1-7788; 1-3-Methoxy-N-methyl-morphinan) Levorphan (Ro 1-5431/7; Levo-dromoran; 1-3-Hydroxy-N-methyl-morphinan) Lithium chloride Lobelanidine Lobelanine Lobeline Magnesium chloride	Cat Cat Pig Cat Cat Cat Cat Dog Guinea pig Guinea pig Ox Pig Dog	80-100 150-250	I C D D D D D	3	D D (D) (D)	39 163 163 5,16,31,80 97,163, 164
310 311 312 313 314 315 316 317 318 319 320 321 322	Levomethorphan (Ro 1-7788; 1-3-Methoxy-N-methyl-morphinan) Levorphan (Ro 1-5431/7; Levo-dromoran; 1-3-Hydroxy-N-methyl-morphinan) Lithium chloride Lobelanidine Lobelanine Lobeline Magnesium chloride	Cat Cat Pig Cat Cat Cat Cat Dog Guinea pig Guinea pig Ox Pig Dog Guinea pig	80-100 150-250	C D D D D D D	3	D D (D) (D)	39 163 163 5,16,31,80 97,163,

^{/1/} pH 5 to pH 2. /2/ Lambkill.

A = active, but action complex (original literature should be consulted); C = constricts; D = dilates; I = inactive. Parentheses in Columns D and F indicate action is slight, irregular, or doubtful, and the original literature should be consulted.

	Compound	Specie	Loca	Effec		mio	Pote
	(Synonym)	Species			Syster		Reference
	(A)	(B)	μg/ml	Action	mg/kg	Action	101
27 [(A)		(C)	(D)	(E)	(F)	(G)
	Melamine (2, 4, 6-Triaminotriazine)	Guinea pig	200-800	D			15
	Meperidine (Demerol; Dolantal; Dolantin; Dolosal; Pethidine; Ethyl-1-methyl-4- phenylpiperidine-4-carboxylate)	Guinea pig		D			166
	Methacholine (Amechol; Mecholyl;	Man		С	0.5	С	2,114,133,
29	Acetyl-β-methylcholine)	Cat		C			167-169
30		Dog	1	С	0.001-0.1	С	
31		Guinea pig		С			
32		Rat	-	С			
	Methaphenilene (Diatrine; N-(2-Thenyl)-N-	Cat			1-5	С	60
34	phenyl-N', N'-dimethyl-ethylenediamine)	Dog		-	2	С	
35		Guinea pig	1-140	C			
36		Guinea pig	200-1000	D	-		
	Methapyrilene (Histadyl; Thenylene; N-(2-	Cat			2.5-10	C	60
38	Thenyl)-N-(2-pyridyl)-N', N'-dimethyl-	Dog	0.0.000		2	С	
39	ethylenediamine)	Guinea pig		С			
40	Methenamine (Cystogen; Cystomine; Formin;	Guinea pig	1000	D		D	15,37
342	Hexamine; Uritone; Urotropine; Hexamethylenetetramine)	Dog Guinea pig	200-1000	I		D	15,37
43	2-Methyl-4-amino-5-cyano-pyrimidine	Guinea pig	10	(D)			15
	2-Methyl-4-amino-5-methylamino-pyrimidine	Guinea pig	100	(D)			15
- 1	(B ₁ -pyrimidine; Grewe diamine)			1 '-'			
45	β-Methylcholine ethyl ether	Dog				C	167
46	2-Methyl-4, 6-dihydroxy-pyrimidine	Guinea pig	<100	I			15
	(5-Methylfurfuryl)trimethylammonium iodide (Methyl-furmethide)	Guinea pig			5-50	С	20
48 [N-Methyl-histamine	Guinea pig			0.1-0.3	С	126
	Methyl-isothiourea	Guinea pig			2-5	(1)	135
	Morphine	Cat		С	20	С	2,31,39,40
51		Dog		С	0.8-5.0	С	56,68,76
352		Guinea pig		I	25	(I)	79,80,
353		Ox	1000	D			170,171
354		Pig	200	(C)			
355		Rabbit		I			
	β-Morpholinoethyl diphenylhydroxy thioacetate (Ro 3-0368)	Rabbit	20	(D)			83,121
57	y-Morpholinopropyl diphenylhydroxy	Guinea pig	30-50	(D)		-	83,121
59	thioacetate (Ro 3-0299) Muscarine	Rabbit	20-50	(D)	-	C	10,70,80,8
160	Muscarine			C	 	C	84,87,96
61		Dog Guinea pig	0.007-0.05	C		C	113,129
62		Ox	0.001 0.03	C		-	143,172
363		Pig		C			174
364		Rabbit	0.007	C		C	• • •
365		Frog	0.001	C			
366		Turtle		+ -	-	С	
367	2-a-Naphthylethyl isothiourea	Cat		+	0.01-0.02	C	127 /
68	Narceine	Dog			0.01	Ī	29,31,110
69		Pig	200	D			
70	Narcotine (Gnoscopine)	Dog		+	3	C	29,31,110
71	,	Pig				D	
72	Neopine	Dog		1		C	29
373	Neurine (Vinyltrimethylammonium hydroxide)	Cat				C	80
374	Nicotine 1	Man		1			2,10,16,31
375		Cat		(C)	3	C	37,40,50
376		Cat			10	D	62,77,80
377		Dog	5-2000	C		A	84,130,
378		Guinea pig	20-1000	A			137,175,
2.01						A	

^{/1/} See also sodium nicotinate.

A = active, but action complex (original literature should be consulted); C = constricts; D = dilates; l = inactive. Parentheses in Columns D and F indicate action is slight, irregular, or doubtful, and the original literature should be consulted.

	Compound			Effec			D - 6-
	(Synonym)	Species	Loca		Syste		Reference
			μg/ml	Action	mg/kg	Action	
	(A)	(B)	(C)	(D)	(E)	(F)	(G)
80	Nicotine ¹ (concluded)	Pig	80	A			
881		Frog	0.1-1.0	D		A	2.
82	Nucleic acid, thymus	Pig		I		1	31
83	Nucleic acid, yeast	Pig		1	_		31
84	Ovalbumin	Guinea pig		1			97
85	Pantopium (Omnopon; Pantopon)2	Dog			3	С	29,31
86		Pig	20	D			
87	Papaverine	Cat	4-20	D			2,10,11,15
88		Dog		D	1 - 2	D	31,43,4
89		Guinea pig	0.5-5	D	25-80	D	83,84,9
90		Ox	50-100	D			109,171
91		Pig	50	D			177-183
92		Rabbit	<100	(I)			
93		Frog	50-200	D			
94	Pavatrine (β-Dimethylaminoethyl fluorene- 9-carboxylate)	Guinea pig			<50	I	171
95	Pentamidine isethionale	Guinea pig			25	С	14
96	Pentylenetetrazole (Cardiazol; Metrazol;	Guinea pig		1			10,97
97	Pentamethylene tetrazole)	Frog	0.4	C			
98	Peptone	Cat	<50	1	20-50	С	1,6,12,39
99		Dog			0.1-0.2	C	40,56,8
00		Guinea pig	300-10,000	C	7	C	94,96,
01		Ox		1		 	114,127
02		Frog	<100	1			143,180 182-18
^3	Dharasina (Halassina)	Die		D			31
03	Phenacaine (Holocaine)	Pig			1-10	С	60
04	Phenindamine (Thephorin; Nu 1504; 2-	Cat			1	C	00
05	Methyl-9-phenyl-2, 3, 4, 9-tetrahydro-	Dog	1 400		1		
06	1-pyridindene)	Guinea pig	1-400	С		-	
07		Guinea pig	1000	D			
08	1-Phenoxy-2-dimethylamino-ethane	Guinea pig		C			185
09	Phenoxyethyldiethylamine (928 F)	Guinea pig		I			186
10	Phentolamine (Regitine; Rogitine; C 7337; 2-[N-p'-Tolyl-N-(m'-Hydroxyphenyl)- aminomethyl] -imadazoline)	Rabbit		I			187
11	N-Phenyl-N-ethyl-N', N'-diethyl- ethylenediamine (1571F)	Guinea pig		С			188
12	(a-Phenylethyl)trimethylammonium iodide	Guinea pig		1	1		89
13	Physostigmine (Eserine)	Man	20-100	C			2,4,9,10,1
14	, , , , , , , , , , , , , , , , , , , ,	Cat		C	0.1-2.0	C	17,31,3
15		Dog		C	0.1-2.5	C	40,56,6
16		Guinea pig	100	C	0.75	C	64,68,7
17		Ox		I			76,80,8
18		Pig		C			122,129
119		Rabbit		C	0.3	C	171,189
20		Frog	10-200	C			191
21	Pilocarpine	Man	0.1-1.0	C	<0.1	1	2,5,16,17
	1 Hocarpine	المنافقة المنافقة المنافقة المنافقة المنافقة المنافقة المنافقة المنافقة المنافقة المنافقة المنافقة المنافقة ا		C	0.1-12.0	C	19,31,3
22		Cat	0.2	C		C	39,47,5
23		Dog	0.1-1.0		0.05-2.0		
24		Guinea pig	1-1000	С			56,57,6
25		Ox	1-75	С			64,68,7
26		Pig	30-40	C			73,76,8
27		Rabbit	10	С	2	C	82,84,9
28		Turtle			10	С	129,131
20	No. 201	0.1	1 10	-			192-20
29	Ψ-Piperidinoamyl diphenylhydroxythio-	Guinea pig	1-10	D		ļ	83,121
130	acetate (Ro 3-0320)	Rabbi t	5-20	(D)			1
	β-Piperidinoethyl diphenylhydroxythio-	Guinea pig		D			83,121
131 132		Rabbit	2-10	(D)		-	0

^{/1/} See also sodium nicotinate. /2/ Mixed opium alkaloids.

	Compound	Species	Loca	Effe	Y	mia	Poto
	(Synonym)	Species			Syste		Reference
	(4)	(5)	μg/ml	Action	mg/kg	Action	
	(A) Piperidinopropyl diphenylhydroxythio-	(B) Guinea pig	(C)	(D)	(E)	(F)	(G)
	cetate (Ro 3-0290) eroxan (Benodaine; 933 F; Piperi-	Dog			10	I	22,186
	linomethylbenzodioxane)	Guinea pig		C	10	-	22,100
	assium chloride	Man		C			3,10,31,30
37	abbrain chirol rac	Cat		C			39,201
38		Dog		C			37,201
39		Guinea pig	1000-2500	C		-	
40		Ox	2000	C			
41		Pig	2500	(D)			
42		Rabbit		C		1	
43		Rat		C			
44		Frog		A			
45 Pri	mary albumose	Dog			200	С	202
	ocaine (Novocaine)	Man	100	(D)			15,31
47		Guinea pig	<10	I			
48		Guinea pig	100	(D)			
49		Pig		D			
50 Pro	omethazine (Phenergan; 3277 RP;	Man	400	(D)			60
	N-(2-Dimethylamino-2-methylethyl)-	Cat			1-5	С	
	henothiazine)	Dog			1	C	
53		Guinea pig	0.3-200	С			
54		Guinea pig	1000	D			
	osympal (883 F; Diethylaminomethylenzodioxane)	Guinea pig		С			186
56 Pro	otoveratrine	Ox	70	I			39
57 Put	rescine	Guinea pig		C			38
	3-Pyrazole)-ethylamine	Guinea pig	40-200	C			203
	2-Pyridyl)-ethylamine	Guinea pig	1-40	С			203,204
	ilamine (Mepyramine; Neoantergan;	Man	4-200	С			17,25,60
	yranisamine; N-(p-Methoxybenzyl)-	Cat			1-10	C	
	I-(2-pyridyl)-N', N'-dimethyl-ethylene-	Dog			1	С	
1	iamine)	Guinea pig	0.4-700	С			
64		Guinea pig	1000	D			
	brachamine	Cat		<u> </u>		I	72
66	1 1 *	Ox		I			
	ebrachine	Cat		7		I	72
68 69 Qui:	nine	Ox		I			10 21 27
	nine	Dog	1000	(D)		С	10,31,37,
70 71		Guinea pig Ox	1000	(D)			56
72		Pig		D			
73		Frog	200	C			
	nine methochloride	Dog	200		10	C	114
	nicarbazide	Guinea pig	<100	I		<u> </u>	204
	ium azide	Guinea pig	-100	D			205,206
-	ium bromide	Ox Ox		I			31,39
78		Pig	2000-4000	D			/
	ium camphorate	Dog				I	37
	ium cyanate	Guinea pig	10-400	D			15,207
31 Sod	ium cyanide	Cat		С			2
	ium hydroxide	Guinea pig		Cl			10,31,36,3
33		Ox		(C)			60
34		Pig		A			
35		Frog		(C)			
	ium lodide	Dog	250,000	D		1	31,37,39,
37		Guinea pig	15,000	D			56,77
88		Ox	4000	С			
89		Pig	2500	D			
90 Sod	ium nicotinate	Dog		(I)			45

/1/ At pH 11.

	Communication of the communica			Effe	ct		
	Compound (Synonym)	Species	Local		Syste	m	Reference
			µg/ml	Action	mg/kg	Action	
	(A)	(B)	(C)	(D)	(E)	(F)	(G)
491	Sodium nitrate	Ox		I			31,39
492		Pig	3000	(C)			
493	Sodium nitrite	Guinea pig	8000	I	80	D	10,31,39,
494		Ox	2000	C			56,214
495		Pig	1000	D			
496		Frog	140	D			
497	Sodium nucleinate	Guinea pig		С			38
498	Sodium theophyllinate	Rabbit	500	I			53
199	Sodium thiocyanate	Guinea pig	10,000	I			39,56,94
500		Ox		С			
01	Sodium m-vanadate	Dog			2	С	208
502	Sodium o-vanadate	Dog		1	2	C	37,56
603		Guinea pig	2000	С			
04	Sparteine	Guinea pig	100	С			16
05	Staphylococcus toxin	Guinea pig		C	+		209
06	Starch (Amylum)	Guinea pig	10.000	I			1
07	Stovaine	Pig	200	D			31
08	Strontium chloride	Ox		C			39
09	Strophanthin	Cat		1			84
10	Strychnine	Cat		I			39,56,77,8
511	ou yennine	Dog		(D)		-	37,30,77,8
12		Guinea pig		I		ļ	
13		Ox	1000	D	-		
14	Substance P	Man		1		-	91
15		Cat		I			
16	Suramin	Cat			250	(D)	14
517	Syntropan (Amprotropine; 3-Diethylamino-	Guinea pig	10	I			43
	2, 2-dimethyl-propyl tropate)						
518	Tetramethylammonium chloride	Guinea pig	80	C			16
19	Tetraethylpyrophosphate (TEPP)	Guinea pig		С			123
20	Tetrahydropapaveroline	Cat			2-10	D	196
21	Tetramethylene diisothiourea	Guinea pig			5	(D)	135
522	Thebaine)	Dog			1	C	31,66,110
23	,	Pig		+		(C)	
524	Theobromine (3, 7-Dimethylxanthine)	Cat	-	1		D	15,31,95
525	2.110 OD 1 Otto (15, 1 D 1 III C til J 2.110 III C)	Dog				D	10,01,,0
26			40-100	D		D	
27		Pig	70	D		+ -	
528	Theophylline (1, 3-Dimethylxanthine)	Cat	10	-	-	D	15,53,95,
529	Theophymne (1, 3-Dimemymanume)	Dog		-	-	D	210
30			10-100	D		D	210
		Guinea pig		1		D	
31	The archaelting area (b) (The control of the contro	Rabbit	200	I	-	-	0.5
32	Theophylline monoethanolamine (Theamin)	Cat				D	95
33		Dog			1.0.15	D	
		0 1			10-15	D	
		Guinea pig		+			h ()
35	Theophylline sodium acetate (Theocin)	Dog			10-60	D	50
35		Dog Guinea pig		D	10-60	D	
35 36 37	Thymine (5-Methyluracil)	Dog Guinea pig Guinea pig	10-100	1			15
35 36 37 38	Thymine (5-Methyluracil) Thymoxyethyldiethylamine (929 F)	Dog Guinea pig Guinea pig Guinea pig	10-100		10-60	С	15 186,188
35 36 37 38 39	Thymine (5-Methyluracil)	Dog Guinea pig Guinea pig Guinea pig Cat	10-100	1			15
35 36 37 38 39 40	Thymine (5-Methyluracil) Thymoxyethyldiethylamine (929 F)	Dog Guinea pig Guinea pig Guinea pig	10-100	C		С	15 186,188 62
35 36 37 38 39 40	Thymine (5-Methyluracil) Thymoxyethyldiethylamine (929 F)	Dog Guinea pig Guinea pig Guinea pig Cat	0.001-0.01	1		C (D)	15 186,188
35 36 37 38 39 40 41	Thymine (5-Methyluracil) Thymoxyethyldiethylamine (929 F) Thyroid extract	Dog Guinea pig Guinea pig Guinea pig Guinea pig Cat Rabbit		C		C (D)	15 186,188 62
635 636 637 638 639 640 641 642	Thymine (5-Methyluracil) Thymoxyethyldiethylamine (929 F) Thyroid extract Thyroxine	Dog Guinea pig Guinea pig Guinea pig Cat Rabbit Frog	0.001-0.01	C C		C (D)	15 186,188 62
635 636 637 638 639 640 641 642 643	Thymine (5-Methyluracil) Thymoxyethyldiethylamine (929 F) Thyroid extract Thyroxine d-Tubocurarine	Dog Guinea pig Guinea pig Guinea pig Cat Rabbit Frog Man Dog	0.001-0.01	C C	5	C (D) (D)	15 186,188 62
35 36 37 38 39 40 41 42 43	Thymine (5-Methyluracil) Thymoxyethyldiethylamine (929 F) Thyroid extract Thyroxine	Dog Guinea pig Guinea pig Guinea pig Cat Rabbit Frog Man Dog	0,001-0.01	C C D	5	C (D) (D)	15 186,188 62 6 15,114
635 636 637 638 639 640 641 642 643	Thymine (5-Methyluracil) Thymoxyethyldiethylamine (929 F) Thyroid extract Thyroxine d-Tubocurarine Trasentine (Adiphenine; Diethylaminoethyl diphenylacetate)	Dog Guinea pig Guinea pig Guinea pig Cat Rabbit Frog Man Dog Guinea pig	0,001-0.01	C C D	5	C (D) (D)	15 186,188 62 6 15,114 43,99
535 536 537 538 539 540 541 542 543 544	Thymine (5-Methyluracil) Thymoxyethyldiethylamine (929 F) Thyroid extract Thyroxine d-Tubocurarine Trasentine (Adiphenine; Diethylaminoethyl diphenylacetate) Tribromoethanol	Dog Guinea pig Guinea pig Guinea pig Cat Rabbit Frog Man Dog Guinea pig	0,001-0.01	C C D	5	C (D) (D)	15 186,188 62 6 15,114 43,99
635 636 637 638 639 640 641 642 643 644	Thymine (5-Methyluracil) Thymoxyethyldiethylamine (929 F) Thyroid extract Thyroxine d-Tubocurarine Trasentine (Adiphenine; Diethylaminoethyl diphenylacetate) Tribromoethanol Trichloroethanol	Dog Guinea pig Guinea pig Cat Rabbit Frog Man Dog Guinea pig	0,001-0.01	C C D	5	C (D) (D) A	15 186,188 62 6 15,114 43,99 92 92
535 536 537 538 539 540 541 542 543 544	Thymine (5-Methyluracil) Thymoxyethyldiethylamine (929 F) Thyroid extract Thyroxine d-Tubocurarine Trasentine (Adiphenine; Diethylamino-ethyl diphenylacetate) Tribromoethanol Trichloroethanol Trimethylamine	Dog Guinea pig Guinea pig Guinea pig Cat Rabbit Frog Man Dog Guinea pig Dog Dog Dog	0,001-0.01	C D	5	C (D) (D)	15 186,188 62 6 15,114 43,99 92 92 37
545	Thymine (5-Methyluracil) Thymoxyethyldiethylamine (929 F) Thyroid extract Thyroxine d-Tubocurarine Trasentine (Adiphenine; Diethylaminoethyl diphenylacetate) Tribromoethanol Trichloroethanol Trimethylamine Trimethylamine Trimethyl(2-aminoethyl)ammonium chloride	Dog Guinea pig Guinea pig Cat Rabbit Frog Man Dog Guinea pig	0,001-0.01	C C D	5	C (D) (D) A	15 186,188 62 6 15,114 43,99 92 92

A = active, but action complex (original literature should be consulted); C = constricts; D = dilates; I = inactive. Parentheses in Columns D and F indicate action is slight, irregular, or doubtful, and the original literature should be consulted.

	Company			Effe	ct		
	Compound (Synonym)	Species	Loca	1	Syste	mic	Reference
	(Synonym)		µg/ml	Action	mg/kg	Action	
	(A)	(B)	(C)	(D)	(E)	(F)	(G)
550	Trimethyl(2-methylaminoethyl)ammonium chloride	Rabbit		С			107
551	Tripelennamine (Pyribenzamine; N-(2-	Cat			0.2-10	С	60
552	Pyridyl)-N-benzyl-N', N'-dimethyl-	Dog			1	C	
553	ethylenediamine)	Guinea pig	0.4-300	C			
554		Guinea pig	1000	D			
555	Typhobacterin	Guinea pig				C	35
556	Uracil (2, 4-Dioxopyrimidine)	Guinea pig	<10	I			15
557	Urea	Guinea pig	<1000	I			15
558	Urethane (Ethyl urethane, q.v.)	Cat		D		D	31,56,80,81,
559		Guinea pig	10,000	D			84,190
560		Pig		D			
561		Rabbit	5,000-10,000	D		1	
562		Sheep	5,000-10,000	D			1
563	Uric acid	Guinea pig	200-400	I			15
564	Venom of Crotalus atrox	Cat		C			211
565		Guinea pig		С			1
566	Venom of Denisonia superba	Cat		(C)			211
567		Guinea pig		(C)			
568	Venom of Naia naia	Cat		С			211
569		Guinea pig		C			
570	Veratrine	Cat	10-30	C	0.3	C	10,39,77,80,
571		Dog	3	D			127
572		Ox	<300	1			
573		Frog	1-10	D]
574	Visammin	Dog				D	212
575		Pig		D			
576	Xanthine (2, 6-Dioxopurine)	Cat				D	15,31,95
577		Dog				D	
578		Guinea pig	<10	I		D	
579		Pig	0.5-1	D			
580	Xysmalobinum	Cat			0.25	C	213
581	Zinc sulphate	Frog	600-3000	C			10

Contributor: Hawkins, D. F.

References: [1] Hanzlick, P. J., and Karsner, H. T., J. Pharm. Exp. Ther. 14:449, 1920. [2] Sollmann, T., and Gilbert, A. J., ibid 61:272, 1937. [3] Akcasu, A., J. Pharm., Lond. 4:671, 1952. [4] Alles, G. A., and Prinzmetal, M., J. Pharm. Exp. Ther. 48:161, 1933. [5] Björkman, S. E., C. rend. Soc. biol. 94:947, 1926. [6] Corsten, M., Pflügers Arch. 244:281, 1941. [7] Dale, H. H., J. Pharm. Exp. Ther. 6:147, 1914. [8] Daly, l. de B., Quart. J. Exp. Physiol., Lond. 28:357, 1938. [9] Dijkstra, C., and Noyons, A. K., Arch. internat. physiol. 49:257, 1939. [10] Dirner, Z., Arch. exp. Path. 146:232, 1929. [11] Dirner, Z., ibid 157:154, 1930. [12] Epstein, D. E., J. Physiol., Lond. 76:346, 1931. [13] Freyburger, W. A., Graham, B. E., Rapport, M. M., Seay, P. H., Govier, W. M., Swoap, O. F., and Vander Brook, M. H., J. Pharm. Exp. Ther. 105:80, 1952. [14] Guimaraes, J. L., and Lourie, E. M., Brit. J. Pharm. 6:514, 1951. [15] Hawkins, D. F. (thesis), London, 1952. [16] Hawkins, D. F., and Paton, W. D., unpublished, 1957. [17] Hawkins, D. F., and Schild, II. O., Brit. J. Pharm. 6:682, 1951. [18] Houssay, B. A., and Orias, O., C. rend. Soc. biol. 117:61, 1934. [19] Kiese, M., Arch. exp. Path. 178:342, 1935. [20] Lourie, E. M., Brit, J. Pharm. 7:130, 1952. [21] McDougal, M. D., and West, G. B., ibid 8:26, 1953. [22] Melville, K. I., Arch. internat. pharm. dyn., Par. 58:129, 1938. [23] Rosa, L., Boll. e Mem. del. Soc. Tosco-Umbro Emiliana d. Med. int. 1:26, 1950. [24] Rosa, L., and McDowall, R. J., Acta Allerg. 4:293, 1951. [25] Schild, H. O., Hawkins, D. F., Mongar, J. L., and Herxheimer, H., Lancet 2:376, 1951. [26] Villaret, M., Justin-Besancon, L., and Vexenat, G., C. rend. Soc. biol. 100:806, 1929. [27] White, A. C., and Stedman, E., J. Pharm. Exp. Ther. 41:259, 1931. [28] Wick, H., Arch. exp. Path. 213:485, 1951. [29] Jackson, D. E., J. Pharm. Exp. Ther. 6:57, 1914. [30] Kleitman, N., Am. J. Physiol. 60:203, 1922. [31] Macht, D. I., and Ting, G. C., J. Pharm. Exp. Ther. 18:373, 1921. [32] Bennet, D. W., and Drury, A. N., J. Physiol., Lond. 72:288, 1931. [33] Green, H. N., and Stoner, H. B., "Biological Actions of the Adenine Nucleotides," p 111, London: Lewis, 1950. [34] Lendle, L., Arch. exp. Path. 187:371, 1937. [35] Hanzlick, P. J., and Karsner, II. T., J. Pharm. Exp. Ther. 14:379, 1920. [36] Schild, H. O., Quart. J. Exp. Physiol., Lond. 26:165, 1936. [37] Jackson, D. E., J. Pharm. Exp. Ther. 4:291, 1913. [38] De Cuyper, T., Arch. internat. pharm. dyn., Par. 72:360, 1946. [39] Trendelenburg, P., Arch. exp. Path. 69:79, 1912. [40] Weber, E., Arch. Anat. Physiol., Lpz., p 63, 1914. [41] Gruber, C. M., Jr., Kwang Soo Lee, and Gruber, C. M., J. Pharm. Exp. Ther., 99:312, 1950. [42] Wakim, K. G., and Chen, K. K., ibid 90:57, 1947. [43] Castillo, J. C., and De Beer, E. J., J. Pharm. Exp. Ther. 90:104, 1947. [44] Chen, G., and Ensor, C. R., J. Laborat. Clin. M. 34:1010, 1949. [45] Gilbert, A.J.,

and Goldman, F., Proc. Soc. Exp. Biol. 44:458, 1940. [46] Hambourger, W. E., Freese, H. B., Winbury, M. M., and Mikhiels, P. M., J. Pharm. Exp. Ther. 94:367, 1948. [47] Hawkins, D. F., Herxheimer, H., and Schild, H. O., J. Physiol., Lond. 113:26P, 1951. [48] Herxheimer, H., Arch. internat. pharm. dyn., Par. 106:371, 1956. [49] Lehmann, G., J. Pharm. Exp. Ther. 92:249, 1948. [50] Luduena, F. P., ibid 75:316, 1942. [51] Rubitsky, H. J., Herschfus, J. A., Levinson, L., Bresnick, E., and Segal, M. S., J. Allergy 21:559, 1950. [52] Segal, M. S., Levinson, L., Bresnick, E., and Beakey, J. F., J. Clin. Invest. 28:1190, 1949. [53] Young, R. H., and Gilbert, R. P., J. Allergy 12:235, 1941. [54] Januschke, H., and Lasch, F., Arch. exp. Path. 114:70, 1926. [55] Eichler, O., and Mügge, H., ibid 159:633, 1931. [56] Baehr, G., and Pick, E. P., ibid 74:41, 1913. [57] Chu, H-P, and How, G. K., Chin. J. Physiol. 5:115, 1931. [58] Hardikar, S. W., J. Pharm. Exp. Ther. 20:17, 1922. [59] Charlier, R., and Philippot, E., Arch. internat. pharm. dyn., Par. 78:559, 1948. [60] Hawkins, D. F., Brit. J. Pharm. 10:230, 1955. [61] Sandberg, F., Acta physiol. scand. 25:(suppl. 91) 1952. [62] Golla, F. L., and Symes, W. L., J. Pharm. Exp. Ther. 5:87, 1913. [63] Chen, K. K., ibid 33:237, 1928. [64] Co Tui, Burstein, C. L., and Wright, A. M., J. Pharm. Exp. Ther. 58:33, 1936. [65] Epstein, D. E., Gunn, J. A., and Virden, C. J., J. Physiol., Lond. 76:224, 1931. [66] Jackson, D. E., J. Pharm. Exp. Ther. 5:479, 1914. [67] Pedden, J. R., Tainter, M. L., and Cameron, W. M., ibid 55:242, 1935. [68] Swanson, E. E., and Webster, R. K., ibid 38:327, 1930. [69] Rietschel, H. G., Arch. exp. Path. 186:387, 1937. [70] Trendelenburg, P., Zbl. Physiol. 26:1, 1912. [71] Wick, H., Arch. exp. Path. 212:133, 1950. [72] Cow, D., J. Pharm. Exp. Ther. 5:341, 1914. [73] Florey, H., and Wells, A. Q., ibid 42:133, 1931. [74] Macht, D. l., Arch. internat. pharm. dyn., Par. 27:175, 1923. [75] Melville, K. I., ibid 58:139, 1938. [76] Swanson, E. E., J. Pharm. Exp. Ther. 36:541, 1929. [77] Titone, F. P., Pflügers Arch. 155:77, 1914. [78] Randall, L. O., and Smith, T. H., J. Pharm. Exp. Ther. 103:10, 1951. [79] Cameron, W. M., and Tainter, M. L., ibid 57:152, 1936. [80] Dixon, W. E., and Brodie, T. G., J. Physiol., Lond. 29:97, 1903. [81] Franklin, K. J., J. Pharm. Exp. Ther. 26:227, 1925. [82] De Gamrat, C., Rev. méd. Suisse rom. 29:245, 1909. [83] Hawkins, D. F., and Parkes, M. W., unpublished, 1957. [84] Lohr, H., Zschr. ges. exp. Med. 39:67, 1924. [85] Werle, E., in "Polypeptides which Stimulate Plain Muscle," Gaddum, J. H., ed., p 23, London: Livingstone, 1955. [86] Akcasu, A., Sinha, Y. K., and West G. B., Brit. J. Pharm. 7:331, 1952. [87] Bullowa, J. G., and Gottlieb, C., Am. J. M. Sc. 160:98, 1920. [88] Macht, D. I., J. Pharm. Exp. Ther. 13:509, 1919. [89] Fellows, E. J., and Livingston, A. E., ibid 74:65, 1942. [90] Archer, J. D., Howard, J. K., and Nash, J. B., ibid 101:1, 1951. [91] Brocklehurst, W. E., J. Physiol., Lond. 120:16P, 1953. [92] Lehmann, G., and Knoeffel, P. K., J. Pharm. Exp. Ther. 63:453, 1938. [93] Bovet, D., Bovet, F., and Montezin, G., C. rend. Soc. biol. 140:91, 1946. [94] Baehr, G., and Pick, E. P., Arch. Exp. Path. 74:65, 1913. [95] Emmelin, N., Kahlson, G. S., and Lindstrom, K., Acta physiol. scand. 3:39, 1941. [96] Pal, J., Deut. med. Wschr. 38:1774, 1912. [97] Warnant, H., Arch. internat. pharm. dyn., Par. 37:61, 1930. [98] Lipschitz, W., and Osterroth, J., Arch. exp. Path. 106:341, 1925. [99] Kraatz, C. P., Gruber, C. M., Jr., Shields, H. L., and Gruber, C. M., J. Pharm. Exp. Ther. 96:42, 1949. [100] Farber, S., Arch. internat. pharm. dyn., Par. 53:377, 1936. [101] Hanzlick, P. J., J. Pharm. Exp. Ther. 6:596, 1915. [102] Hanzlick, P. J., ibid 7:99, 1915. [103] Hanzlick, P. J., ibid 18:63, 1921. [104] Einthoven, W., Pflügers Arch. 51:367, 1892. [105] Vane, J. R., Brit. J. Pharm. 4:14, 1949. [106] Hasama, B., Arch. exp. Path. 153:161, 1930. [107] Von Oettingen, W. F., and Eveleth, D. F., J. Pharm. Exp. Ther. 44:465, 1932. [108] Ambrose, A. M., and De Eds, F., ibid 88:173, 1946. [109] Macht, D. 1., ibid 7:339, 1915. [110] Macht, D. I., ibid 11:176, 1918. [111] Dews, P. B., Wnuck, A. L., Fanelli, R. V., Light, A. E., Tornaben, J. A., Norton, S., Ellis, C. H., and De Beer, E. J., ibid 107:1, 1953. [112] Reynolds, A. K., ibid 69:112, 1940. [113] Golla, F. L., and Symes, W. L., J. Physiol., Lond. 46:38P, 1913. [114] Landmesser, C. M., Anesthesiology 8:506, 1947. [115] Pal, J., Arch. gen. méd., Par. 203:69, 1913. [116] West, R., Arch. internat. pharm. dyn., Par. 56:81, 1937. [117] West, R., J. Physiol., Lond. 91:437, 1938. [118] Kuck, H., and Vogt, W., Arch. exp. Path. 209:71, 1950. [119] Randall, L. O., Kruger, J., Conroy, C., Kappell, B., and Benson, W. M., Arch. exp. Path. 220:26, 1953. [120] Kraatz, C. P., Gruber, C. M., Jr., and Lisi, A. G., J. Pharm. Exp. Ther. 98:111, 1950. [121] Parkes, M. W., Brit. J. Pharm. 10:95, 1955. [122] Atanackovic, D., and Dalgaard-Mikkelsen, S., Arch. internat. pharm. dyn., Par. 85:1, 1951. [123] Douglas, W. W., J. Physiol., Lond. 112:20P, 1950. [124] Heymans, C., Estable, J. J., and De Bonneveaux, C. S., Arch. internat. pharm. dyn., Par. 79:123, 1949. [125] Supniewski, J. V., Serafinowna, M., and Hano, J., Arch. exp. Path. 183:725, 1936. [126] Vartianen, A., J. Pharm. Exp. Ther. 54:265, 1935. [127] Barer, G. R., and Nusser, E., Brit. J. Pharm. 8:315, 1953. [128] Pick, E. P., and Wasicky, R., Arch. exp. Path. 80:147, 1916. [129] Prevost, J. L., and Saloz, J., Arch. internat. physiol. 8:327, 1910. [130] Hebb, C. O., J. Physiol., Lond. 99:57, 1940. [131] Jackson, D. E., J. Pharm. Exp. Ther. 4:59, 1912. [132] Lasch, F., Arch. exp. Path. 124:231, 1927. [133] De Wispelaere, H., Arch. internat. pharm. dyn., Par. 56:363, 1937. [134] Gruber, C. M., De Beradinis, C. T., Shields, H. L., and Copeland, J. E., J. Pharm. Exp. Ther. 98:274, 1950. [135] Fastier, F. N., Brit. J. Pharm. 4:315, 1949. [136] Dayrit, C., Manry, C. H., and Seevers, M. H., J. Pharm. Exp. Ther. 92:173, 1948. [137] Carlson, A. J., and Luckhardt, A. B., Am. J. Physiol. 54:55, 1920. [138] Dale, H. H., and Laidlaw, P. P., J. Physiol., Lond. 41:318, 1910. [139] Emmelin, N., Kahlson, G., and Wicksell, F., Acta physiol. scand. 2:123, 1941. [140] Field, M. E., and Drinker, C. K., Am. J. Physiol. 93:138, 1930. [141] Foggie, P., Quart. J. Exp. Physiol., Lond. 26:225, 1937. [142] Graham, J. D., Quart. J. Pharm., Lond. 16:362, 1943. [143] Januschke, H., and Pollak, L., Arch. exp. Path. 66:205, 1911. [144] Konzett, H., Brit. J. Pharm. 11:289, 1956. [145] Melville, K. I., and Kaplan, H., J. Pharm. Exp. Ther. 94:182, 1948. [146] Quagliarello, G., Zschr. Biol. 64:263, 1914. [147] Rosa, L., Boll. e Mem. del. Soc. Tosco-Umbro Emiliana d. Med. int. 1:40, 1950. [148] Schenk, P., Arch. exp. Path. 89:332, 1921. [149] Sollmann, T., and Von Oettingen, W. F., Proc. Soc. Exp. Biol. 25:692, 1925. [150] Weiss, S., Robb, G. P., and Ellis, L. B., Arch. Int. M. 49:360, 1932. [151] Yonkman, F. F., Oppenheimer, E., Rennick, B., and Pellet, E., J. Pharm. Exp. Ther. 89:31, 1947. [152] Thornton, J. W., Quart. J. Exp. Physiol., Lond. 21:305, 1932. [153] Randall, L. O., J. Pharm. Exp. Ther. 100:83, 1950. [154] White, A. C., and Stedman, E., ibid 60:198, 1937. [155] Bhattacharya, B. K., Arch. internat. pharm. dyn.,

Par. 103:357, 1955. [156] Comroe, J. H., Jr., Van Lingen, B., Stroud, R. C., and Roncoroni, A., Am. J. Physiol. 173:379, 1953. [157] Gaddum, J. H., Hebb, C. O., Silver, A., and Swan, A. A., Quart. J. Exp. Physiol., Lond. 38:255, 1953. [158] Herxheimer, H., J. Physiol., Lond. 128:435, 1955. [159] Kottegoda, S. R., and Mott, J. C., Brit. J. Pharm. 10:66, 1955. [160] Reid, G., and Rand, M., Nature, Lond. 169:801, 1952. [161] Waud, R. A., J. Pharm. Exp. Ther. 69:103, 1940. [162] Anrep, G. V., Barsoum, G. S., and Kenawy, M. R., J. Pharm., Lond. 1:164, 1949. [163] Richter, R., Arch. exp. Path. 190:280, 1938. [164] Daly, M. de B., and Schweitzer, A., J. Physiol., Lond. 113:442, 1951. [165] Haury, V. G., J. Pharm. Exp. Ther. <u>64:58</u>, 1938. [166] Gruber, C. M., Hart, E. R., and Gruber, C. M., Jr., ibid <u>73:319</u>, 1941. [167] Comroe, J. H., Jr., and Starr, I., Jr., ibid <u>49:283</u>, 1933. [168] Scadding, J. G., quoted by Fraser in Brit. M. J. <u>1</u>:1293, 1938. [169] Seibert, R. A., and Handley, C. A., J. Pharm. Exp. Ther. 110:304, 1954. [170] Macht, D. I., ibid 11:389, 1918. [171] Loew, E. R., Kaiser, M. E., and Moore, V., ibid 86:1, 1946. [172] Fraser, P. J., Brit. J. Pharm. 12:47, 1957. [173] Grossman, M., Zschr. klin. Med. 12:550, 1887. [174] Macht, D. I., and Ting, G. C., J. Pharm. Exp. Ther. 18:111, 1921. [175] Brown, J. G., Edinburgh M. J. 31:255, 1885. [176] Roy, C. S., and Brown, G., J. Physiol., Lond. 6:21P, 1885. [177] Issekutz, B. V., and Genersich, P., Arch. exp. Path. 202:201, 1943. [178] Issekutz, B. V., Leinzinger, M., and Dirner, Z., ibid 164:158, 1932. [179] Loew, E. R., Kaiser, M. E., and Moore, V., J. Pharm. Exp. Ther. 83:120, 1945. [180] Pal, J., Wien, med. Wschr. 63:1049, 1913. [181] Stern, P., Arch, exp. Path. 199:251, 1942. [182] Curtis, F. R., J. Pharm. Exp. Ther. 35:321, 1929. [183] De Jongh, D. K., Arch, internat, pharm. dyn., Par. 83:158, 1950. [184] Kreitmar, H., Arch. exp. Path. 120:189, 1927. [185] Levy, J., and Ditz, E., Arch. internat. pharm. dyn., Par. 47:138, 1934. [186] Bovet, D., C. rend. Soc. biol. 116:1020, 1934. [187] Meier, R., Yonkman, F. F., Craver, B. N., and Gross, F., Proc. Soc. Exp. Biol. 71:70, 1949. [188] Staub, A. M., Ann. Inst. Pasteur, Par. 63:485, 1939. [189] Dale, A. S., and Narayana, B., Quart. J. Exp. Physiol., Lond. 25:85, 1935. [190] Dixon, W. E., and Ransom, F., J. Physiol., Lond. 45:413, 1912. [191] Thornton, J. W., ibid 96:53P, 1939. [192] Cloetta, M., Arch. exp. Path. 73:233, 1913. [193] Curry, J. J., and Leard, S. E., J. Laborat. Clin. M. 33:585, 1948. [194] Handovski, H., Arch. internat. pharm. dyn., Par. 51:301, 1935. [195] Kiese, M., Klin. Wschr. 14:571, 1935. [196] Laidlaw, P. P., J. Physiol., Lond. 40:480, 1910. [197] Mügge, H., Klin. Wschr. 12:381, 1933. [198] Rittman, R., Wien. med. Wschr. 74:2058, 1924. [199] Trendelenburg, P., Arch. exp. Path. 73:118, 1913. [200] Wick, H., Arch. internat. pharm. dyn., Par. 88:450, 1951. [201] Parkes, M. W., personal communication, 1949. [202] Geiling, E. M., and Kolls, A. C., J. Pharm. Exp. Ther. 23:29, 1924. [203] Arunlakshana, O. (thesis), London, 1953. [204] Arunlakshana, O., Mongar, J. L., and Schild, H. O., J. Physiol., Lond. 123:32, 1954. [205] Graham, J. D., Arch. internat. pharm. dyn., Par. 77:40, 1948. [206] Graham, J. D., Brit. J. Pharm. 4:1, 1949. [207] Hawkins, D. F., quoted by Herxheimer, H., ibid 10:160, 1955. [208] Jackson, D. E., J. Pharm. Exp. Ther. 4:1, 1912, [209] Feldberg, W., and Koegh, E. V., J. Physiol., Lond. 90:280, 1937. [210] Parker, J. M., and Ferguson, J. K., Proc. XIX Int. Physiol. Congr., Montreal, p 661, 1953. [211] Feldberg, W., and Kellaway, C. H., J. Physiol., Lond. 90:257, 1937. [212] Samaan, K., Quart. J. Pharm., Lond. 5:6, 1932. [213] Watt, J. M., J. Pharm. Exp. Ther. 38:261, 1930. [214] Barlow, O. W., and Beams, A. J., J. Pharm. Exp. Ther. 47:111, 1933.

134. SYMPATHOMIMETIC AMINES AND RELATED DRUGS ACTING ON THE BRONCHI

Drugs are listed to illustrate, as far as possible, the relationship between chemical structure and pharmacological action. Inclusion of trade names is for informative purposes only and in no way implies endorsement by The National Academy of Sciences-The National Research Council. For all "effects" included in this table, there is reasonable evidence the drug in fact acted on the bronchial musculature. Where there was evidence that an effect was mediated by the respiratory center or adrenal glands, it was excluded. Drug actions influencing only anaphylactic or asthmatic bronchospasm, or other pathological states of the bronchi, were also excluded. Concentrations of drugs are given in $\mu \mu g/m l$ for local actions on isolated preparations, and doses in $\mu g/k g$ for drugs administered systemically. Parentheses in Columns D and F indicate action is slight, irregular, or doubtful, and the original literature should be consulted. A = active, but action complex (original literature should be consulted); C = constricts; D = dilates; l = inactive.

Constrict	s; D = dilates; I = inactive.		1	Effec	t.		
	Compound	Species	Local		Systen	nic	Reference
	(Synonym)	Special Specia	mµg/ml	Action	μg/kg	Action	11010101100
	(A)	(B)	(C)	(D)	(E)	(F)	(G)
			s and Alkanols	(2)	(2)	(1)	(0)
1 1 - Ph	enyl-2-amino-ethane (β-Phenyl-	Cat	1		2000	D	1-4
	ylamine)	Dog			2000	D	
3	J. 201112110 y	Guinea pig		1	2,000-		
7		oumed pig		•	20,000	(C)	
4		Rabbit			20,000	1	
	enyl-2-amino-ethanol (Phenyl-	Cat				(1)	3 5 6
	anolamine)	Dog				(1)	3,5,6
7	anotamme	Guinea pig		D	10,000	D D	
8		-			2000-4000		
	enyl-2-isopropylamino-ethanol	Rabbit		D	2000-4000	D	5 0 0
	IN 5528; 859)	Guinea pig		ע			5,8,9
	enyl-2-amino-propane (Ampheta-	Cat			1000-2000	D	2,7,10-15
	ne; Benzedrine)	Dog	400,000	C	2,000-	(D)	2,1,1
	,	- 0			10,000	(-,	
12		Guinea pig		C		C	
3		Guinea pig	250,000	D	10,000	(D)	
	Phenyl-2-methylamino-propane	Cat			20,000	(D)	11,16
	ethamphetamine; Methedrine)	Guinea pig	1000-5000	D		(2)	1113
16	mamphetamine, memearine,	Guinea pig	100,000	(C)			
	enyl-2-dimethylamino-propane	Cat	100,000	(0)	1000	D	11
	enyl-2-benzylamino-propane	Cat			1000	D	11
	enyl-2-amino-propanol (Mydriatin;	Dog			5000	I	3,10,14
	rephedrine; Propadrine)	Guinea pig		С	3000	, A	3,10,14
1	replicatine, rropaurine)	Rabbit		-	4500	D	
-	enyl-2-methylamino-propanol				4	D	17.26
	-Ephedrine, Ephetonin, Racephedrine)	Dog	400.000		2000	ע	17,26
		Frog	400,000		500 (00		2 7 10
	henyl-2-methylamino-propanol	Man	5,000-100,000	D	500-600	D	3,7,10
, .	hedrine)	Cat	1,000-100,000	D	1000-1500	D	14-16,
:6		Dog	10,000	D	1,000-	D	18-41.
		-	1 000 10 000		10,000	(1)	43,44,
27		Guinea pig	1,000-10,000	D	5,000-	(1)	46-49.
					70,000		51
8.8		Guinea pig	400,000-	(C)			
			1,000,000		-		
9		Rabbit	100,000-	A	4000-6000	D	
			1,000,000		-		
0		Rat	10,000	D			
1		Frog	400,000	D			
	Phenyl-2-methylamino-propanol	Cat		D			16,39,40,
	seudo-ephedrine)	Dog		D	2000	D	46,47
34		Guinea pig	100,000	D			
35		Guinea pig	500,000	(C)			
16		Rabbit	10,000	D			
17		Rabbit	100,000-	C			
		Itabbit	500,000				
	l-Phenyl-2-methylamino-propanol	Guinea pig	300,000		20,000	D	7
19 1-1-F	Pseudo-ephedrine) Phenyl-2-dimethylamino-propanol	Cat				D	18
(N-	-Methyl-ephedrine)						
0 1-1-F	Phenyl-2-(ethyl-methylamino)-	Cat		D		D	18,20
1 pro	panol (N-Ethyl-ephedrine)	Dog			5000	D	
12 13		Guinea pig		D			
		Rabbit		D			

	Compound	Species	Loca	Effec		nio	Pofern
	(Synonym)	Species			System		Reference
		(7)	mµg/ml	Action	μg/kg	Action	(C)
_	(A) 1-Phenyl-2-amino	(B)	(C)	(D)	(E)	(F)	(G)
_			Alkanois (co	nciudea)			1.0
4	1-1-Phenyl-2-[(β-hydroxyethyl)-methyl- amino]-propanol (N-Ethanol-ephedrine)	Cat				I	18
5	1-Phenyl-2-(diethylaminoethyl-methyl-	Cot			5,000-	D	105051
2		Cat				ט	19,50,51
	amino)-propanol (Isalon)	D		ļ	10,000		-
6		Dog			10,000	D	
7		Guinea pig		D			
8		Rabbit		D			
)	1-Phenyl-2-(dibutylaminoethyl-methyl-	Rabbit		D			19
. -	amino)-propanol						
0	1-1-Phenyl-2-(propyl-methylamino)-propanol	Cat				I	18
-	(N-Propyl-ephedrine)						
l	1-1-Phenyl-2-(isopropyl-methylamino)-	Cat				I	18
	propanol (N-lsopropyl-ephedrine)						
2	1-Phenyl-2-[(β-hydroxypropyl)-methyl-	Guinea pig		I			52
1	amino]-propanol (S 166)						
3	1-Phenyl-2-[(β-hydroxypropyl)-methyl-	Guinea pig		I			52
	amino]-propanol methiodide (S 164)						
1	1-1-Phenyl-2-(butyl-methylamino)-propanol	Cat				I	18
	(N-Butyl-ephedrine)						
5	1-Phenyl-2-diethylamino-propanol	Cat			5,000	D	18
	(N,N-Diethyl-norephedrine)						
, <u> -</u>	1-Phenyl-2-amino-butane	Guinea pig		I			ì
	2-Phenyl-3-methylamino-butanol	Guinea pig			30,000	1	7
-		lydroxyphenyl	1-2-amino Al	kanols	307,000		
١.	1-(m-Hydroxyphenyl)-2-amino-ethanol	Guinea pig	, , , , , , , , , , , , , , , , , , , ,	D			5
	(WIN 5501)	Guinea pig					
Н	1-(m-Hydroxyphenyl)-2-methylamino-	Cat			150-1000	D	5,53,54,
	ethanol (Adrianol; Neosynephrine;	Dog			30	I	•
	Phenylephrine; m-Sympatol)			D	30	D	56
+		Guinea pig		D		I	E 4
	1-(m-Hydroxyphenyl)-2-propylamino-	Dog				1	54
Н	ethanol (N-Propyl-noradrianol)	0 :		-			5.0
5	1-(m-Hydroxyphenyl)-2-isopropylamino-	Guinea pig		D		D	5,9
. -	ethanol (WIN 5507; 539)						
	1-(m-Hydroxyphenyl)-2-amino-propanol	Dog			500-5000	1	10,14,41
5	(m-Oxynorephedrine)	Guinea pig		D			
	1-1-(m-Hydroxyphenyl)-2-methylamino-	Dog			1000-5000	(D)	10,14,41
7 _		Guinea pig		(D)			
3	1-(m-Hydroxyphenyl)-2-isopropylamino-	Dog			200	1	57
Ī	propanol			1			
7	1-(m-Hydroxyphenyl)-2-benzylamino-	Dog			5000	С	57
	propanol	_					
0	1-(m-Hydroxyphenyl)-(a-phenylethylamino)-	Dog			10,000	I	57
	propanol						
	1-(m-Hydroxyphenyl)-2-(a-methyl-y-phenyl-	Dog			65	D	57
	propylamino)-propanol						
	1-(p-Hydroxyp	henyl)-2-amii	no Alkanes an	d Alkanol	S		
:	1-(p-Hydroxyphenyl)-2-amino-ethane	Cat		(A)	100-	(D)	2,3,16,
	(Tyramine)				20,000	, ,	58-67
		Dog	100,000	C	2,000-	(D)	
1					20,000	, - ,	
		Guinea pig	4000-8000	D	40,000	D	
		Guinea pig	1,000,000	C	100,000	(C)	
		Monkey	1,000,000		100,000	(0)	
,		Ox	100,000	(D)			
3			100,000	C	2500	(D)	
	1 /- 11-1	Rabbit			4000	(D) D	42,64
					44 111111		44.04
	1-(p-Hydroxyphenyl)-2-dimethylamino- ethane (Hordenine)	Dog Rabbit		1	2,000-	D	

	onsuited.			Effec	t		
	Compound	Species	Local		System	mic	Reference
	(Synonym)		mµg/ml	Action	μg/kg	Action	
	(A)	(B)	(C)	(D	(E)	(F)	(G)
	1-(p-Hydroxyphenyl)-2-a		s and Alkanols	(continu	ıed)		
81	1-(p-Hydroxyphenyl)-2-amino-ethanol	Cat				D	5,8,68
82	(Norsympatol; WIN 5512; 582)	Guinea pig		(D)			
83	1-(p-Hydroxyphenyl)-2-methylamino-	Cat			1,500-	D	5,8,34,48,
	ethanol (Synephrine; Sympatol)				30,000	(=)	54,69,
84		Dog			500	(D)	70
85		Guinea pig		D	12,000	D	4
86	1 1 (m Hardware barrel) 2 m athelemin	Rabbit Cat			750	D	40.55
87	1-1-(p-Hydroxyphenyl)-2-methylamino- ethanol (1-Synephrine)	Dog			750	(1)	48,55
88	1-(p-Hydroxyphenyl)-2-ethylamino-	Guinea pig		D		(1)	8
07	ethanol (573)			, b			
90	1-(p-Hydroxyphenyl)-2-diethylamino-ethanol	Cat				D	68
91	1-(p-Hydroxyphenyl)-2-propylamino-ethanol (579)	Guinea pig		D			8
92	1-(p-Hydroxyphenyl)-2-isopropylamino-	Dog			30-500	D	5,8,9,54
93	ethanol (Isopropyl-norsympatol; WIN 833)	Guinea pig		D		D	
94	1-(p-Hydroxyphenyl)-2-butylamino- ethanol (570)	Guinea pig		D			8
95	l-(p-Hydroxyphenyl)-2-isobutylamino- ethanol (643)	Guinea pig		D			8
96	1-(p-Hydroxyphenyl)-2-secbutylamino- ethanol (661)	Guinea pig		D			8
97	1-(p-Hydroxyphenyl)-2-tertbutylamino- ethanol (651)	Guinea pig		(D)			8
98	1-(p-Hydroxyphenyl)-2-amino-propane	Cat			2,000-	D	2
99		Dog			20,000	D	
100		Guinea pig		I	20,000	-	
101	1-(p-Hydroxyphenyl)-2-methylamino-	Dog		1		I	7,57
102	propane (Veritol; Paredrinol;	Guinea pig			20,000	(D)	1,51
	Pholedrine)	Dan					67
103	1-(p-Hydroxyphenyl)-2-(a, a-dimethyl-	Dog				1	57
104	β-phenylethylamino-propane	Dog				C	57
104	1-(p-Hydroxyphenyl)-2-phenylpropylamino- propane	Dog					57
105	1-(p-Hydroxyphenyl)-2-(a-methyl-y-	Dog				C	57
	phenylpropylamino)-propane					-	
	1-(p-Hydroxyphenyl)-2-methylamino-	Dog			5000	1	7,10,57,69
107	propanol (Supifene; Suprifen;	Guinea pig			3,000-	D	4
	p-Oxyephedrine)				10,000		
108	1-(p-Hydroxyphenyl)-2-isopropylamino-	Dog			200	C	57
100	propanol	5			5 005	-	
109	1-(p-Hydroxyphenyl)-2-benzylamino- propanol	Dog			5,000	С	57
110	amino)-propanol	Dog			10,000	1	57
111	1-(p-Hydroxyphenyl)-2-(β-phenylethylamino)-	Dog			400	D	57
112	propanol 1-(p-Hydroxyphenyl)-2-(a-methyl-β-phenyl-	Dog			200	D	57
-	ethylamino)-propanol						
113	<pre>1-(p-Hydroxyphenyl)-2-(γ-phenylpropyl- amino)-propanol</pre>	Dog			160	D	57
114	1-(p-Hydroxyphenyl)-2-(α-methyl-γ- phenylpropylamino)-propanol	Dog			100	D	57
115	1-(p-Hydroxyphenyl)-2-[a-methyl-y- (p-methoxyphenyl)-propylamino]-	Dog			1000	D	57
	propanol						

	Compound	Species	Local	Effec	Syster	nic	Reference
	(Synonym)	Species	mµg/ml	Action	μg/kg	Action	i reference
	(A)	(B)	(C)	(D)	(E)	(F)	(G)
_	1-(p-Hydroxyphenyl)-2-		1 /	1		1 (2)	(0)
	1-(p-Hydroxyphenyl)-2-methylamino-		es and Alkanois	Coneiu	idea)	I T	107
17	butane	Dog				1	57
	1-(p-Hydroxyphenyl)-2-(γ-phenylpropyl-	Don	 		300	D	57
18	amino)-butanol	Dog			300	ע	21
	1-(p-Hydroxyphenyl)-2-(a-methyl-y-phenyl-	Dog			100	D	57
19	propylamino)-butanol	Dog			100	D	21
	1-(p-Hydroxyphenyl)-2-(8-phenylbutylamino)-	Dog			1000	D	57
20	butanol	Dog			1000	ע	21
- }	l-(3,4-Dihydroxyphe		- All	111-			L
}			o Alkanes and A	Tranois	1	7	12
21	1-(3,4-Dihydroxyphenyl)-2-amino-ethane	Cat		-		D	2
22		Dog		D		D	
23	3,4-Dihydroxyphenyl-alanine	Guinea pig Rabbit		ע ע	20,000	I	3
24	1-(3,4-Dihydroxyphenyl)-2-methylamino-	Cat	 	-	100-500	(D)	10,14,41,
25	ethane (Epinine)	Dog		1	400-1000	D	
26	chiane (Dyname)			D	100-1000	L.D	61-64,
27		Guinea pig Rabbit		D	100-500	(D)	11,12
28	1-(3,4-Dihydroxyphenyl)-2-isopropylamino-	Guinea pig		D	100-500	D D	71-73
- 7	ethane (0-4;1554)	Guinea pig		D	100	D	11-13
30	1-(3,4-Dihydroxyphenyl)-2-amino-ethanol	Man	1000	D			10,16,32,
	(Arterenol; Noradrenaline)	Cat	1000	D	50-250	D	41,71,
31 32	(Afterenor, Noradrenarme)	Dog			40-200	D	73-76
33		Guinea pig	100-1000	D	30-250	D	13-10
	d-1-(3,4-Dihydroxyphenyl)-2-amino-ethanol	Guinea pig	100-1000	D	1000	D	77
3-4	(d-Arterenol)	Guillea pig			1 000	, D	1.
35	1-1-(3,4-Dihydroxyphenyl)-2-amino-ethanol	Man	1000	D			9,16,38,
36	(1-Arterenol; Levarterenol)	Cat	10-100	D			77-79
	(I-Alterellot, Devarterellot)	Dog	40	D		(1)	11-17
37 38		Guinea pig	50-500	D	50-100	D D	
39		Rabbit	1000	D	30-100	D	
10		Rat	1000	D			
	1-(3,4-Dihydroxyphenyl)-2-methylamino-	Guinea pig	100-120	D		-	71,75
•	ethanol(dl-Epinephrine; Vaponephrin)	Guillea pig	100 120				11,13
12	1-1-(3,4-Dihydroxyphenyl)-2-methylamino-	Man	10-100	D	10	D	3,13,16,
43	ethanol (Epinephrine; Adrenalin; Supra-	Cat	1-100	D	2-2500	D	21,25,26
14	renin)	Dog	5-100,000	D	0.5-300	D	30,32,36
15	,	Guinea pig	1-100,000	D	0.5-500	D	38,43,47
16		Monkey		D			54,55,58
17		Ox	300-4000	D			60,62-6
18		Pig	1,600-10,000	D			73,74,7
19		Rabbit	1000-2000	(D)	2-100	(D)	81-112
50		Rat	10-100	D		1	
51		Sheep	2000	D			
52		Frog	200-10,000	D	1000	D	
	1-(3,4-Dihydroxyphenyl)-2-dimethylamino-	Dog			400	D	113
54	ethanol (Methadren; N-Methyl-adrenaline)	Guinea pig		D			
+	1-(3,4-Dihydroxyphenyl)-2-ethylamino-	Dog			0.5-3	D	9,54,71,
56	ethanol (N-Ethyl-arterenol; WIN 5564; 1516)		30-50	D	100	D	73,75
	1-(3,4-Dihydroxyphenyl)-2-(β-hydroxy-	Dog			7	D	45
	ethylamino)-ethanol (JB 254)						
8	1-(3,4-Dihydroxyphenyl)-2-propylamino-	Dog			0.5-7	D	9,54,75,
59	ethanol (N-Propyl-artercnol; WIN 5587)	Guinea pig	300-500	D	100	D	114
H-	1-(3,4-Dihydroxyphenyl)-2-isopropylamino-	Man	10	D	2	D	7,16,21,31
51	ethanol (Isoprenaline; Isoproterenol;	Cat	10	D			32,38,54
52	Alcudrin; Isuprel; Neo-epinine)	Dog	5-10,000	D	0.5-1	D	57,73,7
63	, , , , , , , , , , , , , , , , , , , ,	Guinea pig	0.5-30	D	10-1000	D	114-116
64		Rabbit	100	D			
		Rat	10	D			
65 .					8	D	45
65 ₁	I-(3,4-Dihydroxyphenyl)-2-(β-hydroxy-	Dog			0	l D	

	0			Effec	t		
	Compound	Species	Local		System	nic	Reference
	(Synonym)	•	mµg/ml	Action		Action	
_	(A)	(B)	(C)	(D)	(E)	(F)	(G)
		<u> </u>					(0)
	l-(3,4-Dihydroxyphenyl)		kanes and Alkai	iols (coi	/		
167	1-(3,4-Dihydroxyphenyl)-2-butylamino-	Dog			5	D	9,16,54,
168	ethanol (N-Butylarterenol; W1N 5590;	Guinea pig	4-10	D	25	D	71,114
	SKF 690A; 1960)						
169	1-(3.4-Dihydroxyphenyl)-2-isobutylamino	Dog			50	D	9,54,114
170	ethanol (WIN 5595)	Guinea pig		D	250	D	
171	1-(3,4-Dihydroxyphenyl)-2-secbutylamino-	Guinea pig	30-50	D	25-100	D	9,71,73,75,
111		Gumea pig	30-30	D	25-100	D	
	ethanol (WIN 5559; 0-4;1424)	-			0 -	-	115
172	1-(3,4-Dihydroxyphenyl)-2-(a-methyl-	Dog		1	0.7	D	57
	propylamino)-ethanol						
173	1-(3,4-Dihydroxyphenyl)-2-tertbutylamino-	Dog			0.4	D	9,57,71,75
174	ethanol (WIN 5563; 1505)	Guinea pig	8-12	D			
175	1-(3,4-Dihydroxyphenyl)-2-amylamino-	Guinea pig		D	100	D	9,114
	ethanol (WIN 5596)	- annou pag					
174	1-(3,4-Dihydroxyphenyl)-2-(a-ethylpropyl-	Cuinos pis		D	500	D	9,114
176		Guinea pig		D	300	D	7,114
	amino)-ethanol (WIN 5592)				_		
177	1-(3,4-Dihydroxyphenyl)-2-(a,β-dimethyl-	Guinea pig		D	100	D	9,114
	propylamino)-ethanol (WIN 5593)						
178	1-(3,4-Dihydroxyphenyl)-2-(a-methyl-	Dog			7	D	45
	amylamino)-ethanol (JB 226)						
179	1-(3,4-Dihydroxyphenyl)-2-cyclopentyl-	Guinea pig		D	100	D	9,114
117	amino-ethanol (WIN 5591)	Gumea pig			100	D	7,114
1.00				-			
180	1-(3,4-Dihydroxyphenyl)-2-cyclohexylamino-	Guinea pig		D	100	D	9,114
1	ethanol (WIN 5589)						
181	1-(3,4-Dihydroxyphenyl)-2-β-phenyl-	Dog			6	D	57
	ethylamino-ethanol						
1 82	1-(3,4-Dihydroxyphenyl)-2-(a-methyl-	Dog			4	D	45
. 00		Dog			*		33
1.02	β-phenylethylamino)-ethanol (JB 230)	-		_	1 5		15
1 83	1-(3,4-Dihydroxyphenyl-2-[a-methyl-β-	Dog			1.5	D	45
	(p-methoxyphenyl)ethylamino]-ethanol						
	(JB 245)						
184	1-(3,4-Dihydroxyphenyl)-2-[a-methyl-β-	Dog		1	2	D	45
	(3',4'-methylenedioxyphenyl)ethylamino]-	6					
	ethanol (JB 251)						
185		D	_		2	D	45 53
100	1-(3,4-Dihydroxyphenyl)-2-γ-phenyl-	Dog			4	D	45,57
	propylamino-ethanol (JB 246)						
186	1-(3,4-Dihydroxyphenyl)-2-amino-propane	Cat				D	2
187		Dog				D	
188		Guinea pig		D			
189	1-(3,4-Dihydroxyphenyl)-2-isopropylamino-	Guinea pig	100-200	D			16
,	propane (SKF 364)	Garnea Pre					
190		Des			1000 3000	73	7 0 10 14
	1-(3,4-Dihydroxyphenyl)-2-amino-propanol	Dog		-	1000-3000	D	7,9,10,14
191	(Cobefrine; Corbasil; Dioxynorephedrine)	Guinea pig		D	500	D	
192	1-(3,4-Dihydroxyphenyl)-2-methylamino-	Dog			400	D	7,9,10,14
193	propanol (Dioxyephedrine)	Guinea pig		D	100	D	
194	1-(3,4-Dihydroxyphenyl)-2-isopropylamino-	Guinea pig		1			9
	propanol (WIN 5570)	, 8					
195	1-(3,4-Dihydroxyphenyl-2-cyclopentyl-	Guinea pig		1			9
- /5	amino-propanol (WIN 3357)	Guinea pig		1			
10/							
196	1-(3,4-Dihydroxyphenyl)-2-cyclohexylamino-	Guinea pig		D			9
	propanol (WIN 514)						
197	1-(3,4-Dihydroxyphenyl)-2-phenyl-	Dog			3	D	57
	propylamino-propanol						
198	1-(3,4-Dihydroxyphenyl)-2-(a-methyl-	Dog			10	(D)	57
, ,	γ-phenylpropylamino)-propanol	208			.0	(2)	3 1
100		D		-	1000	(D)	0.10.14.150
199	1-(3,4-Dihydroxyphenyl)-2-amino-butanol	Dog			1000	(D)	9,10,14,41,78
200	(Ethyl-norsuprarenin; Butanefrine)	Guinea pig		D		D	
201	1-(3,4-Dihydroxyphenyl)-2-isopropylamino-	Dog				D	9,78
202	butanol (WIN 3046)	Guinea pig		D		D	
203	1-(3,4-Dihydroxyphenyl)-2-cyclopentyl-	Dog				D	9,78
204	amino-butanol (WIN 515)	Guinea pig		D		D	.,,,
204	animo-outanor (with 515)	ournea pig	L				

	Compound	Species	Local	Effec	System	mio	Reference
	(Synonym)	Species		Action		Action	Reference
	(A)	(B)	mµg/ml (C)	(D)	μg/kg (E)	(F)	(G)
	1-(3,4-Dihydroxyphenyl)-			_ , , ,		(F)	(G)
205 1-(3,		Guinea pig	alles allu Alkai	D D	(Tuded)	D	9,78
bu	tanol (WIN 713)						
	4-(Dihydroxyphenyl)-2-(a-methyl- phenyl-propylamino)-butanol	Dog			40	D	57
	,4-Dihydroxyphenyl)-2-amino-pentanol VIN 3356)	Guinea pig		I			9
208 1-(3,	4-Dihydroxyphenyl)-2-isopropylamino- entanol (WIN -3243)	Guinea pig		I			9
209 1-(3,	,4-Dihydroxyphenyl)-2-cyclopentyl- nino-pentanoI (WIN 3242)	Guinea pig		(D)			9
210 1-(3,	4-Dihydroxyphenyl)-2-cyclohexylamino- entanol (WIN 3269)	Guinea pig		I			9
211 1-(3,	,4-Dihydroxyphenyl)-2-isopropylamino- opentanol (WIN 3204)	Guinea pig		(D)			9
212 1-(3,	,4-Dihydroxyphenyl)-2-cyclopentyl- nino-isopentanol (WIN 3434)	Guinea pig		I			9
	Other Ring-substituted 1-	phenyl-2-am	ino Alkanes ar	nd Alkano	ols		
213 1-(0-	-Methylphenyl)-2-amino-propane	Guinea pig	250,000	D		1	12
	-Methylphenyl)-2-amino-propane	Guinea pig	250,000	D			12
215 1-(m	-Methylphenyl)-2-amino-propane	Dog	230,000		500-1000	I	14,41
216	me my spirenys j = 2 - am mo-propanos	Guinea pig		C	300-1000	-	14,41
	Mothylphonyl) 2 amine proper		250,000	D	-		12
	-Methylphenyl)-2-amino-propane	Guinea pig				-	12
	5-Dimethylphenyl)-2-amino-propane	Guinea pig	250,000	D			
	4-Dimethylphenyl)-2-amino-propane	Guinea pig	250,000	D			12
1 '	-Methoxyphenyl)-2-amino-ethane	Cat		D		-	27
.21		Rabbit		I			
.22 1-(p-	-Methoxyphenyl)-2-amino-ethane	Cat		D			27
.23		Rabbit		I			
24 1-(3,	4-Dimethoxyphenyl)-2-amino-ethane	Cat		I		6	27
25		Rabbit		I		1	
26 1-(3,	4-Methylenedioxyphenyl)-2-amino-	Cat	100,000	D	1		27
27 eti	hane	Rabbit		I	1		
228 1-(0-	-Methoxyphenyl)-2-amino-propane	Rabbit		I			29
	-Methoxyphenyl)-2-methylamino-	Man	-		5000	D	21,23,29,
30 pr	opane (Orthoxine)	Guinea pig			60,000	D	117
231 1-(0-	Methoxyphenyl)-2-dimethylamino- opane	Rabbit		D			29
232 1-(0-	-Methoxyphenyl)-2-benzylamino-	Rabbit		D	,		29
	-Methoxyphenyl)-2-amino-propane	Rabbit		D	1		29
234 1-(m	-Methoxyphenyl)-2-methylamino-	Rabbit		D			29
35 l-(m	-Methoxyphenyl)-2-ethylamino-	Rabbit		D			29
36 1-(m	-Methoxyphenyl)-2-dimethylamino-	Rabbit		D			29
37 1-(m	-Methoxyphenyl)-2-benzylamino-	Rabbit		D			29
	-Methoxyphenyl)-2-amino-propane	Rabbit		D			29
39 1-(p-	-Methoxyphenyl)-2-methylamino-	Rabbit		(D)			29
	-Methoxyphenyl)-2-ethylamino-propane	Rabbit		1		1	29
41 1-(p-	-Methoxyphenyl)-2-dimethylamino-	Rabbit		D		1	29
242 1-(p-	-Methoxyphenyl)-2-benzylamino-	Rabbit		D			29
	-Methoxyphenyl)-2-amino-propanol	Dog			1000	1	14,41
244	memoxyphenyr, 2 ammo-propanol	Guinea pig		C	1000	1	,
		Laurica big	1	1		1	

	6 1						
	Compound	Species	Local	Effec	System	ic	Reference
	(Synonym)		mµg/ml	Action	μg/kg	Action	Ì
	(A)	(B)	(C)	(D)	(E)	(F)	(G)
	Other Ring-substituted 1-pheny	vl-2-amino A	lkanes and Alk	anols (c	oncluded)		
245	1-(o-Hydroxyphenyl)-2-(a-methyl-y-phenyl-	Dog	manes and min	411015 (0	2500	D	57
643	propylamino)-propanol	100			2300		- 1
246	1-(3,4-Dihydroxy-6-methyl-phenyl)-2-	Guinea pig			-	D	119
240	methylamino-ethanol (6-Methyl-	Guillea pig					117
	adrenaline)						
		Don	1	-	1000	I	14.41
247	1-(3-Methyl-4-hydroxy-phenyl)-2-amino-	Dog			1000	1	14,41
248	propanol	Guinea pig		D	2000	D	11.0
249	1-(3-Hydroxy-4-methoxy-2-allyl-phenyl)-	Cat			2000	ש	118
	2-amino-propane						
250	1-(m-Aminophenyl)-2-isopropylamino-	Guinea pig		C			9
	ethanol (WIN 5503)					7-1	
251	1-(p-Aminophenyl)-2-methylamino-propanol	Dog			1000-5000	(I)	10,14,41
252	(Ephetonal; p-Amino-ephedrine)	Guinea pig		D			
253	1-(m-Fluorophenyl)-2-isopropylamino-	Guinea pig		I			9
	ethanol (WIN 5505)						
	2-Pher	nyl-l-amino	Propanes				
254	2-Phenyl-1-amino-propane	Guinea pig		(C)			120
255	2-Phenyl-1-methylamino-propane	Dog			1000-5000	D	15
256	2-(o-Hydroxyphenyl)-1-amino-propane	Guinea pig		D			120
257	2-(m-Hydroxyphenyl)-l-amino-propane	Guinea pig		I			120
258	2-(p-Hydroxyphenyl)-1-amino-propane	Guinea pig		(C)			120
259	2-(2,3-Dihydroxyphenyl)-1-amino-propane	Guinea pig		1			120
260	2-(2,4-Dihydroxyphenyl)-1-amino-propane	Guinea pig		1			120
261	2-(2,5-Dihydroxyphenyl)-1-amino-propane	Guinea pig		I			120
262	2-(2,6-Dihydroxyphenyl)-1-amino-propane	Guinea pig		D	1		120
263	2-(3,4-Dihydroxyphenyl)-1-amino-propane	Guinea pig		(C)			120
	2-(3,5-Dihydroxyphenyl)-1-amino-propane			1			120
264		Guinea pig					
265	2-(o-Methoxyphenyl)-1-amino-propane	Guinea pir		1			120
266	2-(m-Methoxyphenyl)-1-amino-propane	Guinea pig		D			120
267	2-(p-Methoxyphenyl)-1-amino-propane	Guinea pig		D			120
268	2-(2,3-Dimethoxyphenyl)-1-amino-propane	Guinea pig		I			120
269	2-(2,4-Dimethoxyphenyl)-1-amino-propane	Guinea pig		D			120
270	2-(2,5-Dimethoxyphenyl)-l-amino-propane	Guinea pig		D			120
271	2-(2,6-Dimethoxyphenyl)-1-amino-propane	Guinea pig		D			120
272	2-(3,4-Dimethoxyphenyl)-1-amino-propane	Guinea pig		1			120
273	2-(3,5-Dimethoxyphenyl)-1-amino-propane	Guinea pig		D			120
		Ketones					
274	1-(o-Hydroxyphenyl)-1-oxo-2-(a-methyl-	Dog			40,000	I	57
	γ-phenyl-propylamino)-propane						
275	1-(m-Hydroxyphenyl)-1-oxo-2-	Dog			1000	D	57
	isopropylamino-propane						
276	1-(m-Hydroxyphenyl)-1-oxo-2-benzylamino-	Dog			5000	1	57
	propane	1 - 48					
277	1-(m-Hydroxyphenyl)-1-oxo-2-(a-methyl-	Dog			2000	D	57
	γ-phenyl-propylamino)-propane	208			2000		-
278	1-(p-Hydroxyphenyl)-1-oxo-2-	Dog			2000	С	57
210	isopropylamino-propane	Dog			2000	C	31
279		Des			40.000	7	
219	I- (p-Hydroxyphenyl)-1-oxo-2-(a-phenyl-	Dog		ļ	40,000	I	57
300	ethylamino)-propane	D					
280	1-(p-Hydroxyphenyl)-1-oxo-2-(a-methyl-	Dog			2000	I	57
	γ-phenyl-propylamino)-propane						
281	1-(p-Hydroxyphenyl)-1-oxo-2-(a-methyl-	Dog			2000	D	57
	γ-phenyl-propylamino)-butane						
282	1-(p-Hydroxyphenyl)-1-oxo-2-phenylbutyl-	Dog			50,000	I	57
	amino-butane						
283	1-(3,4-Dihydroxyphenyl)-1-oxo-2-	Guinea pig		D	10,000	(I)	3,7,71,72
284	methylamino-ethane (Adrenalone;	Rabbit			500	D	
	Kephrine; Stryphnon)						
	1-(3,4-Dihydroxyphenyl)-1-oxo-2-	Guinea pig		D			71
285	1-(3,4-Dinydroxypnenyl)-1-oxo-2-						
285		damea pig					
	isopropylamino-ethane (1590)				140	(D)	57
286		Dog			140	(D)	57

	Compound		Y	Effect			Reference
	(Synonym)	Species	Local	I A ation	System	Action	Reference
	7.0.	(D)	mµg/ml	Action	μg/kg		(C)
	(A)	(B)	(C)	(D)	(E)	(F)	(G)
_ 1	K (2 4 Dib is a selected by Lease 2	etones (concl	udea)		65	D	57
37	I-(3,4-Dihydroxyphenyl)-1-oxo-2- isopropylamino-propane	Dog			103		- '
88	1-(3,4-Dihydroxyphenyl)-1-oxo-2-	Dog			3500	D	57
00	benzylamino-propane					-	
39	1-(3,4-Dihydroxyphenyl)-1-oxo-2-	Dog			5000	D	57
	(a-phenylethylamino)-propane						
90	1-(3,4-Dihydroxyphenyl)-1-oxo-2-	Dog			300	D	57
	(β-phenylethylamino)-propane			ļ			
91	1-(3,4-Dihydroxyphenyl)-1-oxo-2-(a,a-	Dog			1500	D	57
	dimethyl-β-phenylethylamino)-propane			-	0.0	D	57
92	1-(3,4-Dihydroxyphenyl)-1-oxo-2-	Dog			90	D	31
	(γ-phenylpropylamino)-propane	Dog			65	D	57
93	1-(3,4-Dihydroxyphenyl)-1-oxo-2-(α- methyl-γ-phenylpropylamino)-propane	Dog			05		' '
	1-(3,4-Dihydroxyphenyl)-1-oxo-2-	Dog		1	650	D	57
94	isopropylamino-butane	Dog					-
95	1-(3,4-Dihydroxyphenyl)-1-oxo-2-	Dog		<u> </u>	1000	I	57
75	(a-methyl-y-phenylpropylamino)-	2.5					
	butane						
Ī		phenyl Ethyle	nediamines				
6	m-Hydroxyphenyl-ethylenediamine (Nu 1896)	Guinea pig	20,000	D			36
17	l-(m-Hydroxyphenyl)-N ² -methyl-	Guinea pig	2000	D	ĺ		36
	ethylenediamine (Nu 1683)				,		
8	d-1-(m-Hydroxyphenyl)-N2-methyl-	Guinea pig	1000	D	1		36
	ethylenediamine (Nu 2013)			-	-	-	2/
99	1-1-(m-Hydroxyphenyl)-N2-methyl-	Guinea pig	4000	D			36
.	ethylenediamine (Nu 2014)	Cuive air	1000-2000	D			36
00	3,4-Dihydroxyphenyl-ethylenediamine	Guinea pig	1000-2000	D			30
01	(Nu 1825) 1-(3,4-Dihydroxyphenyl)-N ² -methyl-	Guinea pig	100-400	D	-		36
71	ethylenediamine (Nu 1408)	Guinea pig	100 100				
- 1	Diphenylethyla	1.5	elated Compour	nds			
		mines and Re					
2				1	5,000-	C	121
20	1,2-Diphenylethylamine	Dog			5,000- 15,000	С	121
				С	1	C	121
3		Dog			15,000		121
03	1,2-Diphenylethylamine	Dog Guinea pig		С	15,000	С	
03 04 05	1,2-Diphenylethylamine N-Methyl-1,2-diphenylethylamine	Dog Guinea pig Guinea pig Dog		C	15,000		121
03 04 05 06	N-Methyl-1,2-diphenylethylamine N-Ethyl-1,2-diphenylethylamine	Dog Guinea pig Guinea pig Dog Guinea pig		C C (D)	15,000		121
03 04 05 06 07	N-Methyl-1,2-diphenylethylamine N-Ethyl-1,2-diphenylethylamine N-Propyl-1,2-diphenylethylamine	Guinea pig Guinea pig Dog Guinea pig Guinea pig Guinea pig		(D) C	15,000		121
03 04 05 06 07 08	N-Methyl-1,2-diphenylethylamine N-Ethyl-1,2-diphenylethylamine N-Propyl-1,2-diphenylethylamine N-Isopropyl-1,2-diphenylethylamine	Guinea pig Guinea pig Dog Guinea pig Guinea pig Guinea pig Guinea pig		(D) C C	15,000		121
03 04 05 06 07 08 09	N-Methyl-1,2-diphenylethylamine N-Ethyl-1,2-diphenylethylamine N-Propyl-1,2-diphenylethylamine N-Isopropyl-1,2-diphenylethylamine N-Isobutyl-1,2-diphenylethylamine	Guinea pig Guinea pig Dog Guinea pig Guinea pig Guinea pig Guinea pig Guinea pig		(D) C C C	15,000		121 121 121 121 121
03 04 05 06 07 08 09	N-Methyl-1,2-diphenylethylamine N-Ethyl-1,2-diphenylethylamine N-Propyl-1,2-diphenylethylamine N-Isopropyl-1,2-diphenylethylamine N-Isobutyl-1,2-diphenylethylamine 1,2-Di-(p-methoxyphenyl)-ethylamine	Guinea pig Guinea pig Dog Guinea pig Guinea pig Guinea pig Guinea pig Guinea pig Guinea pig		(D) C C C C	15,000		121 121 121 121 121 121
03 04 05 06 07 08 09	N-Methyl-1,2-diphenylethylamine N-Ethyl-1,2-diphenylethylamine N-Propyl-1,2-diphenylethylamine N-Isopropyl-1,2-diphenylethylamine N-Isobutyl-1,2-diphenylethylamine 1,2-Di-(p-methoxyphenyl)-ethylamine N-Ethyl-1,2-di-(p-methoxyphenyl)-	Guinea pig Guinea pig Dog Guinea pig Guinea pig Guinea pig Guinea pig Guinea pig		(D) C C C	15,000		121 121 121 121 121
03 04 05 06 07 08 09 110	N-Methyl-1,2-diphenylethylamine N-Ethyl-1,2-diphenylethylamine N-Propyl-1,2-diphenylethylamine N-Isopropyl-1,2-diphenylethylamine N-Isobutyl-1,2-diphenylethylamine 1,2-Di-(p-methoxyphenyl)-ethylamine N-Ethyl-1,2-di-(p-methoxyphenyl)-ethylamine	Guinea pig Guinea pig Dog Guinea pig Guinea pig Guinea pig Guinea pig Guinea pig Guinea pig Guinea pig		(D) C C C C	15,000		121 121 121 121 121 121 121 121
)3)4)5)6)7)8)9 10	N-Methyl-1,2-diphenylethylamine N-Ethyl-1,2-diphenylethylamine N-Propyl-1,2-diphenylethylamine N-Isopropyl-1,2-diphenylethylamine N-Isobutyl-1,2-diphenylethylamine 1,2-Di-(p-methoxyphenyl)-ethylamine N-Ethyl-1,2-di-(p-methoxyphenyl)-ethylamine 1-Methyl-2,6-di-(p-methoxyphenyl)-	Guinea pig Guinea pig Dog Guinea pig Guinea pig Guinea pig Guinea pig Guinea pig Guinea pig		(D) C C C C	15,000		121 121 121 121 121 121
13 14 15 16 17 18 19 0 1	N-Methyl-1,2-diphenylethylamine N-Ethyl-1,2-diphenylethylamine N-Propyl-1,2-diphenylethylamine N-Isopropyl-1,2-diphenylethylamine N-Isobutyl-1,2-diphenylethylamine 1,2-Di-(p-methoxyphenyl)-ethylamine N-Ethyl-1,2-di-(p-methoxyphenyl)-ethylamine 1-Methyl-2,6-di-(p-methoxyphenylethylamine	Guinea pig Guinea pig Dog Guinea pig Guinea pig Guinea pig Guinea pig Guinea pig Guinea pig Guinea pig Guinea pig		(D) C C C C	15,000	C	121 121 121 121 121 121 121 121
)3)4)5)6)7)8)9)0 1	N-Methyl-1,2-diphenylethylamine N-Ethyl-1,2-diphenylethylamine N-Propyl-1,2-diphenylethylamine N-Isopropyl-1,2-diphenylethylamine N-Isobutyl-1,2-diphenylethylamine 1,2-Di-(p-methoxyphenyl)-ethylamine N-Ethyl-1,2-di-(p-methoxyphenyl)-ethylamine 1-Methyl-2,6-di-(p-methoxyphenylethyl)-piperidine 1,3-Diphenyl-2-amlno-propanol (Ephetonin)	Guinea pig Guinea pig Dog Guinea pig Guinea pig Guinea pig Guinea pig Guinea pig Guinea pig Guinea pig Guinea pig Guinea pig		(D) C C C C	15,000 5,000- 15,000		121 121 121 121 121 121 121 121
)3)4)5)6)7)8)9 10 11	N-Methyl-1,2-diphenylethylamine N-Ethyl-1,2-diphenylethylamine N-Propyl-1,2-diphenylethylamine N-Isopropyl-1,2-diphenylethylamine N-Isobutyl-1,2-diphenylethylamine 1,2-Di-(p-methoxyphenyl)-ethylamine N-Ethyl-1,2-di-(p-methoxyphenyl)-ethylamine 1-Methyl-2,6-di-(p-methoxyphenylethyl)-piperidine 1,3-Diphenyl-2-amlno-propanol (Ephetonin)	Guinea pig Guinea pig Dog Guinea pig Guinea pig Guinea pig Guinea pig Guinea pig Guinea pig Guinea pig Guinea pig		(D) C C C C	15,000 5,000- 15,000	C	121 121 121 121 121 121 121 121
)3)4)5)6)7)8)9 10 11 12	N-Methyl-1,2-diphenylethylamine N-Ethyl-1,2-diphenylethylamine N-Propyl-1,2-diphenylethylamine N-Isopropyl-1,2-diphenylethylamine N-Isobutyl-1,2-diphenylethylamine 1,2-Di-(p-methoxyphenyl)-ethylamine N-Ethyl-1,2-di-(p-methoxyphenyl)-ethylamine 1-Methyl-2,6-di-(p-methoxyphenyl)-piperidine 1,3-Diphenyl-2-amino-propanol (Ephetonin)	Guinea pig Guinea pig Guinea pig Guinea pig Guinea pig Guinea pig Guinea pig Guinea pig Guinea pig Guinea pig Guinea pig Cuinea pig Cuinea pig		(D) C C C C	15,000 5,000- 15,000	C (D)	121 121 121 121 121 121 121 121 122
03 04 05 06 07 08 09 10 11 12	N-Methyl-1,2-diphenylethylamine N-Ethyl-1,2-diphenylethylamine N-Propyl-1,2-diphenylethylamine N-Isopropyl-1,2-diphenylethylamine N-Isobutyl-1,2-diphenylethylamine 1,2-Di-(p-methoxyphenyl)-ethylamine N-Ethyl-1,2-di-(p-methoxyphenyl)-ethylamine 1-Methyl-2,6-di-(p-methoxyphenyl)-piperidine 1,3-Diphenyl-2-amino-propanol (Ephetonin)	Guinea pig Guinea pig Guinea pig Guinea pig Guinea pig Guinea pig Guinea pig Guinea pig Guinea pig Guinea pig Guinea pig Cut Liphatic Ami		(D) C C C C	15,000 5,000- 15,000	(D)	121 121 121 121 121 121 121 121 122
03 04 05 06 07 08 09 110 11 12 13 14 15 16 17	N-Methyl-1,2-diphenylethylamine N-Ethyl-1,2-diphenylethylamine N-Propyl-1,2-diphenylethylamine N-Isopropyl-1,2-diphenylethylamine N-Isobutyl-1,2-diphenylethylamine 1,2-Di-(p-methoxyphenyl)-ethylamine N-Ethyl-1,2-di-(p-methoxyphenyl)-ethylamine 1-Methyl-2,6-di-(p-methoxyphenyl-piperidine 1,3-Diphenyl-2-amlno-propanol (Ephetonin) Methylamine Ethylamine	Guinea pig Guinea pig Guinea pig Guinea pig Guinea pig Guinea pig Guinea pig Guinea pig Guinea pig Guinea pig Guinea pig Guinea pig Cat Liphatic Ami Cat Rabbit Cat Rabbit		(D) C C C C	15,000 5,000- 15,000	(D) (D) (D)	121 121 121 121 121 121 121 122 34,50
03 04 05 06 07 08 09 110 111 112 113 114 115 116 117 118	N-Methyl-1,2-diphenylethylamine N-Ethyl-1,2-diphenylethylamine N-Propyl-1,2-diphenylethylamine N-Isopropyl-1,2-diphenylethylamine N-Isobutyl-1,2-diphenylethylamine 1,2-Di-(p-methoxyphenyl)-ethylamine N-Ethyl-1,2-di-(p-methoxyphenyl)-ethylamine 1-Methyl-2,6-di-(p-methoxyphenyl)-piperidine 1,3-Diphenyl-2-amlno-propanol (Ephetonin) Methylamine Ethylamine Amylamine	Guinea pig Guinea pig Guinea pig Guinea pig Guinea pig Guinea pig Guinea pig Guinea pig Guinea pig Guinea pig Guinea pig Guinea pig Cat Liphatic Ami Cat Rabbit Cat Rabbit Guinea pig		(D) C C C C	15,000 5,000- 15,000	(D) (D) (D) (D)	121 121 121 121 121 121 121 122 34,50 61,62
03 04 05 06 07 08 09 110 11 12 13 14 15 16 17 18 19	N-Methyl-1,2-diphenylethylamine N-Ethyl-1,2-diphenylethylamine N-Propyl-1,2-diphenylethylamine N-Isopropyl-1,2-diphenylethylamine N-Isobutyl-1,2-diphenylethylamine 1,2-Di-(p-methoxyphenyl)-ethylamine N-Ethyl-1,2-di-(p-methoxyphenyl)-ethylamine 1-Methyl-2,6-di-(p-methoxyphenyl-piperidine 1,3-Diphenyl-2-amlno-propanol (Ephetonin) Methylamine Ethylamine	Guinea pig Guinea pig Guinea pig Guinea pig Guinea pig Guinea pig Guinea pig Guinea pig Guinea pig Guinea pig Cuinea pig Cuinea pig Cat Liphatic Ami Cat Rabbit Cat Rabbit Guinea pig Cat		(D) C C C C	15,000 5,000- 15,000	(D) (D) (D) (D) (C)	121 121 121 121 121 121 121 122 34,50
	N-Methyl-1,2-diphenylethylamine N-Ethyl-1,2-diphenylethylamine N-Propyl-1,2-diphenylethylamine N-Isopropyl-1,2-diphenylethylamine N-Isobutyl-1,2-diphenylethylamine 1,2-Di-(p-methoxyphenyl)-ethylamine N-Ethyl-1,2-di-(p-methoxyphenyl)-ethylamine 1-Methyl-2,6-di-(p-methoxyphenyl)-piperidine 1,3-Diphenyl-2-amlno-propanol (Ephetonin) Methylamine Ethylamine Amylamine	Guinea pig Guinea pig Guinea pig Guinea pig Guinea pig Guinea pig Guinea pig Guinea pig Guinea pig Guinea pig Guinea pig Guinea pig Cat Liphatic Ami Cat Rabbit Cat Rabbit Guinea pig		(D) C C C C	15,000 5,000- 15,000	(D) (D) (D) (D)	121 121 121 121 121 121 121 122 34,50 61,62

134. SYMPATHOMIMETIC AMINES AND RELATED DRUGS ACTING ON THE BRONCHI (Continued)
A = active, but action complex (original literature should be consulted); C = constricts; D = dilates; I = inactive.
Parentheses in Columns D and F indicate action is slight, irregular, or doubtful, and the original literature should be consulted.

Compound (Synonym)		Species		Local		Systemic		Reference	
	(Synonym)		mµg/	ml	Action		Action		
	(A)	(B)	(C		(D)	(E)	(F)	(G)	
	Alipha	tic Amines	conclud	ed)					
323	3-Methyl-1-hexylamine	Guinea pig			I	Į.		124	
	2-Methyl-2-hexylamine	Guinea pig			I			124	
325	3-Methyl-2-hexylamine	Guinea pig			I			124	
	4-Methyl-2-hexylamine	Guinea pig			I			124	
27	5-Methyl-2-hexylamine	Guinea pig			1			124	
1	1-Heptylamine	Guinea pig			I	Ì		124	
	2-Heptylamine (Tuamine; Tuaminoheptane)	Guinea pig	250,000		D	5000	I	37,124,125	
	3-Heptylamine	Guinea pig			I			124	
331	4-Heptylamine	Guinea pig			I			124	
	2-Methyl-2-heptylamine	Guinea pig	250,000)	D			125	
333	3-Methyl-2-heptylamine	Guinea pig	250,000		D			125	
334	4-Methyl-2-heptylamine	Guinea pig	250,000		D			125	
	5-Methyl-2-heptylamine	Guinea pig	250,000		D			125	
	6-Methyl-2-heptylamine	Guinea pig	250,000		D			125	
337	2-Octylamine	Guinea pig	250,000		D			125	
338	3-Octylamine	Guinea pig	250,000		D			125	
339	2-Methyl-6-methylamino-heptene-2 (Octin)	Dog	250,000	<u> </u>	-	1,000-	(D)	10,126	
3/	2-memyr-o-memyrammo-neptene-2 (Octin)	Dog				10,000	(D)	10,120	
340		Rabbit			<u> </u>	1000	D	1	
10	Δ	licyclic Ami	DOE			1 000		L	
341	1-Cyclopentyl-2-amino-ethane	Guinea pig	116.5		1			4	
342	1-Cyclopentyl-2-amino-emane	Guinea pig			1			4	
343	1-Cyclopentyl-2-methylamino-propane	+			1	500-1000	D	127	
43		Dog	1100			300-1000	D	121	
344	2-Amino-indane	dane Derivati	ives		7	8000	D	7,34	
345	2-Ammo-mane	Cat			-	20,000	D	1,34	
346	2 Amino indonol-1	Guinea pig			1	6000	D	87	
- 1	2-Amino-indanol-1	Cat			1	L			
347	cis-5-Hydroxy-2-amino-indanol-1	Cat				1000-6000		34	
348	trans-5-Hydroxy-2-amino-indanol-1	Cat			ļ	1000-6000		34	
349	6-Hydroxy-2-amino-indanol-1	Cat				5000	(D)	34	
350	5,6-Methylenedioxy-2-amino-indanol-1	Cat	10			5000	(D)	34	
		es and Relate	ed Comp	ounds	,	1550 050		11.00	
351	Tetrahydroisoquinoline	Dog				550-950	I	128	
	6-Hydroxy-tetrahydroisoquinoline	Dog				900	С	128	
	5,6-Dihydroxy-tetrahydroisoquinoline	Dog			-	250-950	D	128	
	6,7-Dihydroxy-tetrahydroisoquinoline	Dog			-	250-1200	(D)	128	
	6-Methoxy-tetrahydroisoquinoline	Dog			ļ	600-1300	(D)	128	
	6-Ethoxy-tetrahydroisoquinoline	Dog				600-850	C	128	
	6,7-Diethoxy-tetrahydriosoquinoline	Dog				700-1000	C	128	
	5-Ethoxy-6-methoxy-tetrahydroisoquinoline	Dog				700-1000	I	128	
	6-Ethoxy-7-methoxy-tetrahydroisoquinoline	Dog				700-1000	D	128	
	6-Methoxy-7-ethoxy-tetrahydroisoquinoline	Dog				700	С	128	
	N-Methyl-tetrahydroisoquinoline	Dog				1000-3500	1	128	
62	N-Methyl-6-hydroxy-tetrahydroisoquinoline	Dog				600	D	128	
63	N-Methyl-5,6-dihydroxy-tetrahydroiso-	Dog				600	D	128	
	quinoline								
64	N-Methyl-6,7-dihydroxy-tetrahydroiso-	Dog				250-650	D	128	
	quinoline								
65	N-Methyl-6-methoxy-tetrahydroisoquinoline	Dog				600-1300	C	128	
	N-Methyl-5,6-dimethoxy-tetrahydroiso-	Dog				700	С	128	
	quinoline								
67	N-Methyl-6,7-dimethoxy-tetrahydroiso-	Dog				700-1400	I	128	
	quinoline								
68	N-Methyl-6-ethoxy-tetrahydroisoquinoline	Dog				70-130	D	128	
	N-Methyl-6,7-diethoxy-tetrahydroiso-	Dog				500-1100	(A)	128	
64	quinoline	- 6				1100	(-1)		
69		-				700-1100	I	128	
	N-Methyl-5-ethoxy-6-methoxy-tetrahydro-	Dog							
	N-Methyl-5-ethoxy-6-methoxy-tetrahydro-	Dog				700-1100	1	120	
70	N-Methyl-5-ethoxy-6-methoxy-tetrahydro- isoquinoline N-Methyl-6-methoxy-7-ethoxy-tetrahydro-	Dog				1000	I	128	

	Compound							
	(Synonym)	Species	Loca	Local		nic	Reference	
	(2)11011/221/		mµg/ml	Action	µg/kg	Action		
	(A)	(B)	(C)	(D)	(E)	(F)	(G)	
	lsoquinolines and	Related Cor	npounds (conc	luded)				
72	N-Methyl-6-ethoxy-7-methoxy-tetrahydro- isoquinoline	Dog			1000	(A)	128	
373	6,7-Diethoxy-1-(3,4-diethoxybenzyl)- isoquinoline (Perparin)	Cat	1,000-	D			33	
74	6,7-Dimethoxy-2-methyl-3,4-dihydroiso- quinolinium chloride (Lodal)	Dog			2000-5000	D	64	
75	β-Tetrahydronaphthylamine	Dog			3000	D	7,64	
76		Guinea pig			30,000	D		
377	2-(1,2,3,4-Tetrahydro-l-naphthyl)- imidazoline (Tetrahydrozoline)	Guinea pig	200,000	1			129	

Contributor: Hawkins, D. F. References: [1] Marsh, D. F., J. Pharm. Exp. Ther. 94:426, 1948. [2] Alles, G. A., and Prinzmetal, M., ibid 48:161, 1933. [3] Hasama, B., Arch. exp. Path. 153:161, 1930. [4] Marsh, D. F., Pelletier, M. H., and Ross, C. A., J. Pharm. Exp. Ther. 91:324, 1947. [5] Lands, A. M., Am. J. Physiol. 169:11, 1952. [6] Tainter, M. L., J. Pharm. Exp. Ther. 36:29, 1929. [7] Tiffeneau, R., and Beauvallet, M., C. rend. Soc. biol. 139:944, 1945. [8] Lands, A. M., Rickards, E. E., Nash, V. L., and Hooper, K. Z., J. Pharm. Exp. Ther. 89:297, 1947. [9] Lands, A. M., and Tainter, M. L., Arch. exp. Path. 219:76, 1953. [10] Cameron, W. M., and Tainter, M. L., J. Pharm. Exp. Ther. 57:152, 1936. [11] Hauschild, F., Arch. exp. Path. 195:647, 1940. [12] Marsh, D. F., and Herring, D. A., J. Pharm. Exp. Ther. 100:298, 1950. [13] Sollmann, T., and Gilbert, A. J., ibid 61:272, 1937. [14] Tainter, M. L., Pedden, J. R., and James, M., ibid 51:371, 1934. [15] Warren, M. R., Marsh, D. G., Thompson, C. R., Shelton, R. S., and Becker, T. G., ibid 79:187, 1943. [16] Hawkins, D. F., (thesis), London, 1952. [17] Chen, K. K., J. Pharm. Exp. Ther. 33:237, 1928. [18] Curtis, F. R., ibid 35:321, 1929. [19] Handovski, H., Arch. internat. pharm. dyn., Par. 51:301, 1935. [20] Becker, T. J., Warren, M. R., Marsh, D. G., Thompson, C. R., and Shelton, R. S., J. Pharm. Exp. Ther. 75:289, 1942. [21] Bresnick, E., Beakey, J. F., Levinson, L., and Segal, M. S., J. Clin. Invest. 28:1182, 1949. [22] Chen, K. K., and Schmidt, C. F., J. Pharm. Exp. Ther. 24:339, 1924. [23] Curry, J. J., Fuchs, J. E., Leard, S. E., J. Allergy 20:104, 1949. [24] De Eds, F., and Butt, E. M., Proc. Soc. Exp. Biol. 24:800, 1927. [25] De Jongh, D. K., Arch. internat. pharm. dyn., Par. 83:158, 1950. [26] Dirner, Z., Arch. exp. Path. 146:232, 1929. [27] Epstein, D., Gunn, J. A., and Virden, C. J., J. Physiol., Lond. 76:224, 1931. [28] Feinberg, S. M., J. Allergy 17:217, 1946. [29] Graham, B. E., and Kuizenga, M. H., J. Pharm. Exp. Ther. 94:150, 1948. [30] Halpern, B. N., Arch. internat. pharm. dyn., Par. 68:339, 1942. [31] Hawkins, D. F., Herxheimer, H., and Schild, H. O., J. Physiol., Lond. 113:26P, 1951. [32] Hawkins, D. F., and Schild, H. O., Brit. J. Pharm. 6:682, 1951. [33] Issekutz, B. v., Leinzinger, M., and Dirner, Z., Arch. exp. Path. 164:158, 1932. [34] Kiese, M., ibid 178:342, 1935. [35] Kreitmar, H., ibid 120:189, 1927. [36] Lehmann, G., and Randall, L. O., J. Pharm. Exp. Ther. 93:114, 1948. [37] Lowe, E. R., Kaiser, M. E., and Moore, V., ibid 86:1, 1946. [38] McDougal, M. D., and West, G. B., Brit. J. Pharm. 8:26, 1953. [39] Pak, C., and King T., Chin. J. Physiol. 4:141, 1930. [40] Pak, C., and King, T., Proc. Soc. Exp. Biol. 27:253, 1930. [41] Pedden, J. R., Tainter, M. L., and Cameron, W. M., J. Pharm. Exp. Ther. <u>55</u>:242, 1935. [42] Rietschel, H. G., Arch. exp. Path. 186:387, 1937. [43] Rosa, L., and McDowall, R. J., Acta Allerg. 4:293, 1951. [44] Rubitsky, H. J., Herschfus, J. A., Levinson, L., Bresnick, E., and Segal, M. S., J. Allergy 21:559, 1950. [45] Seibert, R. A., and Handley, C. A., J. Pharm. Exp. Ther. 110:304, 1954. [46] Swanson, E. E., ibid 36:541, 1929. [47] Swanson, E. E., and Webster, R. K., ibid 38:327, 1930. [48] Tainter, M. L., and Seidenfeld, M. A., ibid 40:23, 1930. [49] Warnant, H., Arch. internat. pharm. dyn., Par. 37:61, 1930. [50] Kiese, M., Klin. Wschr. 14:571, 1935. [51] Rietschel, H. G., ibid 14:1649, 1935. [52] Ellis, F. W., J. Pharm. Exp. Ther. 89:214, 1947. [53] Co Tui, Burstein, C. L., and Wright, A. M., ibid <u>58</u>:33, 1936. [54] Konzett, H., Arch. exp. Path. <u>197</u>:27, 1941. [55] Kuschinsky, G., ibid <u>156</u>:290, 1930. [56] Kuschinsky, G., and Oberdisse, K., ibid 162:46, 1931. [57] Ludwigs, N., and Schneider, M., ibid 218:432, 1953. [58] Baehr, G., and Pick, E. P., ibid 74:41,1913. [59] Dale, II. II., and Dixon, W. E., J. Physiol., Lond. 39:25, 1909. [60] Daly, I. de B., Quart. J. Exp. Physiol., Lond. 28:357, 1938. [61] Golla, F. L., and Symes, W. L., J. Physiol., Lond. 46:38P, 1913. [62] Golla, F. L., and Symes, W. L., J. Pharm. Exp. Ther. 5:87, 1913. [63] Jackson, D. E., ibid 4:291, 1913. [64] Jackson, D. E., ibid 5:479, 1914. [65] Quagliarello, G., Zschr. Biol. 64:263, 1914. [66] Tainter, M. L., J. Pharm. Exp. Ther. 30:163, 1926. [67] Zipf, K., and Gebauer, A., Arch. exp. Path. 189:249, 1938. [68] Supniewski, J. V., C. rend. Soc. biol. 100:1147, 1929. [69] Issekutz, B. v., and Genersich, P., Arch. exp. Path. 202:201, 1943. [70] Lasch, F., ibid 124:231, 1927. [71] Lands, A. M., Nash, V. L., Dertinger, B. L., Granger, II. R., and McCarthy, II. M., J. Pharm. Exp. Ther. 92:369, 1948. [72] Lands, A. M., Luduena, F. P., Ananenko, E., and Grant, J. I., Arch. internat. pharm. dyn., Par. 83:602, 1950. [73] Siegmund, O. H., Granger, H. R., and Lands, A. M., J. Pharm. Exp. Ther. 90:254, 1947. [74] Burn, J. H., and Ilutcheon, D. E., Brit. J. Pharm. 4:373, 1949. [75] Marsh, D. F., Pelletier, M. H., and Ross, C. A., J. Pharm. Exp. Ther. 92:108, 1948. [76] Melville, K. I., Arch. internat. pharm. dyn., Par. 58:129, 1938. [77] Luduena, F. P., Ananenko, E., Siegmund, O. II., and Miller, L. C., J. Pharm. Exp. Ther. 95:155, 1949. [78] Lands, A. M., Luduena, F. P., Grant, J. I., and Ananenko, E., ibid 99:45, 1950. [79] Lu, F. C., and Allmark, M. G., J. Pharm. Pharmacol. 6:513, 1954. [80] Hawkins. D. F., and Parkes, M. W., unpublished, 1957. [81] Carlson, A.J., and Luckhardt, A.B., Am. J. Physiol. 54:55, 1920. [82] Castillo. J. C., and De Beer, E. J., J. Pharm. Exp. Ther. 90:104, 1947. [83] Cloetta, M., Arch. exp. Path.

73:233, 1913. [84] Cordier, D., and Magne, H., Ann. physiol., Par. 3:486, 1927. [85] Dixon, W. E., and Ransom, F., J. Physiol., Lond. 45:413, 1912. [86] Bullowa, J. G., and Gottlieb, C., Am. J. M. Sc. 160:98, 1920. [87] Augstein, W., Arch. exp. Path. 169:114, 1933. [88] Barlow, O. W., and Beams, A. J., J. Pharm. Exp. Ther. 47:111, 1933. [89] Eichler, O., and Mügge, H., Arch. exp. Path. 159:613, 1931. [90] Epstein, D. E., J. Physiol., Lond. 76:346, 1931. [91] Foggie, P., Quart. J. Exp. Physiol., Lond. 26:225, 1937. [92] Franklin, K. J., J. Pharm. Exp. Ther. 26:227, 1925. [93] De Gamrat, C., Rev. méd. Suisse romande 29:245, 1909. [94] Herxheimer, H., Arch. internat. pharm. dyn., Par. 106:371, 1956. [95] Jackson, D. E., J. Pharm. Exp. Ther. 4:59, 1912. [96] Januschke, H., and Pollak, L., Arch. exp. Path. 66:205, 1911. [97] Lehmann, G., J. Pharm. Exp. Ther. 92:249, 1948. [98] Lendle, L., Arch. exp. Path. 187:371, 1937. [99] Lipschitz, W., and Osterroth, J., ibid 106:341, 1925. [100] Lohr, H., Zschr. ges. exp. Med. 39:67, 1924. [101] Macht, D. I., and Ting, G. C., J. Pharm. Exp. Ther. 18:373, 1921. [102] McDowall. R. J., and Thornton, J. W., J. Physiol., Lond. 70:44P, 1930. [103] Modrakowski, G., Pflügers Arch. 158:509, 1914. [104] Rittman, R., Wien. med. Wschr. 74:2058, 1924. [105] Rosa, L., Boll. e. Mem. del. Soc. Tosco-Umbro Emiliana d. Med. Int. 1:40, 1950. [106] Sollmann, T., and Von Oettingen, W. F., Proc. Soc. Exp. Biol. 25:692, 1925. [107] Symes, W. L., Brit. M. J. 2:12, 1915. [108] Tiefensee, K., Arch. exp. Path. 139:139, 1929. [109] Titone, F. P., Pflügers Arch. 155:77, 1914. [110] Villaret, M., Justin-Besancon, L., and Vexenat, G., C. rend. Soc. biol. 100:806, 1929. [111] Weber, E., Arch. Anat. Physiol., Lpz., p 63, 1914. [112] Wick, H., Arch. exp. Path. 212:133, 1950. [113] Stutzman, J. W., and Orth, O. S., J. Pharm. Exp. Ther. 69:1, 1940. [114] Siegmund, O. H., Beglin, N., and Lands, A. M., ibid 97:14, 1949. [115] Lands, A. M., Nash, V. L., McCarthy, H. M., Granger, H. R., and Dertinger, B.L., ibid 90:110, 1947. [116] Hebb, C.O., and Konzett, H., J. Pharm. Exp. Ther. 96:228, 1949. [117] Feinberg, S.M., Malkiel, S., Bernstein, T. B., and Hargis, B. J., J. Pharm. Exp. Ther. 99:195, 1950. [118] Graham, J. D., Quart. J. Pharm., Lond. 16:362, 1943. [119] Grewal, R. S., Brit. J. Pharm., Lond. 7:338, 1952. [120] Graham, B. E., and Cartland, G. F., J. Pharm. Exp. Ther. 81:360, 1944. [121] Tainter, M. L., Luduena, F. P., Lackey, R. W., and Neuru, E. N., ibid 77:317, 1943. [122] Forster, R. H., Moench, L. J., and Clark, H. C., ibid 87:73, 1946. [123] De Cuyper, T., Arch. internat. pharm. dyn., Par. 72:360, 1946. [124] Marsh, D. F., J. Pharm. Exp. Ther. 94:225, 1948. [125] Marsh, D. F., and Herring, D. A., ibid 98:300, 1950. [126] Mügge, H., Klin. Wschr. 12:381, 1933. [127] Swanson, E. E., and Chen, K. K., J. Pharm. Exp. Ther. 93:423, 1948. [128] Fassett, D. W., and Hjort, A. M., ibid 63:253, 1938. [129] Hutcheon, D. E., P'an, S. Y., Gardocki, J. F., Jaeger, D. A., ibid 113:341, 1955.

Inclusion of trade names is for informative purposes only and in no way implies endorsement by The National Academy of Sciences-The National Research Council. For all "effects" included in this table, there is reasonable evidence the drug in fact acted on the bronchial musculature. Where there was evidence that an effect was mediated by the respiratory center or adrenal glands, it was excluded. Similarly, results obtained in protecting guinea pigs against lethal doses of histamine were excluded, unless there was evidence of the relief of bronchospasm. Drug actions influencing only anaphylactic or asthmatic bronchospasm, or other pathological states of the bronchi, were also excluded. Concentrations of drugs are given in $\mu g/ml$ for local action on isolated preparations, and doses in mg/kg for drugs administered systemically. Parentheses in Columns F and H indicate action is slight, irregular, or doubtful, and the original literature should be consulted. C = constricts, D = dilates, A = antagonizes active drug effect, I = inactive (i.e., without influence on effect of active drug), P = potentiates active drug effect.

Part I: PARASYMPATHOLYTICS AND LOCAL ANESTHETICS Drugs are listed alphabetically.

			risted a	прпавенсан	у.				_
	Antagonist	Active Drug					onist Effect		
	(Synonym)	Compound	Effect	Species	Loc		Systen	nic	Reference
		•			µg/ml		mg/kg	Action	
	(A)	(B)	(C)	(D)	(E)	(F)	(G)	(H)	(I)
1	Amylocaine	5-Hydroxytryptamine	C	Cat		A			1
2	Antrenyl (Ba 5473; Diethyl(2-hydroxy-	Acetylcholine	C	Guinea pig	1.0	A			2
3	ethyl/methylam- monium bromide a-phenyl-cyclohexane- glycollate)	Pilocarpine	С	Cat	1.0		1.0	A	3
4	Atropine (Tropine	Acetylcholine	C	Man	0.0004-	A			4-7
_	tropate)				10.0		0.01	-	0.0
5			C	Cat	1.0	A	0.01-0.04	A	8,9
6			С	Dog	10.0	A	0.1-1.0	A	10,11
7			С	Guinea pig	0.001- 20.0	A	0.01-1.0	A	12-17
8			C	Monkey		A			18
9			C	Pig		A			19
10			C	Rabbit	_	A			20
11			C	Frog	16.0	A			21,22
12		Agar	C	Guinea pig			-		23
13		Amphetamine	C	Dog		A			24
14		Andromedotoxin	C	Rabbit	10	A			25
15		Arecoline	C	Cat	10	A			26
16			С	Dog	0.1-	A	0.2-1.0	A	11,26-28
17			C	Rabbit		A			26
18		1-Benzyl-3-β-diethyl- aminoethyl-5,5- diallyl-barbituric acid	С	Cat			1.5	I	29
19		Benzyltrimethylam- monium iodide	С	Guinea pig		A			30
20		Carbachol	С	Dog			0.1	A	31
21		Carbaminoyl-β- methylcholine	C	Dog			0.1	A	32
22		Conline	C	Guinea pig	10	(A)		1	8
23		Curarine	C	Cat		1			33
24			C	Guinea pig				A	34
25		Cytisine	C	Guinea pig		I			8
26		Diethylaminoethanol	C	Guinea pig		1			35
27		Diethylmorphine	C	Dog		I		I	26,28
28		Diisopropylfluoro- phosphate	C	Guinea pig	0.01	A			36
29		N-Dimethyl-hexa- hydro-isonicotinic acid methyl ester iodide	С	Cat			0.4	A	37
30		Ephedrine	D	Cat		1			26
31			D	Dog		I		1	26,28
32			D	Rabbit		I			26
33			С	Rabbit	2	I			38,39

Part I: PARASYMPATHOLYTICS AND LOCAL ANESTHETICS (Continued)

C = constricts, D = dilates, A = antagonizes active drug effect, I = inactive (i.e., without influence on effect of active drug. Parentheses in Columns F and H indicate action is slight, irregular, or doubtful, and the original literature should be consulted.

	Antagonist	Active Drug		Species	I.o	cal	onist Effect Systen		Reference
	(Synonym)	Compound	Effect	phecies		Action		Action	-
		(7)	101	(17)					
	(A)	(B)	(C)	(D)	(E)	(F)	(G)	(H)	(I)
14		Ψ -Ephedrine	D	Cat		I			26
	tropate) (continued)								
35			D	Dog		I		I	26,28
36			D	Rabbit		I			26
37		Epinephrine	D	Cat		I	3	1	26.73
8			D	Dog		I		I	26,28
19			Ď	Guinea pig	1-100	I			8
0			D	Rabbit		I		-	26
1		Ergot	C	Dog		-		A	40
2		Ethylcholine	C	Dog	-	A			41
		Ediyicholine	C	Guinea pig		A			41
3		7		1 0		A		-	30
4		Furmethide	С	Guinea pig					8
5		Hexamethonium	С	Guinea pig	1-10	I			
16		Histamine	С	Man			0.01	(A)	42
7			C	Cat		(A)	10	I	43,44
18			С	Dog		A	1-2	(A)	24,28,
									45-47
19			C	Guinea pig	1-	A	0.1-40.0	A	12,16,
				1-6	1000				48-55
0		5-llydroxytryptamine	С	Cat	1000	 	0.3	(A)	9,56
1		3-11ydr oxydr yptainine	C	Guinea pig		A	0.3-1.3	A	57,58
		12-1	C		-	I -	0.5-1.5		59
2		Kalmia	_	Guinea pig	2 20	I			8
3		Lobeline	С	Guinea pig	1-10	1		-	
4		Methacholine	C	Man			0.01	A	42
55			С	Cat		A			24
6			C	Dog		A	0.2	A	24,46,61
7			C	Guinea pig			0.01-3.0	A	16,50,51
8		Miotine	C	Cat				A	63
59		Morphine	C	Dog		I		I	26.28
0		Muscarine	C	Cat		A	0.5-20.0	A	44,64,65
1		Muscarme	C	Dog			0.2-0.5	A	40,66
			C			-	0.2 0.5	A	67
2				Guinea pig	2 200		_	- A	68,69
3			С	Pig	3-200	A		-	
4			С	Frog		A			22
5		Nicotine	C	Cat	1	A	_	-	8
6			C	Guinea pig			0.1-1.3	A	16
7			D	Guinea pig	1-100	A			8
8		Norepinephrine	D	Guinea pig	1-100	I			8
9		Peptone	C	Dog			0.2	I	46
0			C	Guinea pig	500	А			23,70
1		Physostigmine	C	Cat	-	A	0.3	A	26,64,71
		1 hysostiginine	C	Dog	0.1-10	<u> </u>	0.4	A	11,24,26
2					<u> </u>	A	0.7	Α	36
3			C	Guinea pig	0.01		0.5	Α	
4			С	Rabbit	-	A	0.5	A	26,40
15		Pilocarpine	С	Cat		A	0.5-3.0	A	26,66,72 74,75
6			С	Dog	2	A	0.1-0.8	A	24,26,28 40,47, 76-80
7			C	Guinea pig		A			81,82
8			C	Ox	20-30	A		-	84
			C		30-200			-	68,69
9				Pig	30-200		3 0	Λ	
0			C	Rabbit		A	3.0	A	24,26,85
1			С	Turtle			5.0	A	40
2			C	Frog	20	A			22
3		Pyrilamine	С	Guinea pig		I			60
4		Tetraethylpyrophos- phate	С	Guinea pig		А			36
		Tetramethylam-	C	Guinea pig	1	A			8
35									

Part 1: PARASYMPATHOLYTICS AND LOCAL ANESTHETICS (Continued)

C = constricts, D = dilates, A = antagonizes active drug effect, I = inactive (i.e., without influence on effect of active drug. Parentheses in Columns F and H indicate action is slight, irregular, or doubtful, and the original literature should be consulted.

	Antagonist	Active Drug		Species	Lo	cal	onist Effect Systen	nic	Reference
	(Synonym)	Compound	Effect	Species	1	Action		Action	
	(A)	(B)	(C)	(D)	(E)	(F)	(G)	(H)	(I)
86	Atropine (Tropine	d-Tubocurarine	C	Dog	(2)	(-/	0.2	I	46
87	tropate)(concluded)	Xysmalobinum	C	Cat			0.2	1	86
88	Bellafoline1	Histamine	C	Man			0.01	I	42
	Bellafoline.	Methacholine	C	Man			0.01	A	42
89					-				
90	bis-[1-(Carbo-β-diethyl-	Furmethide	C	Guinea pig			50	A	87
91	aminoethoxy)-1-phenyl- cyclopentane]-ethane di- sulphonate (SKF 769 J2)		С	Guinea pig			75	(A)	87
92	Dibucaine (Nupercaine)	Histamine	С	Guinea pig			5	1	54
93	Dibutoline (Dimethyl-	Histamine	C	Guinea pig		I	100	I	50,88
94	ethyl-β-hydroxyethyl-	Methacholine	C	Guinea pig			0.6	A	50
95	ammonium sulphate di-n-butyl carbamate)	Pilocarpine	C	Guinea pig		A			88
96	2, 2-Diphenyl-4-	Acetylcholine	C	Guinea pig		A			57
97	diisopropylamino- butyramide methyl- iodide (R 79)	5-Hydroxytryptamine	C	Guinea pig		1			57
98	Homatropine sulphuric ester	Pilocarpine	С	Ох	400	1			89
99	d-Hyoscine ² (Scopine tropate)	Muscarine	C	Pig		A			69
00	d-Hyoscyamine ³ (Tropine tropate)	Muscarine	С	Pig		A			69
01	1-Hyoscyamine4	Muscarine	С	Cat				A	64
02			С	Pig		A			69
03	Lidocaine (Lignocaine; Xylocaine)	5-Hydroxytryptamine	С	Cat		A			1
04	Methantheline (Banthine; β-Diethylaminoethyl	Acetylcholine	С	Guinea pig	0.05-	A			51,91
05	xanthene-9-carboxylate	Histamine	С	Guinea pig	10	(A)	6	1	51,91,92
06	methobromide	Methacholine	C	Guinea pig			0.5-3	A	51,92
07	Novatropine	Acetylcholine	С	Guinea pig	0.05-	A			12
08			С	Frog	0.3	(A)			99
09		Histamine	С	Guinea pig		I	2-3	A	12,93
10	Procaine (Novocaine;	Acetylcholine	C	Man	50	1			4
11	P.A.D.; p-Amino-	The constant	C	Guinea pig	-	A			94
12	benzoyl-diethylamino- ethanol)	Diisopropylfluoro- phosphate	C	Dog			20-40	Ā	95
13	•	Histamine	C	Man		1			96
14			C	Guinea pig		(A)		(A)	4,52,54,9
15		Hydroxyphenyl-benzyl trimethylammonium dimethylcarbamate	C	Dog		(100	A	95
16		5-Hydroxytryptamine	С	Cat		A			1
17		Physostigmine	C	Dog			100-200	A	95
18	A CONTRACTOR OF THE PARTY OF TH	Pilocarpine	C	Guinea pig		A			94
19	Propantheline	Acetylcholine	C	Guinea pig			0.2-10.0	A	16
20	(Pro-Banthine)	Histamine	C	Guinea pig			0.2-10.0	A	16
21		5-Hydroxytryptamine	C	Guinea pig		+	1.0-10.0	A	16
22		Methacholine	C	Guinea pig	-	+	0.1-10.0	A	16
			C				0.2-2.0	A	16
23		Methyl-furmethide		Guinea pig			-	-	A
24		Nicotine	C	Guinea pig		-	1.0-10.0	A	16
25	Scopolamine (1-llyoscine;	Acetylcholine	C	Dog	0.1-10		_		11
26	Scopine tropate)	Arecoline	C	Dog	0.1-10	A			11
27		Histamine	C	Man			0.005-0.01	(A)	42
28		Methacholine	C	Man			0.005-0.01	A	42
10		Muscarine	C	Cat				_ A	64
29			-	T) .		A		1	69
30			C	Pig		A			07

/1/ Belladonna alkaloids. /2/ Dextro isomer of scopolamine. /3/ Dextro isomer of atropine. /4/ Levo isomer of atropine.

Part I: PARASYMPATHOLYTICS AND LOCAL ANESTHETICS (Continued)

C = constricts, D = dilates, A = antagonizes active drug effect, l = inactive (i.e., without influence on effect of active drug. Parentheses in Columns F and H indicate action is slight, irregular, or doubtful, and the original literature should be consulted.

	Antagonist	Active Drug				Antag	onist Effect		
	(Synonym)	Compound	Effect	Species	Local		Systemic		Reference
	(Byllonyiny	Compound			µg/ml	Action	mg/kg	Action	
	(A)	(B)	(C)	(D)	(E)	(F)	(G)	(H)	(I)
132	Scopolamine butylbromide	Acetylcholine	С	Dog			0.5	A	97
133	(Buscopan; Scopola-	Histamine	С	Dog				I	97
134	mine-N-bromobutylate)		С	Guinea pig			20	A	97
135		Pilocarpine	С	Dog			0.01	A	97
136	Scopolamine methyl-	Acetylcholine	С	Guinea pig		A			98
137	1	Histamine	C	Guinea pig		A			98
	methamine bromide;								
	Pamine; Scopolamine-								
	N-bromomethylate)							ĺ	
138	Syntropan (3-Diethyl-	Acetylcholine	С	Guinea pig	5	A			12
139	amino-2, 2-dimethyl-	Histamine	С	Guinea pig	10	I	30	I	12,54
140	propyl dl-tropate)	Pilocarpine	С	Cat			12	A	74
141	Tetracaine (Amethocaine)	5-Hydroxytryptamine	С	Cat		A			1

Contributor: Hawkins, D. F. References: [1] Sinha, Y. K., and West, G. B., J. Physiol., Lond. 120:64P, 1953. [2] Plummer, A. J., Barrett, W. E., Rutledge, R., and Yonkman, F. F., J. Pharm. Exp. Ther. 108:292, 1953. [3] Meier, R., quoted by Plummer et al, ibid. [4] Hawkins, D. F. (thesis), London, 1952. [5] Hawkins, D. F., and Schild, H. O., Brit. J. Pharm. 6:682, 1951. [6] Rosa, L., Boll. e Mem. del. Soc. Tosco-Umbro Emiliana d. Med. Int. 1:26, 1950. [7] Rosa, L., and McDowall, R. J., Acta Allerg. 4:293, 1951. [8] Hawkins, D. F., and Paton, W. D., unpublished, 1957. [9] Konzett, H., Brit. J. Pharm. 11:289, 1956. [10] Houssay, B. A., and Orias, O., C. rend. Soc. biol. 117:61, 1934. [11] Wick, H., Arch. exp. Path. 212:133, 1950. [12] Castillo, J. C., and De Beer, E. J., J. Pharm. Exp. Ther. 90:104, 1947, [13] Halpern, B. N., Arch. internat. pharm. dyn., Par. 68:339, 1942. [14] Hawkins, D. F., and Parkes, M. W., unpublished, 1957. [15] Hebb, C. O., J. Physiol., Lond. 96:26P, 1939. [16] Herxheimer, H., Arch. internat. pharm. dyn., Par. <u>106</u>:371, 1956. [17] Parkes, M. W., Brit. J. Pharm. <u>10</u>:95, 1955. [18] Daly, I. de B., Quart. J. Exp. Physiol., Lond. <u>28</u>:357, 1938. [19] Villaret, M., Justin-Besançon, L., and Vexenat, G., C. rend. Soc. biol. 100:806, 1929. [20] Fastier, F. N., and Reid, C. S., Brit, J. Pharm. 7:417, 1952. [21] Dijkstra, C., and Noyons, A. K., Arch. internat. physiol. 49:257, 1939. [22] Dirner, Z., Arch. exp. Path. 146:232, 1929. [23] Hanzlick, P. J., and Karsner, H. T., J. Pharm. Exp. Ther. 14:449, 1920. [24] Sollmann, T., and Gilbert, A. J., ibid 61:272, 1937. [25] Hardikar, S. W., ibid 20:17, 1922. [26] Swanson, E. E., and Webster, R. K., ibid 38:327, 1930. [27] Pedden, J. R., Tainter, M. L., and Cameron, W. M., ibid 55:242, 1935. [28] Swanson, E. E., ibid 36:541, 1929. [29] Sandberg, F., Acta physiol. scand. 25:(suppl. 91), 1952. [30] Fellows, E. J., and Livingston, A. E., J. Pharm. Exp. Ther. 74:65, 1942. [31] Dautrebande, L., Philippot, E., Nogarède, F., and Charlier, R., Arch. internat. pharm. dyn., Par. 66:138, 1941. [32] Farber, S., ibid 53:377, 1936. [33] West, R., ibid 56:81, 1937. [34] West, R., J. Physiol., Lond. 91:437, 1938. [35] Kraatz, C. P., Gruber, C. M., Jr., and Lisi, A. G., J. Pharm. Exp. Ther. 98:110, 1950. [36] Douglas, W. W., J. Physiol., Lond. 112:20P, 1951. [37] Supniewski, J. V., Serafinówna, M., and Hano, J., Arch. exp. Path. 183:725, 1936. [38] Pak, C., and King, T., Chin. J. Physiol. 4:141, 1930. [39] Pak, C., and King, T., Proc. Soc. Exp. Biol. 27:253, 1930. [40] Prevost, J. L., and Saloz, J., Arch. internat. physiol. 8:327, 1909. [41] De Wispelaere, H., Arch. internat. pharm..dyn., Par. <u>56</u>:363, 1937. [42] Beakey, J. F., Bresnick, E., Levinson, L., and Segal, M. S., Ann. Allergy 7:113, 1949. [43] Dale, H. H., and Laidlaw, P. P., J. Physiol., Lond. 41:318, 1910. [44] Lohr, Il., Zschr. ges. exp. Med. 39:67, 1924. [45] Cameron, W. M., and Tainter, M. L., J. Pharm. Exp. Ther. 57:152, 1936. [46] Landmesser, C. M., Anesthesiology 8:506, 1947. [47] Tainter, M. L., and Seidenfeld, M. A., J. Pharm. Exp. Ther. 40:23, 1930. [48] Arunlakshana, O. (thesis), London, 1953. [49] Barlow, O. W., and Beams, A. J., J. Pharm, Exp. Ther. 47:111, 1933. [50] Chen, G., and Ensor, C. R., J. Laborat, Clin. M. 34:1010, 1949. [51] Chen, J. Y., J. Pharm. Exp. Ther. 112:64, 1954. [52] Dutta, N. K., Brit. J. Pharm. 4:197, 1949. [53] Halpern, B. N., Arch. internat. pharm. dyn., Par. 68:339, 1942. [54] Loew, E. R., Kaiser, M. E., and Moore, V., J. Pharm. Exp. Ther. 86:1, 1946. [55] Schild, H. O., Quart. J. Exp. Physiol., Lond. 26:165, 1936. [56] Comroe, J. H., Jr., Van Lingen, B., Stroud, R. C., and Roncoroni, A., Am. J. Physiol. 173:379, 1953. [57] Bhattacharya, B. K., Arch. internat. pharm. dyn., Par. 103:357, 1955. [58] Herxheimer, H., J. Physiol., Lond. 128:435, 1955. [59] Waud, R. A., J. Pharm. Exp. Ther. 69:103, 1940. [60] Hawkins, D. F., Brit. J. Pharm. 10:230, 1955.
[61] Comroe, J. H., Jr., and Starr, I., Jr., J. Pharm. Exp. Ther. 49:283, 1933. [62] Randall, L. O., Benson, W. M., and Stefko, P. L., ibid 104:284, 1952. [63] White, A. C., and Stedman, E., ibid 41:259, 1931. [64] Dixon, W. E., and Brodie, T. G., J. Physiol., Lond. 29:97, 1903. [65] Weber, E., Arch. Anat. Physiol., Lpz., p63, 1914, [66] De Gamrat, C., Rev. méd. Suisse romande 29:245, 1909. [67] Pal, J., Deut. med. Wschr. 38:1774, 1912. [68] Macht, D. I., and Ting, G. C., J. Pharm. Exp. Ther. 18:111, 1921. [69] Macht, D. I., and Ting, G. C., ibid 18:373, 1921. [70] Baehr, G., and Pick, E. P., Arch. exp. Path. 74:41, 1913. [71] Dixon, W. E., and Ransom, F., J. Physiol., Lond. 45:413, 1912. [72] Florey, H., and Wells, A. Q., J. Pharm. Exp. Ther. 42:133, 1931. [73] Golla, F. L., and Symes, W. L., J. Physiol., Lond. 46:38P, 1913. [74] Kiese, M., Arch. exp. Path. 178:342, 1935. [75] Kuschinsky, G., ibid 156:290, 1930. [76] Cloetta, M., ibid 73:233, 1913. [77] Ellis, M. P., and Livingston, A. E., J. Physiol., Lond. 84:223, 1935, [78] Jackson, D. E., J. Pharm. Exp. Ther. 4:1, 1912. [79] Jackson, D. E., ibid 4:291, 1913. [80] Wick, H., Arch. internat. pharm. dyn., Par.

Part I: PARASYMPATHOLYTICS AND LOCAL ANESTHETICS (Concluded)

88:450, 1951. [81] Chu, H.-P., and How, G. K., Chin. J. Physiol. 5:115, 1931. [82] Thornton, J. W., Quart. J. Exp. Physiol., Lond. 21:305, 1932. [83] Trendelenburg, P., Zbl. Physiol. 26:1, 1912. [84] Trendelenburg, P., Arch. exp. Path. 69:79, 1912. [85] Golla, F. L., and Symes, W. L., J. Pharm. Exp. Ther. 5:87, 1913. [86] Watt, J. M., ibid 38:261, 1930. [87] Toner, J. J., and Macko, E., ibid 106:246, 1952. [88] Featherstone, R. M., and White, N. G., ibid 84:105, 1945. [89] Trendelenburg, P., Arch. exp. Path. 73:118, 1913. [90] Siegmund, O. H., Granger, H. R., and Lands, A. M., J. Pharm. Exp. Ther. 90:254, 1947. [91] Chen, J. Y., ibid 114:192, 1955. [92] Hambourger, W. E., Cook, D. L., Winbury, M. M., and Freese, H. B., ibid 99:245, 1950. [93] Issekutz, B. v., and Genersich, P., Arch. exp. Path. 202:201, 1943. [94] Hazard, R., and Corteggiani, E., C. rend. Soc. biol. 137:688, 1943. [95] Atanackovic, D., and Dalgaard-Mikkelsen, S., Arch. internat. pharm. dym., Par. 85:1, 1951. [96] Archer, J. D., Texas Repts. Biol. M. 10:483, 1952. [97] Wick, H., Arch. exp. Path. 213:485, 1951. [98] Visscher, F. E., Seay, P. H., Tazelaar, A. P., Jr., Veldkamp, W., and Vander Brook, M. J., J. Pharm. Exp. Ther. 110:188, 1954. [99] Dirner, Z., Arch. exp. Path. 157:154, 1930.

Part II: ANTICHOLINESTERASES

Drugs are listed alphabetically. C = constricts, D = dilates, A = antagonizes active drug effect, 1 = inactive (i.e., without influence on effect of active drug), P = potentiates active drug effect. Parentheses in Columns F and H indicate action is slight, irregular, or doubtful, and the original literature should be consulted.

	A .ti-t on Detection	Active Drug			Antago	nist or	Potentiato	r Effect	
	Antagonist or Potentiator	Company	Effect	Species	Local		Systemic		Reference
	(Synonym)	Compound	Effect		μg/ml Actio		mg/kg	Action	
	(A)	(B)	(C)	(D)	(E)	(F)	(G)	(H)	(1)
1	Benzoylcholine	Acetylcholine	C	Cat	3-10	P			1,2
2			С	Cat	100	A			1,2
3			С	Dog		P			1
4			С	Rabbit	10	P			2
5			C	Rabbit	100	_ A			2
6	Diisopropylfluorophos- phate (DFP)	Acetylcholine	С	Guinea pig	1.0	Р			3
7	Miotine ([a-(m-Hydroxy-	Acetylcholine	С	Cat			0.5	P	4
8	phenyl)-ethyl]dimethyl- amine methylcarbamate)	Epinephrine	D	Cat				I	4
9	Neostigmine (Prostigmine)	Methacholine	С	Man			0.005	P	5
10	Physostigmine (Eserine)	Acetylcholine	C	Man	0.1-1.0	P			6, 7
11			C	Dog			0.1-0.6	P	8
12			C	Guinea pig	0.1-5.0	P	1.0	P	3,9-11
13			C	Monkey		P			12
14			C	Rabbit		P			13
15			С	Frog	10	P			14
16		Histamine	C	Dog			0.0025	I	15
17			С	Guinea pig			0.75	P	16
18		Nicotine	C	Cat	0.1-1.0	P			17
19			С	Guinea pig	0.1	(P)			17
20	Tetraethylpyrophosphate (TEPP)	Acetylcholine	С	Guinea pig	0.1	Р		Ì	3

Contributor: Hawkins, D. F.

References: [1] Akcasu, A., Sinha, Y. K., and West, G. B., J. Physiol., Lond. 117:41P, 1952. [2] Akcasu, A., Sinha, Y. K., and West, G. B., Brit. J. Pharm. 7:331, 1952. [3] Douglas, W. W., J. Physiol., Lond. 112:20P, 1951. [4] White, A. C., and Stedman, E., J. Pharm. Exp. Ther. 41:259, 1931. [5] Beakey, J. F., Bresnick, E., Levinson, L., and Segal, M. S., Ann. Allergy 7:113, 1949. [6] Hawkins, D. F. (thesis), London, 1952. [7] Hawkins, D. F., and Schild, H. O., Brit. J. Pharm. 5:682, 1951. [8] Houssay, B. A., and Orias, O., C. rend. Soc. biol. 117:61, 1934. [9] Guimaraes, J. L., and Lourie, E. M., Brit. J. Pharm. 6:514, 1951. [10] Ilebb, C. O., J. Physiol., Lond. 99:57, 1940. [11] Thornton, J. W., ibid 96:53P, 1939. [12] Daly, l. de B., Quart J. Exp. Physiol., Lond. 28:357, 1938. [13] Fastier, F. N., and Reid, C. S., Brit. J. Pharm. 7:417, 1952. [14] Dijkstra, C., and Noyons, A. K., Arch. internat. physiol. 49:257, 1939. [15] Yonkman, F. F., Oppenheimer, E., Rennick, B., and Pellet, E., J. Pharm. Exp. Ther. 89:31, 1947. [16] Loew, E. R., Kaiser, M. E., and Moore, V., ibid 80:1, 1946. [17] Ilawkins, D. F., and Paton, W. D., unpublished, 1957.

Part III: ANTIHISTAMINES

Drugs are listed to illustrate, as far as possible, the relationship between chemical structure and pharmacological action. C = constricts, D = dilates, A = antagonizes active drug effect, I = inactive (i.e., without influence on effect of active drug), P = potentiates active drug effect. Parentheses in Columns F and H indicate action is slight, irregular, or doubtful, and the original literature should be consulted.

_		Active Drug	· · · · · ·		Antage	onist or	Potentiato	r Effect	
	Antagonist or Potentiator		T=	Species		cal	Syster		Reference
	(Synonym)	Compound	Effect			Action	J .	Action	***************************************
	(A)	(B)	(C)	(D)	(E)	(F)	(G)	(H)	(1)
_	(/		Phenol	1	(3)	1 (- /	(0)	(22)	(1)
1	(m-Methylphenyl-oxo- ethyl)-amine (JL 474)	Histamine	С	Guinea pig			10	1	1
	(p-Methylphenyl-oxo- ethyl)-amine (JL 478)	Histamine	С	Guinea pig			10	I	1
3	(p-Methoxyphenyl-oxo- ethyl)-amine (JL 499)	Histamine	С	Guinea pig			10	I	1
4	(3, 4-Dimethylphenyl-oxo- ethyl)-amine (JL 912)	Histamine	С	Guinea pig			10	1	1
5	(p-Methylphenyl-oxo- ethyl)-methylamine (JL 950)	Histamine	С	Guinea pig			10	I	1
6	(2-Isopropyl-5-methyl- phenyl-oxo-ethyl)- ethylamine (1482 F)	Histamine	С	Guinea pig		A		I	2
7	(o-Methylphenyl-oxo- ethyl)-(β-hydroxy- ethyl)-amine (JL 504)	Histamine	С	Guinea pig			10	I	1
8	(p-Methylphenyl-oxo- ethyl)-(β-hydroxyethyl)- amine (JL 725)	Histamine	С	Guinea pig			10	I	1
9	(Phenyl-oxo-ethyl)- dimethylamine (JL 413)	Histamine	С	Guinea pig			10	A	1
	(o-Methylphenyl-oxo- ethyl)-dimethylamine (JL 963)	Histamine	С	Guinea pig			10	A	1
11	(2, 5-Dimethylphenyl- oxo-ethyl)-diethylamine (1655 F)	Histamine	С	Guinea pig		A			2
	(2-Isopropyl-5-methyl-	Histamine	C	Dog			40	A	3
13	phenyl-oxo-ethyl)-di- ethylamine (Thymoxy- ethyldiethylamine; 929 F)		C	Guinea pig	1-10	A	2.5-25	A	1,2,4,5
14	(p-Methylphenyl-oxo- ethyl)-phenylamine (JL 956)	Histamine	С	Guinea pig			5	I	1
15	N-[p-(tertOctyl)-phe- noxy-ethyl-oxo-ethyl]- morpholine (S 150)	Histamine	С	Guinea pig		A			6
16	Di-(p-methylphenyl-oxo- ethyl)-amine (JL 477)	Histamine	С	Guinea pig			4	A	1
	Di-(3, 4-dimethylphenyl- oxo-ethyl)-amine (JL 765)	Histamine	С	Guinea pig			2	A	1
	Di-(o-methylphenyl-oxo- ethyl)-methylamine (JL 951)	Histamine	С	Guinea pig			8	I	1
19	Tri-(o-methylphenyl-oxo- ethyl)-amine (JL 959)	Histamine	С	Guinea pig			10	A	1
			enzhydryl						
20	β-Aminoethyl benzhydryl ether	Histamine	С	Guinea pig			25	A	5

Part III: ANTIHISTAMINES (Continued)

C = constricts, D = dilates, A = antagonizes active drug effect, l = inactive (i.e., without influence on effect of active drug), P = potentiates active drug effect. Parentheses in Columns F and H indicate action is slight, irregular, or doubtful, and the original literature should be consulted.

or	doubtful, and the original li	T	isuited.	,					
	Antagonist or Potentiator	Active Drug	,]			Potentiator		
	(Synonym)	Compound	Effect	Species		cal	Systen		Reference
	(Syllollylli)	Compound	Livect		µg/ml	Action	mg/kg	Action	1
	(A)	(B)	(C)	(D)	(E)	(F)	(G)	(H)	(1)
		Benzhyd	ryl Ethe	ers (Continue	ed)				
21	β-Methylaminoethyl	Histamine	C	Dog	T		2-5	A	6
22	benzhydryl ether (S 59)		C	Guinea pig		A	6-12.5	-	5,6
23	20.1211.9 22 92 20102 (2 2 7 7	Pilocarpine	C	Guinea pig		A		-	6
24	β-Dimethylaminoethyl	Histamine	C	Man		A	0.5-1.0	A	7,8,9
	benzhydryl ether	Illistatilile	C	Dog		- 11	2-5	A	6,10
25			C		0.005	A	0.005-	+ A	5,11,12-23.
26	(Diphenhydramine;			Guinea pig	0.005-			A	
	Benadryl)				50.0		12.5	+	25
27		Acetylcholine	С	Guinea pig	4	A		1	15
28		Methacholine	С	Man	<u></u>		0.5-1.0	A	8,9
29			С	Dog			1	A	10
30			С	Guinea pig			25-33	A	26,27
31		Pilocarpine	C	Guinea pig		A			6
32		β-Pyridylethylamine	С	Guinea pig	0.005	A			12
33		d-Tubocurarine	C	Dog			1	A	10
34	Diphenhydramine oxalate	Histamine	С	Guinea pig	-		2.7	A	11
35	Diphenhydramine succinate		C	Guinea pig			2.0	A'	11
36	β-Isopropylaminoethyl	Histamine	C	Dog	-		2-5	A	6
37	benzhydryl ether (S 82)	Ilistamme	C	Guinea pig	-	A	6.0-12.5	A	5,6
	benzhydryf ether (5 82)	Dilling			1	,	0.0-12.5	Α	6
38		Pilocarpine	С	Guinea pig		A			
39	β-Diethylaminoethyl	Histamine	С	Guinea pig			6.0-12.5	A	5
	benzhydryl ether								4
40	β-n-Butylaminoethyl	Histamine	C	Guinea pig			12.5	Ĭ	5
	benzhydryl ether								
41	β-Di-n-butylaminoethyl	Histamine	C	Guinea pig		1	50	(A)	5
	benzhydryl ether								
42	β-Dicyclohexylaminoethyl	Histamine	C	Guinea pig			50	(A)	5
	benzhydryl ether								
43	β-(β-Diethylaminoethyl-	Histamine	C	Guinea pig		-	50	A	5
	oxo)-ethyl benzhydryl			Games Pag				1	
	ether								
4.4		Highering	C	Cuinos nia	-	A			b
44	β-(β-Hydroxyethylmethyl-	Histamine		Guinea pig		Λ			· ·
	amino)-ethyl benzhydryl								
	ether (S 161)								1
45	β-Piperidinoethyl	Histamine	С	Guinea pig			1.5-12.5	A	5
	benzhydryl ether								
46	β-Morpholinoethyl	Histamine	C	Guinea pig			3.0-12.5	A	5
	benzhydryl ether								
47	β-(β-Morpholinoethyl-	Histamine	С	Guinea pig			25	A	5
	amino)-ethyl								
	benzhydryl ether								
4.8	Diethylaminopropyl	Histamine	C	Guinea pig			6-12.5	A	5
	benzhydryl ether			Junea pre					
49	β-Methyl-β-morpholino-	Histamine	C	Guinea ni			25	A	5
47		mstamme		Guinea pig			2	1 4	
5.0	propyl benzhydryl ether	10/		Cuin	-		50	A	5
50	6-Morpholinohexyl	Histamine	С	Guinea pig			50	A	9
	benzhydryl ether								-
51	(β-Benzhydryl-oxo-ethyl)-	Histamine	C	Dog			2-5	A	6
52	trimethylammonium		C	Guinea pig		A	0.5	A	6,11
	iodide (S 92)								
53	(β-Benzhydryl-oxo-ethyl)-	Histamine	C	Guinea pig			1.3	A	11
	trimethylammonium								
	methylsulphonate								
54	(β-Benzhydryl-oxo-ethyl)-	llistamine	C	Dog			3-5	A	6
55	trimethylammonium		C	Guinea pig	+	A	2.8	A	6,11
,	p-toluensulphonate			F-6					
	(S 154)								
	(5 154)	1							

Part III: ANTIHISTAMINES (Continued)

C = constricts, D = dilates, A = antagonizes active drug effect, I = inactive (i.e., without influence on effect of active drug), P = potentiates active drug effect. Parentheses in Columns F and H indicate action is slight, irregular, or doubtful, and the original literature should be consulted.

	Antagonist or Potentiator	Active Drug					Potentiator		D. C.
	(Synonym)	Compound	Effect	Species		cal	Systen		Reference
			(0)	151	10,	Action	0.0_	Action	
	(A)	(B)	(C)	(D)	(E)	(F)	(G)	(H)	(1)
1				ers (conclud	eaj	_	11.0	1 A	11
56	(β-Benzhydryl-oxo-ethyl)- dimethylethylam- monium bromide	Histamine	С	Guinea pig			1.8	A	11
57	(β-Benzhydryl-oxo-ethyl)-	Histamine	С	Dog			5	A	6
58	dimethylethylam- monium p-toluene- sulphonate (S 158)		С	Guinea pig		A	1.7	A	6,11
59	4-(β-Benzhydryl-oxo-	Histamine	C	Dog		1	5	A	6
60	ethyl)-4-methyl-mor- pholinium p-toluene- sulphonate (S 157)		С	Guinea pig		A			6
61	4-Chloro-benzhydryl	Histamine	C	Guinea pig	10	A	1-10	A	28
62	tropine ether (SL 6057)	Acetylcholine	C	Guinea pig	-	(A)			28
		Histamine	C	Guinea pig	1		2-10	A	28
	tropine ether methyl- bromide (SL 6058)								
64	4, 4'-Dichlorobenzhydryl-	Histamine	С	Guinea pig			25	A	5
	β-morpholinoethyl ether	D-	a parada	Amines		1 _	1	1	-
65	β-Aminoethyl benzhydryl amine	Histamine	C	Guinea pig			50	T I	5
66	β-Diethylaminoethyl benzhydryl amine	Histamine	C	Guinea pig		-	25	1	5
67	β-Morpholinoethyl benzhydryl amine	Histamine	С	Guinea pig			25	1	5
68	y-Diethylaminopropyl benzhydryl amine	Histamine	С	Guinea pig			50	1	5
69	N-Methyl-N'-benzhydryl- piperazine (Cyclizine; Marezine; 47-83)	Histamine	С	Guinea pig	10.4	A	10	A	16,19,29
70	N-Methyl-N'-(4-chloro-	Histamine	C	Man	0.2	A			7
71	benzhydryl]-piperazine (Chloro-cyclizine; Perazil; Histantin; 47-282)		С	Guinea pig	0.1-0.	5 A	2.5-10	A	16,19,21
-		Et	hylened	iamines	-	-	-		4.
72	N-Phenyl-N-methyl- N', N'-diethyl-ethylene- diamine (1335 F)	Histamine	С	Guinea pig	7	1			2
73	N-Phenyl-N-ethyl-N', N'- dimethyl-ethylene- diamine (RP 2325)	Histamine	С	Guinea pig	1		0.2-20.0	A	30-33
74	N-Phenyl-N-ethyl-N', N'- diethyl-ethylene- diamine (1571 F)	Histamine	С	Guinea pig	1-10	А	3-25	A	2,5,11,32,
75		Histamine	С	Guinea pig		I	†		+2
76	N-Phenyl-N-benzyl-N', N'-		C	Cat		-	4	A	34
77	dimethyl-ethylene-		C	Guinea pig	0.1	A	0.5-20	A	31-33,35-38
78	diamine (Antergan;	Acetylcholine	C	Guinea pig			<50	1	33,37
79	Lergitin; RP 2339)	Agmatine	C	Guinea pig		A			39
80		Amylamine	C	Guinea pig		A			39
81		Cadaverine	C	Guinea pig		A	-		39
82		Clupeine	C	Guinea pig		A			39
83		Guanidine	С	Guinea pig		A			39
84		Putrescine	C	Guinea pig		A			139
85		Sodium nucleinate	C	Guinea pig		- A			₹39
86	N-Phenyl-N-(2-thenyl)- N', N'-dimethyl-ethyl- enediamine (Methaphen- ilene; Diatrin; W-50)	Histamine	C	Guinea pig		A	0.05-1.0	Ā	40

Part III: ANTIHISTAMINES (Continued)

C = constricts, D = dilates, A = antagonizes active drug effect, l = inactive (i.e., without influence on effect of active drug), P = potentiates active drug effect. Parentheses in Columns F and H indicate action is slight, irregular, or doubtful, and the original literature should be consulted.

-	outling and the original in	Active Drug	isuited.		Antag	onist o	r Potentiato	r Effect	T
	Antagonist or Potentiator		Effect	Species		cal	Syster		Reference
	(Synonym)	Compound	Enect		μg/ml	Action	mg/kg	Action	
	(A)	(B)	(C)	(D)	(E)	(F)	(G)	(H)	(I)
0.0	To a varia			nes (continue	ed)		Tara ila a		
87	N-Benzyl-N-(2-	Histamine	C	Guinea pig			0.3-12.0	A	19,25,41-
	pyrimidyl)-N', N'-								43
	dimethyl-ethylene-								
0.0	diamine (Hetramine)	Type	-		10.00		2.5.10.0		10 11 15
88	N-(p-Methoxybenzyl)-N-	Histamine	С	Guinea pig		Α	3.5-10.0	A	19,41,42,
	(2-pyrimidyl)-N', N'-				2.0				44,45
	dimethyl-ethylene-								
	diamine (Thonzylamine; Anahist; Neohetramine)								
20	N-(p-Methoxybenzyl)-N-		C	Guinea pig	-		5	A	19
0 7	(2-thiazolyl)-N', N'-	Histamine		Guinea pig			3	A	19
	dimethyl-ethylene-								
	diamine (194 B)								
90	N-Benzyl-N-(β-picolinyl)-	Histamine	C	Guinea pig		-	10	A	30
, -	N', N'-dimethyl-	1121411110		Curren Pre			10		
	ethylenediamine (74)								
91	N-Benzyl-N-(y-picolinyl)	Histamine	C	Guinea pig	+	1	1.0	A	30
	N', N'-dimethyl-								
	ethylenediamine (106)								
92	N-(1-Naphthyl)-N-benzyl-	Histamine	С	Guinea pig			5.6	A	31
	N', N'-dimethyl-								
	ethylenediamine (T l)	i							
93	N-(1-Naphthyl)-N-	Histamine	C	Guinea pig			16	(A)	31
	benzyl-N', N'-diethyl-								
	ethylenediamine (T 2)								
94	N-(2-Naphthyl)-N-benzyl-	Histamine	C	Guinea pig			16	(A)	31
	N', N'-dimethyl-								
0.5	ethylenediamine (T 3)							1.1	
95	N-(2-Naphthyl)-N-benzyl-		С	Guinea pig			16	(A)	31
	N', N'-diethyl-ethylene-								
96	diamine (T 4) N-(1-Naphthyl)-N-ethyl-	Historias	С	Cuinos nia	-	-	16	(A)	31
,,,	N', N'-dimethyl-	mstamme		Guinea pig			10	(Δ)	31
	ethylenediamine (T 5)								
97		Histamine	С	Guinea pig			16	(A)	31
	N', N'-diethyl-			Carried pre				14-7	*
	ethylenediamine (T 6)								
98	N-(2-Naphthyl)-N-ethyl-	Histamine	С	Guinea pig			16	(A)	31
	N', N'-dimethyl-			1 - B				` '	
	ethylenediamine (T 7)								
99	N-(2-Naphthyl)-N-ethyl-	Histamine	C	Guinea pig	, –		16	(A)	31
	N', N'-diethyl-ethylene-								
	diamine (T 8)								
	N-Benzyl-N-(2-pyridyl)-	Histamine	C	Man	50	A	0.5-1.0	A	8,46
101	N', N'-dimethyl-		C	Dog			0.1-3.0	A	10,35
102			С	Guinea pig		A	0.1-10.0	A	13,16,19,22,
	(Tripelennamine;				1.7				25,28,30,
	Pyribenzamine; U-95)								35,41,42,
103		A		Dea			0103	1 , -	44, 47-54
103		Acetylcholine	C	Dog			0.1-0.3	1	1.
104		Curarine Methacholine	C	Dog			2	+ A	10
106		d-Tubocurarine	C	Dog			2	A	10
	N-(p-Methoxybenzyl)-N-	<u>u</u> -1ubocurarine Histamine	C	Dog Man	0.0004				7, 21,55-57
	(2-pyridyl)-N', N'-	motamme		Wall	10.0	Α			1,41,33-31
108	dimethyl-ethylene-		C	Guinea pig		5-A	0.001-2.5	. A	4,12,16,
	diamine (Mepyramine:			Curica pre	5.0		0.001 2.5		21,25,
	Pyranisamine; Pyril-								54,58-
	amine; Neoantergan;								62
109		Acetylcholine	С	Guinea pig			1-3	A	61
				. 0					

Part III: ANTIHISTAMINES (Continued)

C = constricts, D = dilates, A = antagonizes active drug effect, I = inactive (i.e., without influence on effect of active drug), P = potentiates active drug effect. Parentheses in Columns F and H indicate action is slight, irregular, or doubtful, and the original literature should be consulted.

	Antagonist or Potentiator	Active Drug		Species		cal	Potentiato		Reference
	(Synonym)	Compound	Effect	Sp. Committee		Action		Action	
	(A)	(B)	(C)	(D)	(E)	(F)	(G)	(H)	(I)
				nes (continue					
110	N-(p-Methoxybenzyl)-N-	Epinephrine	D	Guinea pig		I	!	_	63
11	(2-pyridyl)-N', N'-	5-Hydroxytryptamine	C	Guinea pig	+	1	1	(A)	61,64,65
12	dimethyl-ethylene-	Methacholine	C	Guinea pig	+		3-6	1 A	61
13	diamine (Mepyramine;	Methyl-furmethide	C	Guinea pig			1-3	A	61
14	Pyranisamine; Pyril-	Nicotine	C	Guinea pig			1-3	(A)	61
115	amine; Neoantergan;	Micotine	D	Guinea pig	-	A	1 3	(22)	63
116	RP 2786) (concluded)	Norepinephrine	D	Guinea pig		(P)		+	63
17	RF 2780/(concluded)	Pentamidine	C	Guinea pig		(1)	2.5	A	66
118						A	2.5	- A	12
	N-(p-Chlorobenzyl)-N-	β-Pyridyl-ethylamine		Guinea pig	0.0004	A	1	Α	19
119	(2-pyridyl)-N', N'- dimethyl-ethylene- diamine (Chlorneo- antergan)	Histamine	C	Guinea pig				A	19
20	N-(p-Bromobenzyl)-N- (2-pyridyl)-N', N'- dimethyl-ethylene- diamine (Hibernon; p-Bromotripelen- namine)	Histamine	С	Guinea pig	0.01-	A			67
21	N-(p-Fluorobenzyl)-N- (2-pyridyl)-N', N'- dimethyl-ethylene- diamine	Histamine	C	Guinea pig	-	,	1	A	19
22	N-(2-Thenyl)-N-(2-	Histamine	C	Guinea pig		+	0.025-3.0	A	16,19,22,
	pyridyl)-N', N'- dimethyl-ethylene- diamine (Metha- pyrilene; Thenylene; Histadyl; W-53)			+ =				\ \ +	44
123	N-(5-Chloro-2-thenyl)- N-(2-pyridyl)-N', N'- dimethyl-ethylene- diamine (Chloro- pyrilene; Chlorothen)	Histamine	C	Guinea pig			2.5-3.0	A	16,19,44,
	N-(5-Bromo-2-thenyl)- N-(2-pyridyl)-N', N'- dimethyl-ethylene- diamine (Bromothen)	Histamine	C	Guinea pig	-		3	A	19
	dyl)-N', N'-dimethyl- ethylene-diamine- (Thenyldiamine; Thenfa	Histamine dil)	C	Guinea pig		A	0.04-0.17	A	49
126	N-(2-Chloro-3-thenyl)- N-(2-pyridyl)-N', N'- dimethyl-ethylene- diamine (WIN 2875)	Histamine	C	Guinea pig		A	0.4-0.9	A	49
127	N-(2-Bromo-3-thenyl)-N- (2-pyridyl)-N', N'- dimethyl-ethylene- diamine (WIN 2876)	Histamine	С	Guinea pig		A	0.4-0.9	A	49
28	N-(2-Furfuryl)-N-(2- pyridyl)-N', N'-di- methyl-ethylene-diam- ine (Methafurylene)	Histamine	С	Guinea pig	0.01	A	1-2	A	52
29	N1-Phenyl-N1-benzyl- N2,N2-dimethyl- 2-methylethylene- diamine	Histamine	С	Guinea pig				A	68

Part III: ANTIHISTAMINES (Continued)

C = constricts, D = dilates, A = antagonizes active drug effect, I = inactive (i.e., without influence on effect of active drug), P = potentiates active drug effect. Parentheses in Columns F and H indicate action is slight, irregular, or doubtful, and the original literature should be consulted.

Antagonist or Potentiator		Active Drug	suitea.	1	Antag	onist or	Potentiator	Effect	
	Antagonist or Potentiator			Species		ocal	System		Reference
	(Synonym)	Compound	Effect			Action		Action	
	(A)	(B)	(C)	(D)	(E)	(F)	(G)	(H)	(I)
			diamin	es (conclude	ed)				
130	N1-Phenyl-N1-benzyl-N2, N2-diethyl-2-methyl- ethylenediamine		С	Guinea pig				A	68
		Phenothiazir			npounds	5	Y		
131	N-Dimethylaminoethyl-	Histamine	C	Dog			1.0	A	69
132	phenothiazine (RP 3015)	1.00	C	Guinea pig			0.1-8.0	A	19,25,69
133	N-Diethylaminoethyl- phenothiazine	Diisopropylfluoro- phosphate	С	Dog			8.5	A	70
134	(Diethazine; Diparcol; 2987 RP)	Pilocarpine	С	Dog			10.0	A	70
135		Histamine	С	Man		A	0.5-1.0	A	7,71
136	propyl)phenothiazine		C	Dog			1.0	A	69
137	(Promethazine; Phenergan; RP 3277)		С	Guinea pig	5	A	0.2-10.0	A	19,21,25, 26,28,69, 72-75
138		5-Hydroxytryptamine	C	Guinea pig		1	1-3	A	64,65
139		Methacholine	С	Man			0.5-1.0	A	71
140			С	Guinea pig			6.0	A	26
141	N-(γ-Dimethylamino-β, β-dimethyl-propyl)- phenothiazine (RP 3300)	Histamine	С	Guinea pig				1	38
142	N-Dimethylaminopropyl-	Histamine	С	Guinea pig			10-40	A	61,72-74
143	3-chlorophenothiazine	Acetylcholine	С	Guinea pig	+		5-10	A	61
144	(Chlorpromazine;	5-Hydroxytryptamine	С	Guinea pig	+		5-10	A	61
145	Largactil)	Methacholine	С	Guinea pig			10	(A)	61
146		Methyl-furmethide	C	Guinea pig			10	A	61
147		Nicotine	C	Guinea pig			5-10	A	61
148	N-Methylpiperidyl-3- methyl-phenothiazine (Lacumin)	Histamine	С	Guinea pig				A	76
149	N-Pyrrolidineethyl-pheno- thiazine (Pyrathiazine; Pyrrolazote; I-WBR-86)	Histamine	С	Guinea pig			2-12	A	19,44,47
150	N-Dimethylaminoethyl-1- methoxyphenothiazine (RP 3298)	Histamine	С	Guinea pig				A	38
151	N-(α-Methyl-β-dimethyl- aminoethyl)-1-methoxy- phenothiazine (RP 3299)		С	Guinea pig				A	38
152	N-Dimethylaminoethyl- thionodiphenylamine (RP 3283)	Histamine	C	Guinea pig				A	38
153	N-Dimethylaminoethyl- sulphonodiphenylamine (RP 3289)	Histamine	С	Guinea pig				A	38
	12077	Λ	liscella	neous		1	1		
154	2-Dimethylaminoethoxy- diphenylmethane (C 5581 H)	Histamine	С	Guinea pig			5	A	19
155	2-Dimethylaminoethoxy- 4-chloro-diphenyl- methane (01780)	Histamine	С	Guinea pig			10	A	19
156	a-Dimethylaminoethoxy- a-(2-pyridyl)-ethyl- benzene (Decapryn; Dox	Histamine	С	Guinea pig			5	A	19,44
157	1-Phenyl-1-(2-pyridyl)- 3-dimethylamino- propane (Prophenpyrid-	llistamine	С	Guinea pig	0.02	A	0.5-5	A	19,45,77
	amine; Inhiston; Trimeton)								

Part III: ANTIHISTAMINES (Continued)

C = constricts, D = dilates, A = antagonizes active drug effect, I = inactive (i.e., without influence on effect of active drug), P = potentiates active drug effect. Parentheses in Columns F and H indicate action is slight, irregular, or doubtful, and the original literature should be consulted.

	Antagonist or Potentiator	Active Drug		Species		onist or	Potentiator I Systemi		Reference
	(Synonym)	Compound	Effect	Species		Action		Action	
_	(A)	(B)	(C)	(D)	μg/m1 (E)	(F)	(G)	(H)	(G)
	(A)	_/		concluded)	(E)	(1)	(0)	(11)	(0)
50	1-Phenyl-1-(2-pyridyl)-	Histamine	C	Guinea pig	1		0.1-10.0	A	77
	3-dimethylamino-	III STAIL III C		Odinca pig				••	
	propane p-aminosali-								
	cylate (Avil; 11513c)								
50	1-(p-Chlorphenyl)-1-	Histamine	C	Guinea pig			0.05-10.0	A	19,28,60
27	(2-pyridyl)-3-dimethyl-	IIIstamme		Gumea pig			0.03 10.0	**	2 /,20,00
	amino-propane (Chlor-								
	pheniramine; Chlorpro-								
	phenpyridamine; Chlor-7	Crimeton)'							
60	N'-Benzyl-N-methyl-	Histamine	С	Guinea pig		(A)			16
00		mistamme		Guinea pig		(11)			
61	piperazine (46-125) N'-Benzyl-N-ethyl-	Histamine	С	Guinea pig		(A)			16
. 01	piperazine (46-126)	inistanime		Gumea pig		(11)			
43	N'-Benzyl-N-(n-lauryl)-	Histamine	C	Guinea pig		1			16
.02	piperazine (895)	linstamme		Guinea pig	1	1			
43	4-Dimethylamino-N-	Histamine	C	Dog		A	1-2	A	78
103	phenylpiperidine	mstamme		Dog		_ n	1 2	4.4	***
	(lrenal)								
		Viotemine	С	Guinea pig				A	19
64	1,2-Diphenyl-4-piperidyl-	nistamine	C	Guinea pig				А	17
	1-butene (01003)	TT: -4	С	Cuinos nia			0.08-0.15	A	79
65		Histamine	C	Guinea pig		-	0.3	A	79
66	phenyl-N'-(2'-thenyl)-	5-Hydroxytryptamine		Guinea pig			0.3	Α	17
	piperidine (Sandosten)	171-4	С	Man	-	A			21
67	, , , , , , , , , , , , , , , , , , , ,	llistamine	C		0.005-		0.0025-15.0	A	13,17,19.
68	aminomethyl)imid-		C	Guinea pig	50.0		0.0025-15.0	Α	21,67,
	azoline (Antazoline;				50.0				80,81
	Antistine; Antastan;								00,01
	5512-M)	FF! - A !	C	Cuinanaia	100-	A			82
169	2-(1,2,3,4-Tetrahydro-	Histamine		Guinea pig	200	A			02
	l-naphthyl)-imidazoline				200				
	(Tetrahydrozoline								
	Tyzine)	¥	С	Cuina a sin		-	0.01-1.0	Ā	60
170	trans-1-(4'-Methyl-	Histamine	C	Guinea pig			0.01-1.0	A	60
	phenyl)-1-(2'-pyridyl)-								
	3-pyrrolidinoprop-1-				1		å		
	ene hydrochloride								
	(295 C 51)	TT - A - J	C	Cultura	ļ		0.09-2.5	A	60
171	trans-1-(4'-Chloro-	Histamine	C	Guinea pig			0.09-2.5	A	00
	phenyl)-1-(2'-pyridyl)-								
	3-pyrrolidinoprop-1-								
	ene maleate (405 C 49)					-	(12		23
172	2-Methyl-9-phenyl-2,3-	Histamine	С	Guinea pig			6-12		23
	dihydro-l-pyridindene								
	(Nu 1326)								22.02
	2-Methyl-9-phenyl-2,3,	Histamine	С	Cat		1	1.0	A	23,83
174	4,9-tetrahydro-1-		С	Guinea pig			0.25-10.0	A	19,23,75,
	pyridindene (Phenin-						1.0		83
75	damine; Thephorin;	Acetylcholine	C	Cat			1.0	A	23
	Nu 1504)								
176	2-Methyl-9-phenyl-2,3,	Histamine	С	Guinea pig			30	A	23
	4,4a,9,9a-hexahydro-								
	1-pyridindene (Nu 1525)								

Contributor: Hawkins, D. F.

References: [1] Kohler, D. C. rend. Soc. biol. 141:48, 1947. [2] Staub, A. M., Ann. Inst. Pasteur, Par. 63:400, 1939. [3] Minard, D., and Rosenthal, S. R., Proc. Soc. Exp. Biol. 44:237, 1940. [4] Bovet, D., and Walthert, F., Ann. pharm. fr. 2:(suppl.), 1944. [5] Loew, E. R., Kaiser, M. E., and Moore, V., J. Pharm. Exp. Ther. 83:120, 1945. [6] Ellis, F. W., ibid 89:214, 1947. [7] Rosa, L., and McDowall, R. J., Acta Allerg. 4:293, 1951.

Part III: ANTIHISTAMINES (Concluded)

[8] Rubitsky, H. J., Bresnick, E., Levinson, L., Risman, G., and Segal, M. S., N. England M. J. 241:853, 1949. [9] Rubitsky, H. J., Herschfus, J. A., Levinson, L., Bresnick, E., and Segal, M. S., J. Allergy 21:559, 1950. [10] Landmesser, C. M., Anesthesiology 8:506, 1947. [11] Winder, C. V., Kaiser, M. E., Anderson, M. M., and Glassco, E. M., J. Pharm. Exp. Ther. 87:121, 1946. [12] Arunlakshana, O., (thesis), London, 1953. [13] Bovet, D., Ann. N. York Acad. Sc. 50:1089, 1950. [14] Castillo, J. C., J. Pharm. Exp. Ther. 94:412, 1948. [15] Castillo, J. C., and De Beer, E. J., ibid 90:104, 1947. [16] Castillo, J. C., De Beer, E. J., and Jaros, S. H., ibid 96:388, 1949. [17] Dutta, N. K., Brit. J. Pharm. 4:197, 1949. [18] Ellis, F. W., Fed. Proc. 4:117, 1945. [19] Feinberg, S. M., Malkiel, S., Bernstein, T. B., and Hargis, B. J., J. Pharm. Exp. Ther. 99:195, 1950. [20] Graham, J. D., ibid 91:103, 1947. [21] Hawkins, D. F., (thesis), London, 1952. [22] Lee, H. M., Dinwiddie, W. G., and Chen, K. K., J. Pharm. Exp. Ther. 90:83, 1947. [23] Lehmann, G., ibid 92:249, 1948. [24] Luduena, F. P., Ananenko, E., Siegmund, O. H., and Miller, L. C., ibid 95:155, 1949. [25] Winter, C. A., ibid 90:224, 1947. [26] Chen, G., and Ensor, C. R., J. Laborat. Clin. M. 34:1010, 1949. [27] Hambourger, W. E., Freese, H. B., Winbury, M. M., and Michiels, P. M., J. Pharm. Exp. Ther. 94:367, 1949. [28] Chen, J. Y., ibid 114:192, 1955. [29] Norton, S., Colville, K. I., Light, A. E., Wnuck, A. L., Fanelli, R. V., and De Beer, E. J., ibid 112:297, 1954. [30] Mayer, R. L., Huttrer, C. P., and Scholz, C. R., Science 102:93, 1945. [31] Graham, J. D., and Tonks, R. S., Brit. J. Pharm. 11:1, 1956. [32] Feinberg, S. M., J. Allergy 17:217, 1946. [33] Halpern, B. N., Arch. internat. pharm. dyn., Par. 68:339, 1942. [34] Sandberg, F., Acta physiol. scand. 25:(suppl. 91), 1952. [35] Yonkman, F. F., Oppenheimer, E., Rennick, B., and Pellet, E., J. Pharm. Exp. Ther. 89:31, 1947. [36] Halpern, B. N., J. méd. Lyon 23:409, 1942. [37] Halpern, B. N., C. rend. Soc. biol. 139:625, 1945. [38] Halpern, B. N., J. Allergy 18:263, 1947. [39] De Cuyper, T., Arch. internat. pharm. dyn., Par. 72:360, 1946. [40] Ercoli, N., Schacter, R. J., Hueper, W. C., and Lewis, M. N., J. Pharm. Exp. Ther. 93:210, 1948. [41] Reinhard, J. F., and Scudi, J. V., Proc. Soc. Exp. Biol. 66:512, 1947. [42] Scudi, J. V., Reinhard, J. F., and Dreyer, N. B., J. Allergy 19:184, 1948. [43] Feinstone, W. H., Williams, R. D., and Rubin, B., Proc. Soc. Exp. Biol. 63:158, 1946. [44] Feinberg, S. M., Norén, B., and Feinberg, R. H., J. Allergy 19:90, 1948. [45] Dreyer, N. B., Ann. Allergy 8:229, 1950. [46] Archer, J. D., Texas Repts. Biol. M. 10:483, 1952. [47] Brook, V. M., Olsen, K. J., Richmond, M. T., and Kuizenga, M. H., J. Pharm. Exp. Ther. 94:197, 1948. [48] Feinberg, S. M., Quart. Bull. Northwest. Univ. M. School 22:27, 1948. [49] Lands, A. M., Hoppe, J. O., Siegmund, O. H., and Luduena, F. P., J. Pharm. Exp. Ther. 95:45, 1949. [50] Mayer, R. L., J. Allergy 17:153, 1946. [51] Mayer, R. L., Hays, H. W., Brousseau, D., Mathieson, D., Rennick, B., and Yonkman, F. F., J. Laborat. Clin. M. 31:749, 1946. [52] Orcutt, J. A., and Prytherch, J. P., J. Pharm. Exp. Ther. 99:479, 1950. [53] Schiller, I. W., and Lowell, F. C., Ann. Allergy 5:564, 1947. [54] Sherrod, T. R., Loew, E. R., and Schloemer, H. F., J. Pharm. Exp. Ther. 89:247, 1947. [55] Hawkins, D. F., Herxheimer, H., and Schild, H. O., J. Physiol., Lond. 113:26P, 1951. [56] Hawkins, D. F., and Schild, H. O., Brit. J. Pharm. 6:682, 1951. [57] Schild, H. O., Hawkins, D. F., Mongar, J. L., and Herxheimer, H., Lancet, Lond. 2:376, 1951. [58] Bovet, D., Horclois, R., and Walthert, F., C. rend. Soc. biol. 138:99, 1944. [59] Dews, P. B., and Graham, J. D., Brit. J. Pharm. 1:278, 1946. [60] Green, A. F., Brit. J. Pharm. 8:171, 1953. [61] Herxheimer, H., Arch. internat. pharm. dyn., Par. 106:371, 1956. [62] Parkes, M. W., personal communication, 1949. [63] Hawkins, D. F., and Paton, W. D., unpublished, 1957. [64] Bhattacharya, B. K., Arch. internat. pharm. dyn., Par. 103:357, 1955. [65] Herxheimer, H., J. Physiol., Lond. 128:435, 1955. [66] Guimaraes, J. L., and Lourie, E. M., Brit. J. Pharm. 6:514, 1951. [67] Alberty, J., Arch. internat. pharm. dyn., Par. 95:408, 1953. [68] Jalon, G., Farmacoter. actual, Madr. 2:35, 1946. [69] Halpern, B. N., and Ducrot, R., C. rend. Soc. biol. 140:361, 1946. [70] Heymans, C., Estable, J. J., and De Bonneveaux, S. C., Arch. internat. pharm. dyn., Par. 79:123, 1949. [71] Herxheimer, H., Brit. M. J. 2:901, 1949. [72] Courvoisier, S., Fournel, J., Ducrot, R., Kolsky, M., and Koetschet, P., Arch. internat. pharm. dyn., Par. 92:305, 1952. [73] Kopera, J., and Armitage, A. K., Brit. J. Pharm. 9:392, 1954. [74] Ryall, R. W., ibid 11:339, 1956. [75] Timiras, P. S., J. Pharm. Exp. Ther. 106:419, 1952. [76] Kopf, R., Nord. med. 54:1779, 1955. [77] Lindner, E., Arch. exp. Path. 211:328, 1950. [78] Stern, P., ibid 199:251, 1942. [79] Konzett, H., Brit. J. Pharm. 11:289, 1956. [80] Graham. J. D., J. Pharm., Lond. 91:103, 1947. [81] Meier, R., and Bucher, K., Schweiz, med. Wschr. 76:294, 1946. [82] Hutcheon, D. E., Plan, S. Y., Gardocki, J. F., and Jaeger, D. A., J. Pharm. Exp. Ther. 113:341, 1955. [83] Lehmann, G., Hagen, E., Barbarrow, G., and Rof, M., Fed. Proc. 6:350, 1947,

Part IV: ERGOT DERIVATIVES

Drugs are listed alphabetically. C = constricts, D = dilates, A = antagonizes active drug effect, I = inactive (i.e., without influence on effect of active drug), P = potentiates active drug effect. Parentheses in Columns F and H indicate action is slight, irregular, or doubtful, and the original literature should be consulted.

_	A to contrat on Determination	Active Drug					Potentiator		
	Antagonist or Potentiator	Compound	Effect	Species		cal	Systen	nic	Reference
	(Synonym)	Сотроина	Enect		µg/mI	Action	mg/kg	Action	1
	(A)	(B)	(C)	(D)	(E)	(F)	(G)	(H)	(I)
1	l-Acetyl-d-Iysergic acid diethylamide	5-Hydroxytryptamine	С	Cat			0.015-0.03	A	1
2	2-Bromo-d-lysergic acid diethylamide	5-Hydroxytryptamine	С	Cat			0.015-0.03	A	1
3	Dihydroergocornine	Histamine	С	Man			0.003-0.01	A	2
4		Methacholine	С	Man			0.003-0.01	A	2
5	Dihydroergotamine	Epinephrine	D	Guinea pig	0.3-5.0				3
6		5-Hydroxytryptamine	С	Cat		A			4
7			С	Guinea pig		A	4.0	A	5,6
8		Isoproterenol	D	Guinea pig	0.3-3.0				3
9		Lobeline	D	Guinea pig	1.0	I			3
10		Nicotine	D	Guinea pig					3
11		Norepinephrine	D	Guinea pig	10.0	(A)		-	3
12	Ergometrine	Epinephrine	D	Guinea pig	1.0	I		ļ	3
13		5-Hydroxytryptamine	С	Guinea pig			0.2	I	1
14		Norepinephrine	D	Guinea pig	1.0	I		-	3
15	Ergotamine	Arecoline	С	Cat		I		T	8
16			С	Dog		I		I	7,8
17			С	Rabbit		I			8
18		Diethylmorphine	C	Cat	ļ	I		-	8
19			C	Dog		I		I	7,8
20		Ephedrine'	D	Dog				I	7
21		√ - Ephedrine	D	Dog				I	7
22		Epinephrine	D	Cat		I	2.0	P	8,9
23			D	Dog		I	2.0	I	7,8,9
24			D	Guinea pig	10.0	(A)			3,10
25			D	Rabbit		I			8
26		Histamine	C	Cat		I			8
27			C	Dog		I	5.0	I	7,8
28			C	Guinea pig			1.5	I	11
29			С	Rabbit		I		-	8
30		5-Hydroxytryptamine	C	Guinea pig		A			5
31		Isoproterenol	D	Guinea pig	0.3-3.0			1	3
32		Morphine	C	Cat		I			8
33			C	Dog	-	I		I	7,8
34		Nicotine	D	Guinea pig	_	A		-	3
35		Norepinephrine	D	Guinea pig	+	(A)	-	-	3
36		Dharastian	D	Guinea pig	40	(P)		-	8
37 38		Physostigmine	С	Cat		I		- Y	
39			С	Dog	+	I		I	7,8
40		Dilegamine	C	Rabbit		I			8
41		Pilocarpine	C	Cat		I		I	7,8
42			C	Dog		I		1 -	8
43	Ergotoxine ¹	Acetylcholine	C	Rabbit Guinea pig	-	A		-	12,13
44	Di gotoxine-		1					-	-
45		Arecoline	C	Cat		I		I	7,8
46			C	Rabbit		I		*	8
47		Diethylmorphine	C	Cat		I			8
48		Diediyimor piime	C	Dog		I		I	7,8
49		Ephedrine	D	Cat		I		1	8
50		13piledi 117c	D	Dog		I		1	7,8
51			D	Rabbit		I		1	8
						_ ^		1	<u> </u>

^{/1/} Contains ergocornine, plus small amounts of ergokryptine and ergocristine.

Part IV: ERGOT DERIVATIVES (Concluded)

C = constricts, D = dilates, A = antagonizes active drug effect, l = inactive (i.e., without influence on effect of active drug), P = potentiates active drug effect. Parentheses in Columns F and H indicate action is slight, irregular, or doubtful, and the original literature should be consulted.

	Antagonist or Potentiator	Active Drug					Potentiator		
	(Synonym)	Compound	Effect	Species		ocal	System		Reference
	(Synonym)	Compound				Action		Action	
	(A)	(B)	(C)	(D)	(E)	(F)	(G)	(H)	(1)
52	Ergotoxinel (concluded)	Ψ-Ephedrine	D	Cat		I			8
53			D	Dog		I		I	7,8
54		***	D	Rabbit		I			8
55		Epinephrine	D	Cat		I	0.3	1	8,14
56			D	Dog		I	0.2-2.0	1	7,8,15
57			D	Guinea pig		(A)			16,17
58			D	Pig		A			18
59			D	Rabbit		I			8
60		Histamine	С	Cat		I			8
61			С	Dog		I		1	7,8
62			C	Rabbit		I			8
63		Morphine	C	Cat		I			8
64			С	Dog		I		I	7,8
65		Muscarine	С	Cat		I			14
66		Nicotine	D	Guinea pig		A			3
67		Norepinephrine	D	Guinea pig		I			3
68		Physostigmine	C	Cat		I			8
69			С	Dog		I		1	7,8
70			C	Rabbit		1			8
71		Pilocarpine	С	Cat		I	4		8
72			С	Dog		I		I	7,8
73			С	Rabbit		I			8
74	d-Lysergic acid	Acetylcholine	С	Guinea pig			0.07	1	19
75	diethylamide	Histamine	C	Cat		1	0.005-0.03	I	1,4
76			C	Guinea pig		I	<0.05	I	1,19
77		5-Hydroxytryptamine	С	Guinea pig		A	0.005-0.4	A	1,5,6,19
78		Methacholine	С	Guinea pig	1		0.02	(A)	19
79		Methyl-furmethide	С	Guinea pig			<0.08	I	19
80		Nicotine	C	Guinea pig			<0.08	I	19

^{/1/} Contains ergocornine, plus small amounts of ergokryptine and ergocristine.

Contributor: Hawkins, D. F.

References: [1] Konzett, H., Brit. J. Pharm. 11:289, 1956. [2] Curry, J. J., Fuchs, J. E., and Leard, S. E., J. Clin. Invest. 29:439, 1950. [3] Hawkins, D. F., and Paton, W. D., unpublished, 1957. [4] Gaddum, J. H., Hebb, C. O., Silver, A., and Swan, A. A., Quart. J. Exp. Physiol., Lond. 38:255, 1953. [5] Bhattacharya, B. K., Arch. internat. pharm. dyn., Par. 103:357, 1955. [6] Herxheimer, H., J. Physiol., Lond. 128:435, 1955. [7] Swanson, E. E., J. Pharm. Exp. Ther. 36:541, 1929. [8] Swanson, E. E., and Webster, R. K., ibid 38:327, 1930. [9] Melville, K. I., Arch. internat. pharm. dyn., Par. 58:129, 1938. [10] Warnant, H., ibid 37:61, 1930. [11] Loew, E. R., Kaiser, M. E., and Moore, V., J. Pharm. Exp. Ther. 86:1, 1946. [12] Hebb, C. O., J. Physiol., Lond. 96:29P, 1939. [13] Hebb, C. O., ibid 99:57, 1940. [14] Januschke, H., and Pollak, L., Arch. exp. Path. 66:205, 1911. [15] Jackson, D. E., J. Pharm. Exp. Ther. 4:59, 1912. [16] Daly, I. de B., Quart. J. Exp. Physiol., Lond. 28:357, 1938. [17] Hawkins, D. F. (thesis), London, 1952. [18] Villaret, M., Justin-Besançon, L., and Vexenat, G., C. rend. Soc. biol. 100:806, 1929. [19] Herxheimer, H., Arch. internat. pharm. dyn., Par. 106:371, 1956.

Part V: 2-HALOETHYLAMINES

Drugs are listed alphabetically. C = constricts, D = dilates, A = antagonizes active drug effect, I = inactive (i.e., without influence on effect of active drug), P = potentiates active drug effect. Parentheses in Columns F and H indicate action is slight, irregular, or doubtful, and the original literature should be consulted.

	Antagonist or Potentiator	Active Drug			Antage	onist or	Potentiator	Effect	}
	(Synonym)	Compound	Effect	Species	Local		Systemic		Reference
	(Synonym)	Compound	Effect		µg/ml	Action	mg/kg	Action	
	(A)	(B)	(C)	(D)	(E)	(F)	(G)	(11)	(1)
	N-[2-(2-Biphenylyloxy)- ethyl] -N-(2-chloro- ethyl)-allylamine	Histamine	С	Guinea pig			12.5	Ī	1
	N-[2-(2-Biphenylyloxy)- ethyl]-N-(2-chloro- ethyl)-amylamine	Histamine	С	Guinea pig			12.5	1	1
3	N-[2-(2-Biphenylyloxy)- ethyl]-N-(2-chloro- ethyl)-butylamine	Histamine	С	Guinea pig			25.0	I	1

Part V: 2-HALOETHYLAMINES (Continued)

C = constricts, D = dilates, A = antagonizes active drug effect, l = inactive (i.e., without influence on effect of active drug), P = potentiates active drug effect. Parentheses in Columns F and H indicate action is slight, irregular, or doubtful, and the original literature should be consulted.

or	doubtful, and the original li	·	suiteu.		Ι Δ		Data	TICC .	
	Antagonist or Potentiator	Active Drug		Sancias		onist or	Potentiator		Reference
	(Synonym)	Compound	Effect	Species		Action	System mg/kg	Action	Kelerence
_	(A)	(B)	(C)	(D)	(E)	(F)	(G)	(H)	(I)
4	N-[2-(2-Biphenylyloxy)-	Histamine	C	Guinea pig	(2)	(1)	6.0	A	1
- 1	ethyl] -N-(2-chloro-	Til Statillic		Gamea pig			10.0		•
	ethyl)-ethylamine								
5	N-[2-(2-Biphenylyloxy)-	Histamine	С	Guinea pig			25.0	1	1
	ethyl] -N-(2-chloro-			Games pre	1			-	-
	ethyl)-hexylamine								
6	N-[2-(2-Biphenylyloxy)-	Histamine	С	Guinea pig			12.5	I	1
	ethyl] -N-(2-chloro-								
	ethyl)-isopropylamine								
7	N-[2-(2-Biphenylyloxy)-	Histamine	C	Guinea pig			1.5	A	1
	ethyl] -N-(2-chloro-								
	ethyl)-methylamine								
8	N-[2-(2-Biphenylyloxy)-	Histamine	С	Guinea pig			12.5	A	1
	ethyl] -N-(2-chloro-								
	ethyl)-n-propylamine							ļ.	
9	N-[2-(2-Biphenylyloxy)-	Histamine	C	Guinea pig			12.5	A	1
	ethyl]-N-(2-chloro-				1				
	propyl)-ethylamine								
10	·	Histamine	C	Guinea pig			12.5	1	2
	ethyl)-N-ethyl-1-								
	naphthalenemethylamine						-		
11	N-(2-Chloroethyl)-N-	Histamine	С	Guinea pig			3.0	A	2
	allyl-1-naphthalene-								
1.2	methylamine N-(2-Chloroethyl)-N-n-	Histamine	C	Guinea pig			12.5	I	2
14	amyl-1-naphthalene-	Histamine	C	Guinea pig			12.5	r	2
	methylamine								
13		llistamine	C	Guinea pig	-		12.5	A	2
13	butyl-1-naphthalene-	mstamme	C	damea pig			12.5	1 11	-
	methylamine								
14	N-(2-Chloroethyl)-N-	Histamine	C	Guinea pig			12.5	A	2
	secbutyl-1-naphtha-			Carrota pag			1	""	
	lenemethylamine								
15	N-(2-Chloroethyl)-N-	Ilistamine	C	Guinea pig			0.025-0.08	A	2,3
	ethyl-1-naphthalene-			. 0					
	methylamine								
16	N-(2-Chloroethyl)-N-n-	Histamine	C	Guinea pig			25.0	I	2
	hexyl-1-naphthalene-								
	methylamine								
17	N-(2-Chloroethyl)-N-	llistamine	C	Guinea pig			12.5	I	2
	isobutyl-1-naphthalene-								
	methylamine								
18	N-(2-Chloroethyl)-N-	Histamine	C	Guinea pig			3.0	A	2
	isopropyl-1-naphtha-								
10	lenemethylamine N-(2-Chloroethyl)-N-	Histamine	C	Guinea pig	_		1.5	A	2
17	(2-methoxyethyl)-1-	nistamine	C	Guinea pig			1.5	, A	_
	naphthalenemethylamine								
20	N-(2-Chloroethyl)-N-	Histamine	C	Guinea pig			0.05-0.20	A	2,3
	methyl-1-naphthalene-		J	Danie Pie					
	methylamine								
21	N-(2-Chloroethyl)-N-n-	Histamine	С	Guinea pig			1.0	A	2
	propyl-t-naphthalene-								
	methylamine								
22	N-[2-(2'-Cyclohexylphen-	Histamine	С	Guinea pig			25.0	I	1
	oxy)-ethyl]-N-(2-chloro-								
	ethyl)-ethylamine								
23	N, N-Dibenzyl-2-chloro-	Epinephrine	D	Guinea pig	1000	P			4
24	ethylamine (Dibenamine)	5-Hydroxytryptamine	С	Guinea pig		A			5
25		Norepinephrine	D	Guinea pig	1000	1			4

135. ANTAGONISTS AND POTENTIATORS OF DRUGS ACTING ON THE BRONCHI (Continued) Part V: 2-HALOETIIYLAMINES Concluded)

C = constricts, D = dilates, A = antagonizes active drug effect, 1 = inactive (i.e., without influence on effect of active drug), P = potentiates active drug effect. Parentheses in Columns F and H indicate action is slight, irregular, or doubtful, and the original literature should be consulted.

	Antonomiat an Post allocation	Active Drug			Antage	onist or	Potentiator	Effect	1
	Antagonist or Potentlator (Synonym)	Compound	Effect	Species		cal	Systen	nic	Reference
	(Synonym)	Compound	1		µg/kg	Action	mg/kg	Action	
	(A)	(B)	(C)	(D)	(E)	(F)	(G)	(H)	(1)
26	N, N-Di-(2-chloroethyl)-1- naphthalenemethylamine	Histamine	С	Guinea pig			25.0	A	2
27	N-Ethyl-N-(1-naphthyl- methyl)-2-bromoethylam	Histamine ine!	С	Guinea pig			0.03-0.10	A	2,3
28	N-Ethyl-N-(2-naphthyl- methyl)-2-bromoethylam	Histamine	С	Guinea pig			1.5	A	3
29	N-Ethyl-N-(2-naphthyl- methyl)-2-chloroethylam	Histamine	С	Guinea pig			3.6		3
30	N-Ethyl-N-(1-naphthyl- methyl)-2-fluoroethylami	Histamine	С	Guinea pig				(1)	3
31	N-Ethyl-N-(2-naphthyl- methyl)-2-fluoroethylami	Histamine	С	Guinea pig			20.0	A	3
32	N-Ethyl-N-(1-naphthyl- methyl)-2-iodoethylamine	Histamine	C	Guinea pig			0.10	A	3
33	N-Ethyl-N-(2-naphthyl- methyl)-2-iodoethylamine	Histamine	С	Guinea pig			1.9	A	3
34	N-Methyl-N-(1-naphthyl- methyl)-2-bromoethyl- amine	Histamine	С	Guinea pig	l		0.11	A	3
35	N-Methyl-N-(2-naphthyl-methyl)-2-bromoethyl-amine	Histamine	С	Guinea pig			2.1	A	3
	N-Methyl-N-(2-naphthyl- methyl)-2-chloroethyl- amine	Histamine	С	Guinea pig			4.4	A	3
37	N-Methyl-N-(1-naphthyl- methyl)-2-fluoroethyl- amine	Histamine	С	Guinea pig				(1)	3
38	N-Methyl-N-(2-naphthyl- methyl)-2-fluoroethyl- amine	Histamine	С	Guinea pig			25.0	A	3
39	N-Methyl-N-(1-naphthyl- methyl)-2-iodoethyl- amine	Histamine	С	Guinea pig			0.14	A	3
40	N-Methyl-N-(2-naphthyl- methyl)-2-iodoethyl- amine	Histamine	С	Guinea pig			2.4	A	3
41	N-Phenyl-N-(1-naphthyl- methyl)-2-bromoethyl- amine	Histamine	С	Guinea pig			9.0	A	3
42	N-Phenyl-N-(1-naphthyl- methyl)-2-chloroethyl- amine	Histamine	С	Guinea pig			9.3	A	3
43		Histamine	С	Guinea pig			8.5	A	3
-									

Contributor: Hawkins, D. F.

References: [1] Loew, E. R., and Micetich, A., J. Pharm. Exp. Ther. 95:448, 1949. [2] Loew, E. R., and Micetich, A., ibid 94:339, 1948. [3] Graham, J. D., and Lewis, G. P., Brit. J. Pharm. 8:54, 1953. [4] Hawkins, D. F., and Paton, W. D., unpublished, 1957. [5] Bhattacharya, B. K., Arch. internat. pharm. dyn., Par. 103:357, 1955.

Part VI: TRIAZINES

Drugs are listed alphabetically. C = constricts, D = dilates, A = antagonizes active drug effect, l = inactive (i.e., without influence on effect of active drug). Parentheses in Column H indicate action is slight, irregular, or doubtful, and the original literature should be consulted.

A-4	Active Drug				Antago	onist Effect		
Antagonist (Synonym)	Compound	Effect	Species		cal	System		Reference
(Synonym)	Compound	2		µg/ml	Action	mg/kg	Action	
(A)	(B)	(C)	(D)	(E)	(F)	(G)	(11)	(1)
1 2-(p-Aminophenyl)-4,6- diamino-s-triazine	Histamine	С	Guinea pig			50	(A)	1
2 2-Anillno-4, 6-diamino-s- triazine	Histamine	С	Guinea pig			100	(1) L	1

Part VI: TRIAZINES (Concluded)

C = constricts, D = dilates, A = antagonizes active drug effect, I = inactive (i.e., without influence on effect of active drug). Parentheses in Column H indicate action is slight, irregular, or doubtful, and the original literature should be consulted.

	Antagonist	Active Drug		. Constant		Antage	onist Effect		Reference
	(Synonym)	Compound	Effect	Species			Syster	Action	
_	(A)	(B)	(C)	(D)	μg/ml (E)	(F)	mg/kg (G)	(H)	(1)
3	2-Benzyloxy-4, 6-diamino-		(C)	Guinea pig	(E)	(F)	25.0	[[1]	1
	s-triazine								
4	2-Butoxy-4, 6-diamino-s- triazine	Histamine	С	Guinea pig			25.0	A	1
5	2-secButoxy-4,6- diamino-s-triazine	Histamine	С	Guinea pig			12.5-25.0	A	1
6	2-(o-Carboxyphenyl- amino)-4,6-diamino-s- triazine	Histamine	С	Guinea pig	1		100	(I)	1
7	2-Cyclohexoxy-4,6- diamino-s-triazine	Histamine	С	Guinea pig			12.5-25.0	A	1
8	2-(β- Dimethylamino- ethoxy)-4, 6- diamino- s- triazine	Histamine	С	Guinea pig			25.0	(A)	1
9	2-Ethoxy-4,6-diamino-s- triazine	Histamine	С	Guinea pig			25-50	A	1
10	2-(β-Ethoxy-ethoxy)-4,6- diamino-s-triazine	Histamine	С	Guinea pig			50.0	A	1
11	2-Heptoxy-4, 6-diamino- s-triazine	Histamine	С	Guinea pig			25.0	I	1
12	2-Hexoxy-4, 6-diamino- s-triazine	Histamine	С	Guinea pig			12.5-25.0	A	1
13	2-(p-Hydroxyphenyl- amino)-4,6-diamino-s- triazine	Histamine	C	Guinea pig	†		100	(1)	1
14	2-Isobutoxy-4, 6-diamino- s-triazine	Histamine	С	Guinea pig	+		12.5-25.0	A	1
15	2-lsopropoxy-4,6- diamino-s-triazine	Histamine	С	Guinea pig			12.5-25.0	A	1
16	2-Methoxy-4, 6-diamino- s-triazine	Histamine	С	Guinea pig	-		50.0	A	1
17	2-(p-Methylphenyl-amino)- 4,6-diamino-s-triazine	Histamine	С	Guinea pig			100	(1)	1
18		Histamine	С	Guinea pig			100.0	(A)	1
19		Histamine	С	Guinea pig			25.0	1	1
20		Histamine	С	Guinea pig			25.0	1	1
21	2-Pentoxy-4,6-diamino-s- triazine	Histamine	С	Guinea pig			25.0	A	1
22	2-Phenoxy-4, 6-diamino-s- triazine	Histamine	С	Guinea pig			50.0	A	1
23	2-Propoxy-4, 6-diamino-s-	Histamine	C	Guinea pig			12.5-25.0	A	1,2
24	triazine	Methacholine	C	Guinea pig			15.0	A	2
25	2, 4, 6-Triamino-s- triazine	Histamine	С	Guinea pig			100	(1)	1

Contributor: Hawkins, D. F.

References: [1] Loew, E. R., Kaiser, M. E., and Anderson, M., J. Pharm. Exp. Ther. 86:7, 1946. [2] Chen, G., and Ensor, C. R., J. Laborat. Clin. M. 34:1010, 1949.

Part VII: ESTERS

Drugs are listed alphabetically. C = constricts, A = antagonizes active drug effect, 1 = inactive (i.e., without influence on effect of active drug). Parentheses in Columns F and H indicate action is slight, irregular, or doubtful, and the original literature should be consulted.

anc	the original literature shou								
	Antagonist	Active Drug					onist Effect		
	(Synonym)	Compound	Effect	Species		ocal	Systen		Reference
						Action		Action	
	(A)	(B)	(C)	(D)	(E)	(F)	(G)	(H)	(1)
				Esters		T -	,		
1	Allylmethylaminoethyl diphenyl-(β-dimethyl- aminoethoxy)-acetate (Ro 3-0275)	Histamine	С	Guinea pig		I			
2	1-Azabicyclo-[3,3,1]- nonyl 4-diphenylacetate (Ro 2-3493)	Methacholine	С	Guinea pig			0.06	A	2
3	1-Azabicyclo-[3,2,1]- octyl 6-diphenyl- acetate (Ro 2-3244)	Methacholine	С	Guinea pig			5.0	A	2
4	1-Azabicyclo-[3,2,1]- octyl 6-diphenylacetate methobromide (Ro 2-3951)	Methacholine	С	Guinea pig			1.0	A	2
5	Diallylaminoethyl diphenyl- (β-dimethylaminoethoxy)- acetate (Ro 3-0276)	Histamine	С	Guinea pig		A			1
6	Diethylaminoethyl diphenyl-(β-dimethyl- aminoethoxy)-acetate (Ro 3-0131)	Histamine	С	Guinea pig		A			1
7	Diethylaminoethyl diphenylhydroxythio- acetate (Ro 3-0226)	Acetylcholine	С	Guinea pig	0.008-	A			3
8	Diethylaminoethyl diphenyl-(isopropyl- methylaminoethoxy)- acetate (Ro 3-0289)	Histamine	С	Guinea pig		A			1
9	Diethylaminoethyl diphenyl- (β-morpholinoethoxy)- acetate (Ro 3-0257)	Histamine	С	Guinea pig		1			1
10	β-Diethylaminoisopropyl diphenyl-(β-dimethyl- aminoethoxy)-acetate (Ro 3-0281)	Histamine	С	Guinea pig		A			1
11	β-Dimethylaminoethyl	Acetylcholine	C	Guinea pig	8.0	A			4,5
12	diphenylacetate (Trasentin)	Histamine	С	Guinea pig		A	50	I	4-7
13	Dimethylaminoethyl diphenyl-(β-dimethyl- aminoethoxy)-acetate (Ro 3-0190)	Histamine	С	Guinea pig		A			1
	β-lsopropylmethyl- aminoethyl diphenyl-(β- dimethylaminoethoxy)- acetate (Ro 3-0282)	Histamine	С	Guinea pig		A			1
15	2-Methyl-1-azabicyclo- [3,3,1]-nonyl4-diphenyl- acetate (Ro 2-3521)	Methacholine	С	Guinea pig			1.0	A	2
	β-Morpholinoethyl diphenyl-(β-dimethyl- aminoethoxy)-acetate (Ro 3-0280)	Histamine	С	Guinea pig		A			1
17	β-Morpholinoethyl diphenyl-(β'- morpholinoethoxy)- acetate (Ro 3-0265)	llistamine	С	Guinea pig		1			1
18	Piperidinoethyl diphenyl-	Acetylcholine	С	Guinea pig			0.25	A	9
	acetamide (115 9980)	Physostigmine	C	Guinea pig			0.25	A	9
19	acetainiue (110 9900)		C	Guinea pig			0.25	A	9

Part VII: ESTERS (Continued)

C = constricts, A = antagonizes active drug effect, l = inactive (i.e., without influence on effect of active drug).

Parentheses in Columns F and H indicate action is slight, irregular, or doubtful, and the original literature should be consulted.

	Antagonist	Active Drug					nist Effect		70 6
	(Synonym)	Compound	Effect	Species	Lo μg/ml	cal	System		Reference
_	(A)	(B)	(C)	(D)	μg/mi (E)	(F)	mg/kg (G)	Action (H)	(1)
_	(22)	Diphenylace				(7.)	(0)	(11)	(1)
21	Piperidinoethyl diphenyl-	Histamine	C	Guinea pig		A	T		1
	(β-dimethylaminoethoxy)- acetate (Ro 3-0277)			. 3					
22	Quinuclidinyl 3-a-allyl- diphenylacetate (Ro 2-3802)	Methacholine	С	Guinea pig			1.0	A	2
23	dl-Quinuclidinyl 3- diphenylacetate (Ro 2-3202)	Methacholine	С	Guinea pig			0.1	A	2
24	d-Quinuclidinyl 3- diphenylacetate (Ro 2-4040)	Methacholine	С	Guinea pig				(I)	2
25	l-Quinuclidinyl 3- diphenylacetate (Ro 2-4030)	Methacholine	С	Guinea pig			0.05	A	2
26	Quinuclidinyl 3-diphenyl- acetate methobromide (Ro 2-3203)	Methacholine	С	Guinea pig			0.10	A	2
			llaneous	Esters					
27	1-Azabicyclo-[3,2,1]- octyl 6-fluorene-9- carboxylate (Ro 2-3245)	Methacholine	С	Guinea pig			1.0	A	2
28	β-Diethylaminoethyl 9,10-	Acetylcholine	С	Dog			1.0	(A)	10
29	dihydroanthracene-9-	Histamine	С	Dog			1.0	A	10
30	carboxylate		С	Guinea pig		A			11
	β-Diethylaminoethyl	Acetylcholine	С	Dog			1.0	(A)	10
32	fluorene-9-carboxylate	Histamine	С	Dog			1.0	(I)	10
33	(Pavatrine)		С	Guinea pig			<50	1	7
34	3-(β-Diethylaminoethyl)- 3-phenyl-2-benzofura- none (Amethone; AP 43)	Histamine	Ċ	Guinea pig		(A)			12
	2-Diethylaminoethyl	Acetylcholine	С	Guinea pig		A			5
36	<pre>1-phenylcyclopentane- 1-carboxylate (Carami- phen; Parpanit)</pre>	Histamine	С	Guinea pig		A			5
37	Ethyl 1-methyl-4-phenyl-	Histamine	С	Guinea pig	0.1-5.0	A	0.1-25.0	A	6,13-18
38	piperidine-4-carboxy- late (Pethidine; Demerol; Dolantin; Isonipecaine; Meperidine)	Methacholine	С	Guinea pig		A	64.0	A	14
	N-Ethyl-piperidyl 3-	Acetylcholine	С	Guinea pig		A			8
40	benzilate methobromide	Histamine	С	Guinea pig	10.0	1			8
41	(JB 323)	Methacholine	C	Guinea pig		-	0.5-3.0	A	8
	β-Piperidinoethyl methyl- p-xenylacetate (WIN 5786)	Histamine	С	Guinea pig		A	0.5-2.0	A	19
	Quinuclidinyl 3-benzilate (Ro 2-3308)	Methacholine	С	Guinea pig			0.025	A	2
44	Quinuclidinyl 3-benzilate methobromide (Ro 2-3773)	Methacholine	С	Guinea pig			0.20	А	2

Contributor: Hawkins, D. F.

References: [1] Forbes, O. C., and Marshall, P. B., Brit, J. Pharm. 6:634, 1951. [2] Randall, L. O., Benson, W. M., and Stefko, P. L., J. Pharm. Exp. Ther. 104:284, 1953. [3] Hawkins, D. F., and Parkes, M. W., unpublished, 1957. [4] Castillo, J. C., and De Beer, E. J., J. Pharm. Exp. Ther. 90:104, 1947. [5] Kraatz, C. P.,

Part VII: ESTERS (Concluded)

Gruber, C. M., Jr., Shields, Il. L., and Gruber, C. M., ibid 96:42, 1949. [6] Loew, E. R., Kaiser, M. E., and Moore, V., ibid 86:1, 1946. [7] Winder, C. V., Kaiser, M. E., Anderson, M. M., and Glassco, E. M., ibid 87:121, 1946. [8] Chen, J. Y., ibid 112:64, 1954. [9] Schaumann, O., and Lindner, E., Arch. exp. Path. 214:93, 1951. [10] Lehmann, G., and Knoeffel, P. K., J. Pharm. Exp. Ther. 80:335, 1944. [11] Lehmann, G., and Young, J. W., ibid 83:90, 1945. [12] Richards, R. K., Everett, G. M., and Kueter, K. E., ibid 84:387, 1945. [13] Arunlakshana, O., (thesis), London, 1953. [14] Chen, G., and Ensor, C. R., J. Laborat. Clin. M. 34:1010, 1949. [15] Duguid, A. M., and Heathcote, R. S., Quart. J. Pharm., Lond. 13:318, 1940. [16] Dutta, M. K., Brit. J. Pharm. 4:197, 1949. [17] Kopera, J., and Armitage, A. K., ibid 9:392, 1954. [18] Schaumann, O., Arch. exp. Path. 196:109, 1940. [19] Lands, A. M., Hoppe, J. O., Lewis, J. R., and Ananenko, E., J. Pharm. Exp. Ther. 100:19, 1950.

Part VIII: MISCELLANEOUS COMPOUNDS

Drugs are listed alphabetically. C = constricts, D = dilates, A = antagonizes active drug effect, I = inactive (i.e., without influence on effect of active drug), P = potentiates active drug effect. Parentheses in Columns F and H indicate action is slight, irregular, or doubtful, and the original literature should be consulted.

A Data-ticta	Active Drug			Antago	nist or	Potentiator	Effect	
Antagonist or Potentiator	Compound	Effect	Species		cal	Syster	nic	Reference
(Synonym)	Compound	Ellect		μg/ml	Action	mg/kg	Action	
(A)	(B)	(C)	(D)	(E)	(F)	(G)	(H)	(I)
1 6-Allyl-6,7-dihydro-5H- dibenz (c,e) azepine (Ro 2-3248)	Epinephrine	D	Guinea pig	10.0	I			1
2 Alstonine	Epinephrine	D	Dog				1	2
3 Anagyrine	Nicotine	D	Guinea pig	2.0	A			3
4 d-Arginine	Acetylcholine	C	Guinea pig			300-1000	(P)	4
5	Histamine	C	Guinea pig			300-1000	I	4
6 Ascorbic acid	Epinephrine	D	Man	30-500	(P)			5, 6
7		D	Guinea pig		I			3
8	Nicotine	D	Guinea pig		(1)			3
9 Citrinin	Acetylcholine	С	Guinea pig		I			7
10	Epinephrine	D	Guinea pig		I			7
11 ,	Histamine	С	Guinea pig		I			7
12 Chloroguanide (Paludrine)	Histamine	C	Guinea pig			5.0	P	8
13 Cocaine	Arecoline	С	Dog			7-14	I	9
14	Diethylmorphine	C	Cat	_	A		-	10
15		C	Dog		A	7-14	(A)	9,10
6	Ephedrine	D	Cat		A		1	10
7		D	Dog		A	7-14	A	9.10
8		D	Rabbit		A			10
9	₩-Ephedrine	D	Cat	-	Α		-	10
0	, -p.iid-triii	D	Dog		A	7-14	A	9.10
1		D	Rabbit		A	, , , ,	44	10
2	Epinephrine	D	Cat		I	-		10
3 '	25111051111110	D	Dog		i	7-14	P	9.10
4	1	D	Guinea pig	100	P	, 17	1	3
5		D	Rabbit	100	i			10
6	Histamine	C	Cat		I	(10)	-	10
7	mstamme	C	Dog	_	î	7-14	(A)	9,10
8		C	Rabbit		I	1-14	(Δ)	10
9	5-Hydroxytryptamine	C	Cat	_	A			11
0	Morphine	C	Cat		A			10
1	Morphine	C			A	7-14	A	9,10
2	Nicotine	C	Dog	1.0	A	1-14	_ A	3
3	Micotine	D	Guinea pig	0.05-	A			3
4	D	-		1.0	Δ.			1.2
4 5	Peptone	C	Guinea pig	1000	Α	7 14		12
6	Physostigmine	С	Dog			7-14	I	9
	Pilocarpine	C	Dog	0.6	Α	7-14	I	3
	Nicotine	D	Guinea pig		A			
	Histamine	С	Guinea pig		I			13
	Nicotine	D	Guinea pig	5	Α		(4)	3
10 Emetine	Histamine	C	Cat	10.000		1-5	(A)	14
1		С	Guinea pig	40,000				14
12 n-Heptyl isothiourea	Histamine	C	Guinea pig			5-10	A	15

Part VIII: MISCELLANEOUS COMPOUNDS (Continued)

C = constricts, D = dilates, A = antagonizes active drug effect, I = inactive (i.e., without influence on effect of active drug), P = potentiates active drug effect. Parentheses in Columns F and H indicate action is slight, irregular, or doubtful, and the original literature should be consulted.

		Active Drug			Antago	nist or	Potentiator	Effect	
	Antagonist or Potentiator			Species		cal	System		Reference
	(Syn o nym)	Compound	Effect	Species		Action		Action	
	(A)	(B)	(C)	(D)	(E)	(F)	(G)	(H)	(I)
_	(A)				1.0	I	(0)	(11/	3
43	Hexamethonium	Acetylcholine	C	Cat	-		1 20	Δ -	
44			С	Guinea pig		I	1-20	A	3,16
45			С	Monkey	10.0	I			3
46		Choline	C	Guinea pig	<500	(I)			3
47		Coniine	С	Guinea pig	10	I			3
48		Epinephrine	D	Guinea pag	<400	I			3
49		Histamine	C	Guinea pig	50-	P	1-10	A	3,16
47		Illistamine	Č	Guinea pig	100				7,20
			- 0	C. i i.	100	-	20	Α	16
50		5-Hydroxytryptamine	С	Guinea pig		_	20	A	
51		Lobeline	C	Guinea pig		I			3
52			D	Guinea pig	10	I			3
53		Methacholine	C	Guinea pig			1-20	A	16
54		Methyl-furmethide	С	Guinea pig			5-10	A	16
55		Nicotine	C	Cat	1.0	A			3
		Titeotine	D	Cat	10	A		-	3
56					10	A	0.1.20.0	Λ	-
57			C	Guinea pig			0.1-20.0	A	16
58			D	Guinea pig		A			3
					1.0				
59		Norepinephrine	D	Guinea pig	<400	I			3
60		Pilocarpine	C	Guinea pig		I			3
61		Tetramethyl-	C	Guinea pig		I			3
01		ammonium		Guinea pig	400	-			
			-	D 1111	400	1.0		-	1.7
62	n-Hexyl-isothiourea	Acetylcholine	C	Rabbit		(A.			17
						P)_		-	
63		Histamine	C	Guinea pig			5-10	A	15
64	I- Histidine	Acetylcholine	C	Guinea pig			300	(P)	4
65		Histamine	C	Guinea pig			300-1000	I	4
	N-(2-Hydroxyethyl)-N-	Histamine	C	Guinea pig			25,0	1	18
00		mstamme	_	Gumea pig			23,0		
	ethyl-1-naphthalene-								
	methylamine								
67	Lobeline	Epinephrine	D	Guinea pig		I			3
68		Nicotine	D	Guinea pig	1.0	A			3
69		Norepinephrine	D	Guinea pig		I			3
	Magnesium	Barium	C	Cat		A			19
71	4-Methylesculetin disul-	Epinephrine	D	Man	20	P		1	6
1.7	-	Epinepin me	U	Man	20				
	phuric acid (IDRO-P ₂ ;								
	Vitamin P)				1	+			
72	2-Methyl-4-amino-5-	Histamine	C	Guinea pig		P			3,20,21
	methylamino-pyrimidine				100				
73	(β ₁ -Pyrimidine; Grewe	β-Pyridylethylamine	C	Guinea pig	1	1			21
	diamine)								
74	Methyl isothiourea	Acetylcholine	C	Rabbit		P			17
	menty isounourea					-	2-5	(P)	15
75	D : 111 : 11	Histamine	C	Guinea pig	+	-		-	
76	Pentamidine isethionate	Acetylcholine	C	Guinea pig	-	-	25	P	22
77		Histamine	C	Guinea pig	+	1	25	P	22
78	Pentobarbital sodium	Histamine	C	Guinea pig			20	(1)	23
79	Phentolamine (Regitine;	Epinephrine	D	Guinea pig		I			3
80	7337)	Nicotine	D	Guinea pig	+	A			3
81		Norepinephrine	D	Guinea pig		I			3
82				Guinea pig		A			24
	Di (0.22 D)	5-Hydroxytryptamine		4	-	47	10	I	25
83		Acetylcholine	С	Dog			10	1	
84	Prosympal (883F)	Epinephrine	D	Guinea pig		I			3
85		Nicotine	D	Guinea pig	1-2	A			3
86		Norepinephrine	D	Guinea pig	<100	I			3
87	Quinidine	Histamine	C	Guinea pig			5	A	26
88		Histamine	C	Guinea pig		I			27
55	glucoside; Vitamin P)			Januar Pig					
89		Histomina	C	Cuines	0.01	P			20,21
	Semicarbazide	Histamine	-	Guinea pig		-			20,21
07					1.0				
				+					
90 91		β-Pyridylethylamine	C	Guinea pig Guinea pig		A			20,21

Part VIII: MISCELLANEOUS COMPOUNDS (Concluded)

C = constricts, D = dilates, A = antagonizes active drug effect, I = inactive (i.e., without influence on effect of active drug), P = potentiates active drug effect. Parentheses in Columns F and H indicate action is slight, irregular, or doubtful, and the original literature should be consulted.

	Arts regist on Detections	Active Drug			Antagonist o	r Poter	tiator :	Effect	Refer-
	Antagonist or Potentiator	Company	Effect	Species	Local		Systemic		ence
	(Synonym)	Compound	Effect		μg/ml	μg/ml Action		Action	ence
	(A)	(B)	(C)	(D)	(E)	(F)	(G)	(H)	(I)
92	Sparteine	Nicotine	D	Guinea pig	0.5	A			3
93	Suramin	Acetylcholine	C	Guinea pig			250	A	22
94		Histamine	C	Guinea pig			250	A	22
95		Pentamidine	С	Guinea pig			250	A	22
96	Tetramethylene di-iso- thiourea	Hista mine	С	Guinea pig			5	(A)	15
97	Tolazoline (Priscol)	Epinephrine	D	Guinea pig	10-100	P			3
98		Nicotine	D	Guinea pig	10-20	A			3
99		Norepinephrine	D	Guinea pig	100	P			3
100	Urethane	Barium	C	Rabbit	5,000-10,000	A			28
101			С	Sheep	5,000-10,000	A			28
102		Epinephrine	D	Rabbit	5,000-10,000	I			28
103			D	Sheep	5,000-10,000	I			28
104		Pilocarpine	C	Rabbit	5,000-10,000	A	100000		28
105			C	Sheep	5,000-10,000	A	-		28
106		Sodium nitrite	D	Rabbit	5,000-10,000	A			28
107			D	Sheep	5,000-10,000	A			28
108	Yohimbine	5-Hydroxytryptamine	C	Guinea pig		I	-		29

References: [1] Randall, L. O., and Smith, T. H., J. Pharm. Exp. Ther. 103:10, 1951. [2] Wakim, K. G., and Chen, K. K., ibid 90:57, 1947. [3] Hawkins, D. F., and Paton, W. D., unpublished, 1957. [4] Halpern, B. N., C. rend. Soc. biol. 139:625, 1945. [5] Rosa, L., Boll. e Mem. del. Soc. Tosco-Umbro Emiliana d. Med. Int. 1:40, 1950. [6] Rosa, L., and McDowall, R. J., Acta Allerg. 4:293, 1951. [7] Ambrose, A. M., and De Eds, F., J. Pharm. Exp. Ther. 88:173, 1946. [8] Vane, J. R., Brit. J. Pharm. 4:14, 1949. [9] Swanson, E. E., J. Pharm. Exp. Ther. 36:541, 1929. [10] Swanson, E. E., and Webster, R. K., ibid 38:327, 1930. [11] Sinha, Y. K., and West, G. B., J. Physiol., Lond. 120:64P. 1953. [12] Baehr, G., and Pick, E. P., Arch. exp. Path. 74:41, 1913. [13] Hawkins, D. F. (thesis), London. 1952. [14] Pick, E. P., and Wasicky, R., Arch. exp. Path. 80:147, 1916. [15] Fastier, F. N., Brit. J. Pharm. 4:315, 1949. [16] Herxheimer, H., Arch. internat. pharm. dyn., Par. 106:371, 1956. [17] Fastier, F. N., and Reid, C. S., Brit. J. Pharm. 7:417, 1952. [18] Loew, E. R., and Micetich, A., J. Pharm. Exp. Ther. 94:339, 1948. [19] Lohr, H., Zschr. ges. exp. Med. 39:67, 1924. [20] Arunlakshana, O. (thesis), London, 1953. [21] Arunlakshana, O., Mongar, J. L., and Schild, H. O., J. Physiol., Lond. 123:32, 1954. [22] Guimaraes, J. L., and Lourie, E. M., Brit. J. Pharm. 6:514, 1951. [23] Loew

Contributor: Hawkins, D. F.

Physiol., Lond. 123:32, 1954. [22] Guimaraes, J. L., and Lourie, E. M., Brit. J. Pharm. 6:514, 1951. [23] Loew, E. R., Kaiser, M. E., and Moore, V., J. Pharm. Exp. Ther. 86:1, 1946. [24] Bhattacharya, B. K., Arch. internat. pharm. dyn., Par. 103:357, 1955. [25] Melville, K. I., ibid 58:129, 1938. [26] Dutta, N. K., Brit. J. Pharm. 4:197, 1949. [27] Wilson, R. H., Mortarotti, T. G., and De Eds, F., J. Pharm. Exp. Ther. 90:120, 1947. [28] Franklin, K. J., ibid 26:227, 1925. [29] Herxheimer, H., J. Physiol., Lond. 128:435, 1955.

136. pA_x VALUES FOR ANTAGONISTS OF DRUGS ACTING ON THE BRONCHI

Values are the negative logarithm of the molar concentration of antagonist required to reduce the response to an "x-fold" dose of active drug to that produced by a single dose of active drug in the absence of antagonist [1]. Parentheses indicate action is irregular and the original literature should be consulted. C = constricts, D = dilates.

						Antagonist (Contact Tim	ie	
	Antagonist	Active Drug	Effect	Species	2 min	10-15 min	20-30 min	30 min	Reference
	3			-	pA ₂			PA ₁₀	
	(A)	(B)	(C)	(D)	(E)	(F)	(G)	(H)	(I)
1	Atropine	Acetylcholine	C	Guinea Pig			8.0		2
2			С	Guinea pig			8.8	7.6	3
3		Histamine	С	Guinea pig			5.9	5.0	3
4	Dihydroergotamine	Epinephrine	D	Guinea pig			6.3		4
5		Isoproterenol	D	Guinea pig			6.3		4
6		Nicotine	D	Guinea pig			6.4		4
7		Norepinephrine	D	Guinea pig			(4,8)		4
	Diphenhydramine	Histamine	С	Guinea pig		7.8	7.8	6.9	3
9		β-Pyridylethylamine	С	Guinea pig		8.3			3
10	Ergotamine	Epinephrine	D	Guinea pig			6.0		4
11		Isoproterenol	D	Guinea pig			6.1		4
12		Nicotine	D	Guinea pig			5.8		4
13		Norepinephrine	D	Guinea pig			(4.9)		4
13 14	Meperidine (Pethidine)	Histamine	С	Guinea pig			6.2	5.1	3
15	Pyrilamine	Histamine	С	Man	8.3	8.8	9.3		6
16	(Mepyramine)		С	Guinea pig			8.7		2
17			С	Guinea pig	7.6	8.8	9.0		5
18			C	Guinea pig		9.1	9.4	8.4	3
19		β-Pyridylethylamine	C	Guinea pig		9.5			3

Contributor: Hawkins, D. F.

References: [1] Schild, H. O., Brit, J. Pharm. 2:189, 1947. [2] Parkes, M. W., personal communication, 1949. [3] Arunlakshana, O. (thesis), London, 1953. [4] Hawkins, D. F., and Paton, W. D., unpublished, 1957. [5] Hawkins, D. F. (thesis), London, 1952. [6] Hawkins, D. F. and Schild, H. O., Brit, J. Pharm. 6:682, 1951.

137. AEROSOLS, GASES, AND VAPORS ACTING ON THE BRONCHI

The classification employed is functional, with the drugs listed alphabetically within each Part. Inclusion of trade names is for informative purposes only and in no way implies endorsement by The National Academy of Sciences-The National Research Council. For all effects included in this table, there is reasonable evidence the drug in fact acted on the bronchial musculature. Where there was evidence that an effect was mediated by the respiratory center or adrenal glands, it was excluded. Similarly, results obtained in protecting guinea pigs against lethal doses of histamine were excluded, unless there was evidence of the relief of the bronchospasm. Drug actions influencing anaphylactic or asthmatic bronchospasm, or other pathological states, were also excluded. Concentrations for aerosols, unless otherwise specified, are mg/ml of the solution from which the aerosol was formed. Parentheses in Columns E (Part I) and D (Parts II and III) indicate action is slight, irregular, or doubtful, and the original literature should be consulted. C = constricts, D= dilates, I = inactive.

Part I: DIRECT ACTION

	Compound (Synonym)	Species	Mode of Administration	Concentration	Effect	Reference
	(A)	(B)	(C)	(D)	(E)	(F)
1	Acetylcholine	Guinea pig	Aerosol	1-30	С	1-8
2	p-Aminobenzoic acid	Man	Aerosol	50-100	I	9
3	Aminophylline (Theophylline-ethylenediamine)	Man	Aerosol	250	(1)	10
4	Amyl nitrite	Cat	Vapor		D	11,12
5	Antazoline (Antistine)	Man	Aerosol	50	I	13
6	Antergan (Lergitin)	Man	Aerosol	20	С	13
7	Bromine	Cat	Vapor		C	12,14,15
8		Dog	Vapor		С	16
9	Calcium chloride	Man	Aerosol	200	D	13
0	Carbachol (Doryl; Carbaminoylcholine)	Man	Aerosol	5	С	9,13,18
1		Dog	Aerosol	10	С	19
2		Guinea pig	Aerosol		С	1
3	Chlorine	Calf	Gas	55-500 mg/L	(C)	20
4		Calf	Gas	600-1250 mg/L	C	20
5		Pig	Gas	55-500 mg/L	(C)	20
6		Pig	Gas	600-1250 mg/L	C	20
7	Chloroform	Cat	Vapor	30 vol %	C	11.12
8	Dibenzylmethylamine (566)	Man	Aerosol	10	D	13.18
9	Ether	Cat	Vapor	10	(D)	14
ó	231101	Cat	Vapor	30 vol %	C	11
l		Dog	Vapor	30 101 /0	D	21,22
2	Ethyl chloride	Cat	Vapor		I	11
3	Furmethide (Furtrethonium; Furfuryl- trimethylammonium iodide)	Guinea pig	Aerosol		C	23
4	Glycerol	Man	Aerosol		1	17
5	Histamine	Man	Aerosol	30-300	С	24,25
6		Dog	Aerosol	20	С	26
7		Guinea pig	Aerosol	0.2-10.02	С	27-29
8		Guinea pig	Aerosol	1-40	С	2,3,5,30-
9	Hydrocyanic acid	Cat	Gas		D	14
0	5-Hydroxytryptamine (Serotonin)	Man	Aerosol	10	I	36
1		Guinea pig	Aerosol	10	С	3
2	Methacholine (Mecholyl; Amechol; Acetyl-β-	Man	Aerosol	25-100	C	24, 25
3	methyl choline)	Guinea pig	Aerosol	2.5-24.0	С	1.36-39
4	Methyl-furmethide (5-Methylfurfuryl-trimethyl- ammonium iodide)	Guinea pig	Aerosol	2.5	С	4
5	Nicotine	Guinea pig	Aerosol	40	C	4
-	Nikethamide (Coramine)	Man	Aerosol	200	I	13
7		Cat	Gas	60 vol %	Ī	11
	Papaverine	Guinea pig	Aerosol	10	I	35
	Pentylenetetrazol (Cardiazol; Metrazol)	Man	Aerosol	100	Ī	13
Ó	Physostigmine	Guinea pig		1	C	6
1	Pilocarpine	Guinea pig	Aerosol	2	C	6
	Polyvinyl pyrrolidene	Man Man	Aerosol	125	I	17
3		Man	Aerosol	100-200	C	13
	Procaine (Novocaine)	Man	Aerosol	100-200	D -	9
	Pyrilamine (Mepyramine; Pyranisamine; Neoantergan)	Man	Aerosol	20	C	13

/1/ See Headnote. $/2/\mu g/L$ of vaporized aerosol.

137. AEROSOLS, GASES, AND VAPORS ACTING ON THE BRONCHI (Continued)

	1 11 11 211 201 1	-011011 (0	0,10,440,47			
	Compound (Synonym)	Species	Mode of Administration	Concentration	Effect	Reference
	(A)	(B)	(C)	(D)	(E)	(F)
46	Stramonium	Cat	Fumes		D	12
47	Theophylline	Man	Aerosol	100	D	9

/1/ See Headnote, Page 250.

Contributor: Hawkins, D. F. References: [1] Chen, G., and Ensor, C. R., J. Laborat. Clin. M. 34:1010, 1949. [2] Halpern, B. N., Arch. internat. pharm. dyn., Par. 68:339, 1942. [3] Herxheimer, H., J. Physiol., Lond. 120:65P, 1953. [4] Herxheimer, H., Arch. internat. pharm. dyn., Par. 106:371, 1956. [5] Kallos, P., and Pagel, W., Acta med. scand. 91:292, 1937. [6] Schaumann, O., and Lindner, E., Arch. exp. Path. 214:93, 1951. [7] Tiffeneau, R., and Beauvallet, M., C. rend. Soc. biol. 138:747, 1944. [8] Tiffeneau, R., and Beauvallet, M., ibid 139:944, 1945. [9] Charlier, R., and Philippot, E., Arch. internat. pharm. dyn., Par. 77:309, 1948. [10] Segal, M. S., Levinson, L., Bresnick, E., and Beakey, J. F., J. Clin. Invest. 28:1190, 1949. [11] Lohr, H., Zschr. ges. exp. Med. 39:67, 1924. [12] Symes, W. L., Brit. M. J. 2:12, 1915. [13] Charlier, R., and Philippot, E., Arch. internat. pharm. dyn., Par. 78:559, 1948. [14] Dixon, W. E., and Brodie, T. G., J. Physiol., Lond. 29:97, 1903. [15] Symes, W. L., and Golla, F. L., ibid 49:55P, 1915. [16] Jackson, D. E., J. Pharm. Exp. Ther. 4:291, 1913. [17] Charlier, R., Arch. internat. pharm. dyn., Par. 77:337, 1948. [18] Charlier, R., and Philippot, E., ibid 77:341, 1948. [19] Dautrebande, L., Philippot, E., Nogarède, F., and Charlier, R., ibid 66:138, 1941. [20] Barbour, H. G., and Williams, H. W., J. Pharm. Exp. Ther. 14:47, 1919. [21] Brown, J. G., Edinburgh M. J. 31:255, 1885. [22] Roy, C. S., and Brown, G., J. Physiol., Lond. 6:21P, 1885. [23] Toner, J. J., and Macko, E., J. Pharm. Exp. Ther. 106:246, 1952. [24] Herxheimer, H., Brit. M. J. 2:901, 1949. [25] Herxheimer, H., Internat. Arch. Allergy 2:27, 1951. [26] Melville, K. I., and Kaplan, H., J. Pharm. Exp. Ther. 94:182, 1948. [27] Lee, H. M., Dinwiddie, W. G., and Chen, K.K., ibid 90:83, 1947. [28] Mayer, R. L., Huttrer, C. P., and Scholz, C. R., Science 102:93, 1945. [29] Meier, R., and Bucher, K., Schweiz, med. Wschr. 76:294, 1946. [30] Bovet, D., and Walthert, F., Ann. pharm. fr. 2:(suppl.) 1944. [31] Dews, P. B., and Graham, J. D., Brit. J. Pharm. 1:278, 1946. [32] Feinberg, S. M., Norén, B., and Feinberg, R. H., J. Allergy 19:90, 1948. [33] Issekutz, B. V., and Genersich, P., Arch. exp. Path. 202:201, 1943. [34] Loew, E. R., Kaiser, M. E., and Moore, V., J. Pharm. Exp. Ther. 83:120, 1945. [35] Schaumann, O., Arch. exp. Path. 196:109, 1940. [36] Herxheimer, H., J. Physiol., Lond. 128:435, 1955. [37] Chen, J. Y., J. Pharm. Exp. Ther. 112:64, 1954. [38] Hambourger, W. E., Freese, H. B., Winbury, M. M., and Michiels, P. M., ibid 94:367, 1948. [39] Randall, L. O., Benson, W. M., and Stefko, P. L., ibid 104:284, 1952.

Part II: SYMPATHOMIMETIC AMINES

D = dilutes, I = inactive. Parentheses in Column D indicate action is slight, irregular, or doubtful, and the original literature should be consulted.

Compound (Synonym)	Species	Aerosoll	Effect	Reference
(A)	(B)	(C)	(D)	(E)
1 Adrenalone (1-(3,4-Dihydroxyphenyl)-1-oxo-2-methylamino-ethane)	Man	20	(D)	1
2 1-(m-Aminophenyl)-2-amino-ethanol (WIN 5548)	Guinea pig	10	l	2
3 1-(m-Aminophenyl)-2-isopropylamino-ethanol (WIN 5503)	Guinea pig	10	I	2
4 N-n-Butyl-arterenol (1-(3,4-Dihydroxyphenyl)-2-butylamino-ethanol)	Guinea pig	0.02	D	3
5 N-Cyclopentyl-arterenol (1-(3,4-Dihydroxyphenyl)-2-cyclopentyl-amino-ethanol)	Guinea pig	0.03	D	3
6 dl-Epinephrine (dl-Adrenaline; Vaponephrin)	Man	22.5	D	4-7
7 1-Epinephrine (1-Adrenaline)	Man	1-20	D	4,5,7
8	Dog	0.1-1.0	D	8
9 1-(m-Hydroxyphenyl)-2-amino-ethanol (WIN 5501)	Guinea pig	10	1	2
0 Isoproterenol (N-isopropyl-arterenol; Aleudrine; Isoprenaline;	Man	2-10	D	1,4,5,7
1 Isuprel; Neo-epinine)	Dog	10	D	9
2	Guinea pig	0.0005	D	3
3 Neosynephrine (1-(m-Hydroxyphenyl)-2-methylamino-ethanol)	Man	4-10	D	1,4,7
4	Guinea pig	4	D	2
5 Norsympatol (1-(p-Hydroxyphenyl-2-amino-ethanol)	Man	4-40	D	1
6 Orthoxine (1-(o-Methoxyphenyl)-2-methylamino-propane)	Guinea pig	100	D	10
7 β-Phenylethylamine	Man	2	(D)	1
8 1-Phenyl-2-methylamino-ethanol	Guinea pig	2	D	1
9 Synephrine (Sympatol; 1-(p-Hydroxyphenyl)-2-methylamino-ethanol)	Man	2-60	D	1
O Tyramine (1-(p-Hydroxyphenyl)-2-amino-ethane	Man	2	D	1

/1/ See Headnote, Page 250.

References: [1] Charlier, R., and Philippot, E., Arch. internat. pharm. dyn., Par. 78:559, 1949. [2] Lands, A. M., J. Pharm. Exp. Ther. 104:474, 1952. [3] Siegmund, O. H., Beglin, N., and Lands, A. M., ibid 97:14, 1949. [4] Bresnick, E., Beakey, J. F., Levinson, L., and Segal, M. S., J. Clin. Invest. 28:1182, 1949. [5] Charlier, R., Arch. internat. pharm. dyn., Par. 77:337, 1948. [6] Charlier, R., and Philippot, E., ibid 77:309, 1948. [7] Segal, M. S., Beakey, J. F., Bresnick, E., and Levinson, L., J. Allergy 20:97, 1949. [8] Melville, K. 1., and Kaplan, H., J. Pharm. Exp. Ther. 94:182, 1948. [9] Hebb, C. O., and Konzett, H., J. Physiol., Lond. 96:228, 1949. [10] Feinberg, S. M., Malkiel, S., Bernstein, T. B., and Hargis, B. J., J. Pharm. Exp. Ther. 99:195, 1950.

137. AEROSOLS, GASES, AND VAPORS ACTING ON THE BRONCHI (Concluded)

Part III: ANTAGONISTS

Parentheses in Column D indicate action is slight, irregular, or doubtful, and the original literature should be consulted.

Antagonist	1			1
(Synonym)	Species	Aerosol1	Effect	Reference
(A)	(B)	(C)	(D)	(E)
1 Antazoline (Antistine)	Guinea pig	5-20	Antagonizes histamine.	1,2
2 Antergan (Lergitin)	Guinea pig		Antagonizes histamine.	3
3 Atropine	Guinea pig		Inactive against histamine.	4
4 Bellafoline (Belladonna alkaloids)	Man	0.5	Antagonizes methacholine.	5
5 Bromothen	Guinea pig	2.5-20	Antagonizes histamine.	1,2
6 Chlorcyclizine (Histantin; Perazil)	Guinea pig	20	(Antagonizes) histamine.	1
7 Chlorneoantergan	Guinea pig	2.5	Antagonizes histamine.	1
8 Chlorothen (Chloropyrilene; Tagathen)	Guinea pig		Antagonizes histamine.	1,6
9 Chlorprophenpyridamine (Chlor-Trimeton)	Guinea pig	2.5	Antagonizes histamine.	1
O Cocaine	Guinea pig	2.5-5	Antagonizes acetylcholine.	7
	Guinea pig		Antagonizes histamine.	7
2	Guinea pig		Antagonizes 5-hydroxytryptamine.	7
3	Guinea pig	1	Antagonizes methacholine.	7
14	Guinea pig		Antagonizes nicotine.	7
15	Guinea pig		Inactive against methyl-furmethide.	7
16 Cyclizine (Marezine)	Guinea pig		(Antagonizes) histamine.	1
2-Dimethylaminoethoxy-4-chloro-	Guinea pig		(Antagonizes) histamine.	1
diphenylmethane (01780)	Camea pig		(agonizes) nzoamine	_
18 2-Dimethylaminoethoxy-diphenyl-	Guinea pig	2.5-20	Antagonizes histamine.	1,2
methane (C 5581 H)	Guinea pig	2.3-20	magonizes mstamme.	1,2
9 N-Dimethylaminoethyl-phenothiazine	Guinea pig	20	Antagonizes histamine.	1,2
(RP 3015)	Gumea pig	20	Amagomzes mstamme.	1,2
Diphenhydramine (Benadryl)	Man	14	Antonomicos histomico	8
21	Guinea pig	2.5-20	Antagonizes histamine. Antagonizes histamine.	1,2
22 Doxylamine (Decapryn)	Guinea pig	2.5-20	Antagonizes histamine.	1,2
N-(4-Fluorobenzyl)-N-(2-pyridyl)-	Guinea pig	2.5		1,2
N',N'-dimethyl-ethylenediamine	Guinea pig	2.5	Antagonizes histamine.	1
24 Hetramine	Cuinas nin		/Ant-resident bintamine	1
Meperidine (Demerol; Dolantin; Pethidine)	Guinea pig	10	(Antagonizes) histamine.	4
Methapyrilene (Thenylene; Histadyl)	Guinea pig	2.5-20	Antagonizes histamine. Antagonizes histamine.	1,2
		2.5-20		1,2
27 o-Methoxy-β-phenyl isopropyl-methyl-	Guinea pig		(Antagonizes) histamine.	4
benzylamine (II-RBH-85)	Cuinna	2.0	Aug.	3
Phenindamine (Thephorin)	Guinea pig		Antagonizes histamine.	1
N-Phenyl-N-ethyl-N',N'-diethyl-	Guinea pig	50	Antagonizes histamine.	3
ethylene-diamine (1571 F)		10		2
N-Phenyl-N-ethyl-N',N'-dimethyl-	Guinea pig	10	Antagonizes histamine.	3
ethylene-diamine (RP 2325)				
Procaine (Novocaine)	Guinea pig	20	Inactive against histamine.	9
2 Prophenpyridamine (Inhiston; Tri-Meton)	Guinea pig	1-20	Antagonizes histamine.	1,10
Pyrilamine (Mepyramine; Pyranisamine;	Guinea pig	2.5-20	Antagonizes histamine.	1,2
Neoantergan)				
4 Pyrrolazote	Guinea pig	2.5-5	Antagonizes histamine.	1,2
5 Scopolamine	Man	0.6	Antagonizes methacholine.	5
N-2-Thiazolyl-N-(p-Methoxybenzyl)- N',N'-dimethyl-ethylenediamine (194 B)	Guinea pig	20	Antagonizes histamine.	1
7 Thonzylamine (Neohetramine)	Guinea pig	20	Antagonizes histamine.	1,2,11
8 Trasentin	Guinea pig	20	Inactive against histamine.	9
9 Tripelennamine (Pyribenzamine)	Man	2.0	Antagonizes histamine.	8
10	Man	15-20	(Antagonizes) methacholine.	8.12
41	Guinea pig	5-20	Antagonizes histamine.	1,2,9,11
	Ournea pig	3 20	Timegonizes matamime.	1,2,7,11

/1/ See Headnote, Page 250.

Contributor: Hawkins, D. F.

References: [1] Feinberg, S. M., Malkiel, S., Bernstein, T. B., and Hargis, B. J., J. Pharm. Exp. Ther. 99:195, 1950. [2] Feinberg, S. M., Norén, B., and Feinberg, R. H., J. Allergy 19:90, 1948. [3] Halpern, B. N., Arch. internat. pharm. dyn., Par. 68:339, 1942. [4] Schaumann, O., Arch. exp. Path. 196:109, 1940. [5] Beakey, J. F., Bresnick, E., Levinson, L., and Segal, M. S., Ann. Allergy 7:113, 1949. [6] Feinberg, S. M., Quart. Bull. Northwest. Univ. M. School 22:27, 1948. [7] Herxhelmer, H., Arch. internat. pharm. dyn., Par. 106:371, 1956. [8] Rubitsky, H. J., Bresnick, E., Levinson, L., Risman, G., and Segal, M. S., N. England J. M. 241:853, 1949. [9] Mayer, R. L., Brousseau, D., and Eisman, P. C., Proc. Soc. Exp. Biol. 64:92, 1947. [10] Lindner, E., Arch. exp. Path. 211:328, 1950. [11] Reinhard, J. F., and Scudi, J. V., Proc. Soc. Exp. Biol. 66:512, 1947. [12] Herxheimer, II., Brit. M. J. 2:901, 1949.

138. EFFECTS OF EXTERNAL IONIZING RADIATION ON THE RESPIRATORY SYSTEM: MAMMALS

dose equal to the dose in rads multiplied by the RBE; rad = rad unit, equivalent to 100 ergs/g energy absorption; RBE = relative biological effectiveness, i.e., kilovolts; mev = million electron volts; r = roentgen, the quantity of X- or gamma radiation such that the associated corpuscular emission per 0.001293 g of air produces, in air, ions carrying one electrostatic unit of electrical charge of either sign; rem = roentgen equivalent for mammal), the absorbed the appropriate value of the biological effectiveness of the radiation in question relative to that of X-radiation with an average specific ionization of 100 ion Abbreviations and definitions: KV = kilovolt, a unit of electrical potential equal to 1000 volts; KVP = kilovolt peak, the crest value of the potential wave in pairs per micron of water, for the particular biological system and biological effect under consideration and for the condition under which the radiation is received; n = neutron, a nuclear particle of zero charge and mass number 1; mc = millicurie, the quantity of radionucleid disintegrating at the rate of 3.7×10^7 atoms per second.

	Refer-	ence	(H)	-				~						2			4.	5		٥	۷	a	o	6	
laitin!	Symptom	Manifestation	(D)	24 hr	15 da and at death (24th da)	Post mortem		7th da	9th da	Post mortem	(9th da)			1 mo			2 mo			2 mo	3 da-1 wk		9 yr	4 mo	
	Effect		(F)	Dyspnea.	Respiration rapid and shallow.	Pulmonary edema.		Increased respiratory rate.	Respiration shallow, rapid, slightly irregular.	Pulmonary consolidation.				Pneumonitis.		No evidence of pulmonary reaction.	Pulmonary fibrosis and atelectasis.	Pulmonary fibrosis.		Pneumonitis, pulmonary fibrosis.	Pleuropneumonitis.		Fibrosing pneumonitis.	Discounting authorized fibrosis	Preumonius, pumonary morosis.
	Accumulated	Dosage of Exposure	(E)											1600 r		5,600-10,500 r	1600-6000 r	1600-5000 r		1750 r	7800 r		18,000 r	000	6300 r
		Dosage	(0)	101	480 r	110 r	5,000-40,000 rem		1930 r		114 r	3,000-30,000	rem	100-200 r		150 r	, 3 times/	500-850 r/da		750-800 r	750-800 r				
	Exposure	Administration	Commission and	Entire hody single	exposure (accident) 480 r		Hands, single exposure (accident)	Entire hody single	exposure (accident) 1930 r			Hands, single	exposure (accident)	Thorax and adjacent	areas	Thorax	Thorax	Thorax		Thorax	Thorax, repeated	exposure (therapy)	Thorax, repeated	exposure (therapy)	Thorax
	Type	of	Kadiation	(0)	X ray 80 KV	equivalent r plus gamma	X ray 80 KV	Micool	X ray	equivalent r	plus gamma	X ray	80 KV	X rav	180 KV	X ray	X ray	VX 002 X	200 KV	X ray	X rav	200 KV	X ray	200 KV	X ray 200 KV
		Animal		(A)	Man																				
				-	-			^	7					(4)	4,	5	4	0	7	OC.)	6		10

/1/ The lesions reported may not be primary radiation effects, but a secondary manifestatlon of response to inflammation or infection which may be intercurrent or result from radiation-induced changes of tissues other than lung.

138. EFFECTS OF EXTERNAL IONIZING RADIATION ON THE RESPIRATORY SYSTEM: MAMMALS (Continued)

dose equal to the dose in rads multiplied by the RBE; rad = rad unit, equivalent to 100 ergs/g energy absorption; RBE = relative biological effectiveness, i.e., kilovolts; mev = million electron volts; r = roentgen, the quantity of X- or gamma radiation such that the associated corpuscular emission per 0.001293 g of air produces, in air, ions carrying one electrostatic unit of electrical charge of either sign; rem = roentgen equivalent for man (or mammal), the absorbed the appropriate value of the biological effectiveness of the radiation in question relative to that of X-radiation with an average specific ionization of 100 ion Abbreviations and definitions: KV = kllovolt, a unit of electrical potential equal to 1000 volts; KVP = kilovolt peak, the crest value of the potential wave in pairs per micron of water, for the particular biological system and biological effect under consideration and for the condition under which the radiation is received; n = neutron, a nuclear particle of zero charge and mass number 1; mc = millicurie, the quantity of radionucleid disintegrating at the rate of atoms per second. 3.7×10^{7}

Type Of	Exposure	Dosage	Accumulated Dosage or Exposure	Effect1	Initial Symptom	Refer-
Radiation	Administration		Time		Manifestation	
(B)	(0)	(Q)	(E)	(F)	(G)	(H)
Man (con- X ray cluded) 230-250 KV	Neck and thorax		2450-3000 r	Pneumonitis.	1 wk	10
X ray 250 KV	Thorax, repeated exposure (therapy)		4500 r 52 da	Pulmonary fibrosis.		11
X ray 250-1000 KV	Thorax	100-200 r/da	1850-4000 r	Pneumonitis.	l mo	12
X ray 250-1000 KV	Thorax	123-300 r/da	3,200-12,600 r	Pneumonitis.	2 da 6 wk	13
X ray 250-1000 KV	Thorax	500 r/da	3000-6000 r	Pneumonitis.	6 wk	14
X ray 1 mev	Oropharynx, repeated 500 r/da exposure (therapy)	500 r/da	4000-5000 r	Laryngeal edema with fibrosis, apical pulmonary fibrosis.	3-5 wk	15
X ray I mev	Lower left abdomen, repeated exposure (therapy)		5000 r 3 mo	Dyspnea, rapid respiration.	9 yr	16
X ray 2 mev	Thorax	200 r/da	3000-5000 r	Pneumonitis, fibrosis, pleural effusion.	2 mo	17
X ray	Thorax, repeated exposure (therapy)		800-1000 r Threshold: 600 r	Pleuropneumonitis.		18
X ray	Thorax, repeated exposure (therapy)		800-15,000 r	Pneumonitis.	l da	19
X ray	Thorax, repeated exposure (therapy)	100-200 r/da 200 r/da	8240 r 4600 r	Pulmonary fibrosis. Pulmonary infiltration.		02
X ray	Thorax, repeated exposure (therapy)		12,000 r	Pulmonary exudation, atelectasis, fibrosis.		21
X ray	Thorax, repeated exposure (therapy)	175-250 r/da	7 da	Pulmonary fibrosis.	l mo	22
Radium (gamma)	Thorax and adjacent	1.0-1.5 mg		Pulmonary fibrosis.		2
Cobalt 60	Axillary, supraclavicular, parasternal; repeated exposure (therapy)		5000 r 15-25 da	Cough, dyspnea, pneumonitis, pulmonary fibrosis.		23
	(merab)					

18

20

17

23

22

21

25

24

15

14

12

24		25	97	27	28	56	30	31	32	33	34	35	36	37
Terminal	Terminal 3-6 wk	1-4 wk	Terminal 26.5 da average	1st da	Terminal 4-6 da	Immediate	1-5 da before death	3 da-1 wk	Terminal	Terminal	Immediate			
Pulmonary emphysema, edema and focal atelectasis.	Neutropenic pneumonia.	Pulmonary perivascular and pleural edema.	Respiration slow and shallow, dyspnea, pulmonary edema and hemorrhage.	Decreased respiratory quotient, O ₂ consumption, CO ₂ expiration.	Pulmonary edema.	Hyperventilation.	Respiration labored, diaphragmatic,	Early edema and congestion, petechial hemorrhage, and lymphangiectasia. Hypertrophy and anaplasia of alveolar lining cells. Anaplasia and stratification in bronchi and bronchioles. Hyaline mcmbrane infrequent. Degeneration of elastica of alveoli, pleura, and vessels. Pleura relatively resistant.2,3	Inflammation of epiglottis, larynx, trachea, and bronchi; submucosal petechiae; subpleural petechiae and ecchymosis; congestion of alveolar capillaries and blood vessels; edema of alveolar walls.	Lung tumors.	Normal respiration. Rapid breathing.	Pulmonary hemorrhage.	Dyspnea.	Respiratory minute volume increased. Respiratory minute volume decreased.
				Until death, 5-16 da			880-1262 r			Life span		900 r		2500 r 10,000-30,000 r
Lethal		400-450 r, estimated (LD-50/60)	710 r (LD-50/30 = 780 r)	200 r/da	1400-2800 r	10,000 r	12.5-50 r/da	1200-4800 r	(LD-100/30)	repeated 0.11-8.8 r/da	70,000 r 80,000 r 100,000 r	100 r 35-daintervals	400-800 r (LD-50/30 = 600 r)	1000 r/min
Entire body, single exposure (military)		Entire body, single exposure (military)	Entire body, single exposure	Entire body, repeated 200 r/da exposure	epeated	Entire body, single exposure	Entire body, repeated 12.5-50 r/da exposure	External	Entire body, single exposure	Entire body, repeated exposure	Entire body, single exposure	Entire body, repeated 100 r	Entire body, single exposure	Entire body, single exposure
Atomic bomb detonation,	Japan, 1945	Atomic bomb	Gamma Tantalum ¹⁸² Cobalt ⁶⁰				X ray 200 KVP	X ray 200 KVP	X ray 2 mev	Radium	X ray 2 mev	X ray 200 KV	X ray 250 KV	Gamma Barium140
			Burro		Dog					Guinea	Hamster	Monkey		
97		27	82	62	30	31	32	33	4.	35	36	37	38	39

/1/ The lesions reported may not be primary radiation effects, but a secondary manifestation of response to inflammation or infection which may be inter-current or result from radiation-induced changes of tissues other than lung. /2/ Pathological changes noted in irradiated experimental animals may occasionally be seen in unirradiated animals. /3/ Possible factors influencing severity of pneumonitis are species of animal, dose of radiation, fractionation and protraction, secondary infection.

138. EFFECTS OF EXTERNAL IONIZING RADIATION ON THE RESPIRATORY SYSTEM: MAMMALS (Continued)

dose equal to the dose in rads multiplied by the RBE; rad = rad unit, equivalent to 100 ergs/g energy absorption; RBE = relative biological effectiveness, i.e., kilovolts; mey = million electron volts; r = roentgen, the quantity of X- or gamma radiation such that the associated corpuscular emission per 0.001293 g of air produces, in air, ions carrying one electrostatic unit of electrical charge of either sign; rem = roentgen equivalent for man (or mammal), the absorbed Abbreviations and definitions: KV = kilovolt, a unit of electrical potential equal to 1000 volts; KVP = kilovolt peak, the crest value of the potential wave in the appropriate value of the biological effectiveness of the radiation in question relative to that of X-radiation with an average specific lonization of 100 ion pairs per micron of water, for the particular biological system and biological effect under consideration and for the condition under which the radiation is received; n = neutron, a nuclear particle of zero charge and mass number 1; mc = millicurie, the quantity of radionucleid disintegrating at the rate of 3.7×10^7 atoms per second.

Refer- ence	(H)	38		39	40			33	4		45	14.	43	44												
Initial Symptom Manifestation	(0)	100 min		At 500 r				Terminal	800 da		480 da	6	284 da			Within 2 hr		2-3 wk after	irradia-	tion				-	2-3 mo after	irradia- tion
Effect	(F)	Respiratory rate increased.	Tidal volume and respiratory minute volume increased. O ₂ consumption rate depressed.	Earlier evidence of pulmonary adenoma.	Increased incidence of pulmonary adenomas developing late in life.	,		Lung tumors.	Increased and/or earlier incidence of	of tumors.				At least 75% incidence of pneumonitis,	varying from minimal change at 1700 r dosage to severe pneumonia and fibrosis with frequent death at 12,000 r.	Initial stage of 24-48 hr duration:	Hyperemia, leucocytic infiltration, increased mucous secretion in bronchi.	Latent stage of 2-3 wk duration. Chief	reaction stage, reaching maximum 1-2	mo after irradiation then slowly	regressing: acute inflammation, peri-	bronchitis, perivascular infiltration,	bronchopneumonia. Degeneration of	bronchial epithelium and lung stroma. Giant cell formation.	Regenerative stage, which may continue	more than 6 mo after irradiation: connective tissue proliferation and
Accumulated Dosage or Exposure Time	(E)			500 r	512 X ray I	•		Life span	88 r		4000 r		2500 r	7				<u> </u>							100	
Dosage	(D)	1000 r +	5,000-10,000 r	400-799 r	16-512 n			0.11-8.8 r/da	0.11 r/da		4.4 r/da		8.8 r/da	1700 r in 1 da	to 12,000 r in 12 da											
Exposure or Administration	(C)	Entire body, single	exposure	Entire body	Entire body			Entire body, repeated 0.11-8.8 r/da exposure	Entire body		Entire body		Entire body	External												
Type of Radiation	(B)	Gamma	Cobalt 60	Xray	X ray and thermal	neutrons with	gamma	Radium	Radium	(gamma)	Radium	(gaillina)	Radium (gamma)	Xray	65 KVP 110 KVP 175 KVP											
Animal	(A)	40 Monkey	(con-	41 Mouse	42			43	44		45		46	47 Rabbit												

	45		46	47	31		48	20	49	33	20			51	52	31
	24 hr	6-12 da	80-180 min	30 min	2 hr-5 mo	5-6 wk	12 hr			Terminal	24 hr 24 hr	Ferminal 9-10 da	1-2 wk Transient	1-3 da 4th da		1 hr-12 wk
sclerotic processes. Frequently, calcification. Slight proliferation of bronchial epithelium. Degenerative changes also noted.	Hydrothorax.	Pulmonary hemorrhage and edema.	Accelerated respiration.	Decreased respiration.	Early edema and congestion, petechial hemorrhage, and lymphangiectasia. Hypertrophy and anaplasia of alveolar	lining cells. Anaplasia and stratification in bronchi and bronchioles. Hyaline membrane infrequent. Degeneration of elastica of alveoli, pleura, and vessels. Pleura relatively resistant.	Dyspnea.	Degenerative changes in bronchial epithelium and lung stroma. Inflammatory processes in peribronchial, perivascular, and alveolar tissues.	Pulmonary edema, congestion, fibrosis, atelectasis.	Lung tumors.	Increased O ₂ consumption. Increased O ₂ consumption.	Decreased O ₂ consumption.	Increased O2 consumption.	Small decrease in basal O ₂ consumption.	Pulmonary fibrosis.	Early edema and congestion, petechial hemorrhage, and lymphangiectasia. Hypertrophy and anaplasia of alveolar lining cells. Anaplasia and stratification in bronchi and bronchioles. Hyaline membrane infrequent. Degeneration of elastica of alveoli, pleura, and vessels. Pleura relatively resistant.3
				14,000 r				6400-13,000 r		Life span	Lethal Lethal		Non-lethal Non-lethal			
	800 r	(LD-50/30)	630 r	240 r/min	300-5400 r	1925-2800 mc hr	1000-4000 r		Intensive	repeated 0.11-8.8 r/da	809-920 r 648-972 r		648 r 54-432 r	300-1000 r	3000 r	1200-3000 r
	Entire body, single	0	Entire body, single exposure	Head, single exposure		Probably external	Head, single exposure	Thorax, repeated exposure	Thorax, repeated		, single			Entire body, single	Thorax, single exposure	External
	Xrav	200 KVP	X ray 260 KVP	X ray 260 KVP	X ray 160 KVP 200 KVP	Radon	X ray	X ray	X ray	Radium	X ray 200 KV			X ray	X ray 250 KV	X ray 160 KVP 200 KVP 1000 KVP
											Rat					
	8)	49	50	51	52	53	4.0	55	56	57			58	59	09

/1/ The lesions reported may not be primary radiation effects, but a secondary manifestation of response to inflammation or infection which may be intercurrent or result from radiation-induced changes of tissues other than lung. /3/ Possible factors influencing severity of pneumonitis are species of animal, dose of radiation, fractionation and protraction, secondary Infection.

138, EFFECTS OF EXTERNAL IONIZING RADIATION ON THE RESPIRATORY SYSTEM: MAMMALS (Concluded)

dose equal to the dose in rads multiplied by the RBE; rad = rad unit, equivalent to 100 ergs/g energy absorption; RBE = relative biological effectiveness, i.e., kilovolts; mev = million electron volts; r = roentgen, the quantity of X- or gamma radiation such that the associated corpuscular emission per 0.001293 g of air produces, in air, ions carrying one electrostatic unit of electrical charge of either sign; rem = roentgen equivalent for mammal), the absorbed the appropriate value of the biological effectiveness of the radiation in question relative to that of X-radiation with an average specific ionization of 100 ion Abbreviations and definitions: KV = kilovolt, a unit of electrical potential equal to 1000 volts; KVP = kilovolt peak, the crest value of the potential wave in pairs per micron of water, for the particular biological system and biological effect under consideration and for the condition under which the radiation is recelved; n = neutron, a nuclear particle of zero charge and mass number 1; mc = millicurie, the quantity of radionucleid disintegrating at the rate of 3.7×10^7 atoms per second.

Refer-	_		(H)	53		54	31	55	56	57
Initial	Symptom	Manifestation	(5)	10-60 da			1 wk	Terminal	5 da	Terminal (7th da)
	Effect1		(F)	Animals with complete atelectasis of	irradiated lung: shift of medias- tinum to collapsed side. Compensa- tory emphysema of non-irradiated lung. Proliferation, hypertrophy, and squamous metaplasia of bronchial and tracheal epithelium frequent. Inflammatory cell exudation and abscess formation. Peribronchial fibrosis. Thickening of blood vessel walls, perivascular fibrosis, and capil- lary obliteration. 100% incidence of pneumonitis, with high mortality usually caused by bilateral pneumonia. Animals with no collapse of irradiated lung: changes minimal or none at all.	Atelectasis, pulmonary collapse, fibrosis.	Early edema and congestion, petechial hemorrhage, lymphangiectasia. Hypertrophy and anaplasia of alveolar lining cells. Anaplasia and stratification in bronchi and bronchioles. Hyaline membrane infrequent. Degeneration of elastica of alveoli pleura and vessels. Pleura relatively resistant. ³	Pulmonary edema and hemorrhage.	Increased respiratory rate.	Increased respiratory rate. Atelectasis; constricted bronchioles, pulmonary edema, and hemorrhage.
Accumulated	Dosage or Exposure	Time	(E)	4		7	ja.		I	M
	Dosage		(D)	3000 r		3000 r	12,300 r	600 r	20,000 r	700 r
Exposure	or	Administration	(C)	External, single	esthetized animals	Thorax, single exposure	External	Entire body, single exposure	Entire body, single exposure	Entire body, single exposure
Type	of	Radiation	(B)	Xrav	250 KVP	X ray 250 KVP	X ray 200 KVP	X ray 1000 KVP	Bomb (Bikini)	Atomic bomb source (gamma)
	Animal		(A)	Rat		2	63 Swine	4	2	9
1				19		62	9	64	65	99

current or result from radiation-induced changes of tissues other than lung. /3/ Possible factors influencing severity of pneumonitis are species of animal. 11/ The lesions reported may not be primary radiation effects, but a secondary manifestation of response to inflammation or infection which may be interdose of radiation, fractionation and protraction, secondary infection. Contributors: (a) Michaelson, S., and Ingram, M., (b) Chu, F. C., and Glicksman, A. S., (c) Stannard, J. N.

ibid 43:682, 1940. [20] Engelstad, R. B., ibid 43:676, 1940. [21] Sarasin, R., et al, J. radiol. electr. 29:445, 1948. [22] Freid, J. R., and Goldberg, H., Am. J. Roentg, 43:877, 1940. [23] Burkell, C. C., and Watson, T. A., ibid 76:895, 1956. [24] Liebow, A. A., et al, Am. J. Path. 25:853, 1949. References: [1] Hempelmann, L. H., et al, Am. Int. M. 36:279, 1952. [2] Hsieh, C. K., and Kimm, H. T., Am. J. Roentg. 37:802, 1937. [3] Kaplan, I. L., 44:235, 1940. [9] Freidenberg, R. M., and Rubenfeld, S., ibid 72:271, 1954. [10] Whitfield, A. G., Bond, W. H., and Arnott, W. M., J. Fac. Radiologists 5:12, 1954. [11] Cosgriff, S. W., and Kligerman, M. N., Radiology 57:536, 1951. [12] Chu, F. C., Nickson, J. J., and Uzel, A. R., Am. J. Roentg. 75:530, 1956. [13] Stone, D. J., Schwartz, M. J., and Green, R. A., Am. J. M. 21:211, 1956. [14] Chu, F. C., Phillips, R., Nickson, J. J., and McPhee, J. G., Radiology 64:642, 1955. [15] Jones, A., Proc. Roy. Soc. M., Lond. 41:703, 1948. [16] Pickren, J. W., N. York State J. M. 57:1083, 1957. Eschenbrenner, A. B., and Deringer, M. K., Radiology 49:274, 1947. [44] Engelstad, R. B., Acta radiol., suppl. 19, p 1, 1934. [45] Hagen, C. W., et al, U. S. Atomic Energy Commission Rept. No. MDDC-999, 1944. [46] Brooks, P. M., et al, Am. J. Physiol. 186:532, 1956. [47] Gerstner, H. B., et al, Radiation Res. 5:318, 1956. [48] Novick, R., Proc. Soc. Exp. Biol. 61:355, 1946. [49] Davis, K. S., Radiology 3:301, 1924. [50] Kirschner, L. B., et al. 25] Bruegge, C. F., Ann. Int. M. 36:654, 1952. [26] Trum, B. F., Mil. Surgeon 112:333, 1953. [27] Lane, J. J., et al, Radiation Res. 2:64, 1955. [28] Moon, V. H., et al, Proc. Soc. Exp. Biol. 43:305, 1940. [29] Bane, H. H., Proc. Radiation Res. Soc., 1956. [30] Prosser, C. L., and Moore, M. C., ibid 71:463, 1949. [51] Mole, R. H., Quart. J. Exp. Physiol., Lond. 38:69, 1953. [52] Cottier, H., Strahlentherapie 100:385, 1956. [53] Brown, R. F., Am. J. Roentg. 75:796, 1956. [54] Brown, R. F., U. S. Atomic Energy Commission Rept. No. UCSF-12, 1955. [55] Tullis, J. L., Am. J. Path. 25:829, and Bell, D., ibid 39:387, 1938. [4] Widmann, B. P., ibid 47:24, 1942. [5] Leach, J. E., Farrow, J. H., Foote, F. W., Jr., and Wawro, N. W., ibid 47:740, 1942. [6] McIntosh, H. C., and Spitz, S., ibid 41:605, 1939. [7] McIntosh, H. C., Radiology 23:558, 1934. [8] Jacobson, V. C., Am. J. Roentg. Science 122:863, 1955. [36] Eldred, E., and Trowbridge, W.V., Radiology 62:65, 1954. [37] Brooks, P. M., Radiation Res. 4:206, 1956. [38] Brooks, Am. J. Vet. Res. 15:329, 1954. [33] Lorenz, E., Am. J. Roentg. 63:176, 1950. [34] Rugh, R., et al, J. Morph. 91:237, 1952. [35] Moon, L. E., et al. Furth, J., and Christenberry, K. W., Cancer Res. 14:682, 1954. [41] Lorenz, E., et al, J. Nat. Cancer Inst. 15:1049, 1955. [42] Lorenz, E., et al, in "National Nuclear Energy Series," (ed., Zirkle, R. E.) 22B:Part I, Chapter 3, New York: McGraw-Hill, 1954. [43] Lorenz, E., Heston, W. E., 17] Bate, D., and Guttmann, R. J., Radiology 69:372, 1957. [18] Desjardins, A. U., Am. J. Roentg. 28:156, 1932. [19] Warren, S., and Spencer, J., U. S. Atomic Energy Commission Rept. No. MDDC-1271, 1946. [31] Warren, S., and Gates, O., Arch. Path., Chic. 30:440, 1940. [32] Gleiser, C. A., P. M., Fed. Proc. 14:20, 1955. [39] Kohn, H. I., Kallman, R. F., Berdjis, C. C., and BeOme, K. B., Radiation Res. 7:407, 1957. [40] Upton, A. C., 1949. [56] Tullis, J. L., and Warren, S., J. Am. M. Ass. 134:1155, 1947. [57] Tullis, J. L., et al, Am. J. Path. 31:71, 1955.

139. EFFECTS OF INTERNAL RADIATION EMITTERS ON THE RESPIRATORY SYSTEM: MAMMALS

Abbreviations and definitions: rad = rad unit, equivalent to 100 ergs/g energy absorption; mc = millicurie, the quantity of radionucleid disintegrating at the The tabulation below is a selection of studies in which there was either a clear-cut effect of the radiation or clearly no demonstrable effect, thereby making material free to move about in the lung and subject to removal by pulmonary clearance mechanisms. Doses were usually calculated over the entire period rate of 3.7 x 107 atoms per second; µc = microcurie, 3.7 x 104 disintegrations per second; c/L = curies per liter; mc-hr/L = millicuries x hours per liter. experiments would be required to demonstrate effects at lower levels. All experiments, except those involving implanted sources, represent radioactive possible an approach to an estimate of effective doses. It is not the purpose of this compilation to imply that a true threshold exists, for more complex of exposure, assuming an average effective half-life and exponential kinetics of loss. In some instances, these calculations may overestimate the dose needed to produce damage; however, this is not true generally because biological removal is moderately rapid compared with the periods of exposure.

Reference	(5)	-
Effect	(F)	No measurable effect.
Calculated Lung Dosage		yr)
Dosage	(D)	1 x 10 ⁻¹¹ c/L
Exposure or Administration	(C)	Calculation of radiation 1 x 10 ⁻¹¹ c/L Lung: 0.0042 ⁻ dose to lung (15-34 rad/70 Bronchi: 0.07 ⁻ 0.10 rad/wk (229-344 rad/
Type of Radiation	(B)	Radium, radon and daughters (largely alpha)
Animal	(A)	

139. EFFECTS OF INTERNAL RADIATION EMITTERS ON THE RESPIRATORY SYSTEM: MAMMALS (Continued)

Abbreviations and definitions: rad = rad unit, equivalent to 100 ergs/g energy absorption; mc = millicurie, the quantity of radionucleid disintegrating at the rate of 3.7 x 10^7 atoms per second; pc = microcurie, 3.7 x 10^4 disintegrations per second; c/L = curies per liter; mc-hr/L = millicuries x hours per liter.

Reference	(9)	2, 3	4	ر.	9	7	&	6	10	11	11, 12	13	4
Effect	(F)	Lung cancer occurs, but not proven to be result of radon and daughters exposure.	No measurable effect on larger bronchi.	Dyspnea, pulmonary fibrosis.	Lung carcinogenesis, but casual relationship not proven.	50% self-absorption assumed. No measurable effect on lung; damage seen in other tissues.	Immediate stimulation of respiratory center.	Acute pathologic changes; lung damage not described in detail. LD-50 expected.	Increased cellularity of bronchial mucosa 5-7 mo after exposure	Squamous cell carcinomas seen in 3 out of 10 animals after 1 yr.	Lower dose produced increase in papillary adenoma. Higher dose produced one malignant tumor (not a squamous cell carcinoma).	No change that could be ascribed to radiation. Doses of 250 and 2000 μc were acutely toxic, 25 μc were not.	Tracheal tumors. Dose to trachea difficult to estimate because of short range of the 1131 beta.
Calculated Lung Dosage	(E)	0.65 rad/wk (560 rad in 17 yr)	3000 rem in 17 yr			85 rad in 25 yr (240 rad in 70 yr)		570 rad to lung (285 rad to whole body)	Approximately 280 rad	1,890-22,000 rad1	110 rad for 0.45 μc; 710 rad for 3.0 μc	93 rad for 25 µc; approximately 1000 rad for 250 µc; approx- imately 7500 rad for 2000 µc	5,000-10,000 rad for more than 80 µc
Dosage	Ω)	3 x 10-9 c/L		60 rep radium equivalent	50-75 mg	0.01 rep/da	43-83 µс	0.013-0.017 mc/g	4.3 mc-hr/L	0.06 µc PuO2 per animal	0.45-3.0 μc per animal	25-2000 µc	10-1000 µс
Exposure or Administration	(2)	Calculation for exposure of upper bronchial epithelium	in a mine where lung cancer was reported	Repeated inhalation in mine atmosphere for 3-vr period	Industrial exposure by inhalation for 13-23	Calculation of lung dose in patients administered 75 ml thorotrast	Medulla oblongata, single exposure	Injection	Inhalation	Intratracheal injection	Intratracheal injection	Subcutaneous injection	Subcutaneous injection
Type of Radiation	(B)	Radium, radon and daughters (largely aloha)		Radium, radon and daughters (mostly aloha)	Radium, radon and daughters (mostly alpha)	Thorium and daughters (largely alpha)	Radon (mostly alpha)	Aqueous radon solution (largely alpha)	Radon free of daugh- ters (alpha)	Plutonium, 239 (alpha)	Ruthenium106 oxide particles (beta)	Carrier-free phos- phorus32 (beta)	lodine ¹³¹ (beta, gamma)
Animal	(A)	2 Man (con- cluded)		m	4	w)	6 Cat	7 Mouse	∞	6	10	et e	12

15	16	17	18	19	20	21	22	23	24	23	23, 25	23	56	72
nas	Microscopic evidence of generalized radiation damage. Kidney lesion is cause of death at 10 μc/kg.	Microscopic evidence of radiation damage; atelectasis. Effects in lung mild as compared to other tissues.		gy	ncreased cellu- ar epithelium. ange (proliferation)	onsoli- asily	Metaplastic changes indicated as occurring, but complete report not available.	Incidence of squamous cell carcinoma.	rization seen	25% incidence (6 out of 24) of squamous cell metaplasia and carcinoma.	Used as example of tance. Dosimetry urce difficult.	Squamous cell carcinoma 6 or 7 tumors Lymphosarcoma associated with the bead.	carcinoma.	Fibroblastic response; alteration in elastica were minor.
Gross and micr squamous cel of 15 animals in 1 of 15 ani other organs.	Microscopic or radiation date cause of de	Microscopic damage; atc	Pulmonary ede trachea. Par tion damage.	Some gross a noted in all levels.	Extensive damage. I larity of bronchiols Neoplastic type chin some instances.	Acute effects dation. Mu distinguish	Metaplastic c occurring, available.		Inflammation and cicat only at highest dose.	25% incidence cell metapl	No effect observed. an insoluble subsarround a point so	Squamous cell car Lymphosarcoma	Metaplasia. Bronchogenic carcinoma	Fibroblastic response elastica were minor
2500 rad in approximately 60 da	1360 rad at 10 μc/kg			2,400-67,000 rad	Up to 46,000 rad	Up to 33,000 rad	Up to 33,000 rad	2150-2200 rad 4750-6400 rad 7900-9950 rad 4,850-19,500 rad	22,500 rad	12,000-20,000 rad	105 rad over a period of 16 months	78,000 rad ² 47,000 rad ²	70 rad ² 200,000 rad ²	6250 rad at sur- face of bead
5 μc/kg	1-10 µc/kg	0.9-35.0 µc/kg	26-70 µc/kg	0.5-31.0 μc per animal (7.5-500μg)	1.5-31.5 µc per animal	3.2-200 µc per animal	3.2-200 µc per animal	5-50 μc per animal LD-50 = 45 μc	4.5 µc - 4.5 mc per animal	375 µc once a wk for 10 wk		77-1920 rad/ da	0.007-14.0 µC	1.5 mc in bead
Intratracheal injection	Single intravenous injection	Single intravenous injection	Single intravenous injection	Intratracheal injection	Inhalation of Pu smoke	Inhalation	Inhalation	Intratracheal injection	Intratracheal injection	Repeated intratracheal injection	Intratracheal injection	Implanted	Implanted	Implanted for 2 wk
Polonium ²¹⁰ (alpha)	Polonium ²¹⁰ (alpha)	Polonium ²¹⁰ (alpha)	Polonium ²¹⁰ (alpha)	Plutonium ²³⁹ (alpha)	Plutonium 239 (alpha)	Cerium144-praseo- dymium144 oxide (beta, gamma)	Cerium 144-praseo- dymium 144 oxide (beta, gamma)	Cerium 144 fluoride (beta, gamma)	BaS ³⁵ O ₄ (beta)	BaS ³⁵ O ₄ (beta)	Radioactive thallium activated clay (beta)	Strontium 90 beads (beta)	Ruthenium106- rhodium106 (beta)	Cobalt ⁶⁰ beads (gamma)
13 Rat	14	15	16	17		19	20	21	22	23	24	25	92	27 Swine

/1/ 1890 rad if 30 da chosen as effective half-life in lung; 22,000 rad if 360 da chosen. /2/ Doses at 100 micra.

Contributors: (a) Stannard, J. N., (b) Michaelson, S., and Ingram, M.

References: [1] U. S. Public Health Service Bull., No. 494, 1957. [2] Evans, R., and Goodman, J. Indust. Hyg. 22:89, 1940. [3] Furth, J., in "Radiation Biology," (ed., Hollaender, A.), vol l, part II, chap. 18, New York: McGraw-Hill, 1954. [4] Evans, R. D., Acta Unio Intern. contra Cancrum 6:1229, 1950. [5] Rajewsky, B., Radiology 32:57, 1939. [6] Pirchan, A., and Sikl, H., Am. J. Cancer 16:681, 1932. [7] Hursh, J. B., et al, Acta radiol., Stockh. 47:481, 1957. [8] Nemenov, M. I., et al, Bull. Roentg. Radiol. 19:37, 1938. [9] Hollcroft, J. W., and Lorenz, E., J. Nat. Cancer Inst. 12:533, 1951. [10] Scott, J. K., Univ. Rochester Atomic Energy Project, Rept. No. UR-411, 1955. [11] Wager, R., Hanford Atomic Products Operation, Annual Rept. No. HW-41500, 1956. [12] Bair, W. J., unpublished. [13] Warren, S., et al, Radiology 55:557, 1950. [14] Gorbman, A., Proc. Soc. Exp. Biol. 71:237, 1949. [15] Thomas, R. G., and Stannard, J. N., Univ. Rochester Atomic Energy Project, Rept. No. UR-430, 1956. [16] Casarett, G. W., ibid, Rept. No. UR-201, 1952. [17] Mound Laboratory, Rept. No. MLM-761, 1952. [18] Fink, R. M., "Biological Studies with Polonium, Radium, and Plutonium," U. S. A. E. C., National Nuclear Energy Series, Div. VI, vol 3, chap. 8, New York: McGraw-Hill, 1950. [19] Abrams, R., et al, Univ. Chicago, Rept. No. CH-3875, 1946. [20] Bloom, W., "Histopathology of Irradiation," U. S. A. E. C., National Nuclear Energy Series, Div. IV, vol 22 I, chap. 15, New York: McGraw-Hill, 1948. [21] Siebert, H. C., and Abrams, R., Univ. Chicago, Rept. No. CH-3539, 1946. [22] Lisco, H., and Finkel, M., Fed. Proc. 8:360, 1949. [23] Cember, H., Univ. Pittsburgh Graduate School of Public Health, AEC Contract AT (30-1) 912, Rept. No. 9, 1957. [24] Cember, H., et al, Am. M. Ass. Arch. Indust. Health 12:628, 1955. [25] Cember, H., ibid 15:449, 1957. [26] Kushner, M., et al, AEC Contract AT (30-1) 1925, New York Univ., Bellevue Med. Center, Progress Rept., 1957. [27] Tessmer, C. F., and Jennings, F. L., Radiol. Res. 599, 1956.

140. SUMMARY, FACTORS AFFECTING COMPOSITION OF RESPIRED AIR: MAN

Part I: VOLUNTARY CONTROL

Section 1: Breathholding

Ranges in parentheses are estimate "c" of the 95% range (cf Introduction).

		Alveol	ar Air	
Breathholding Time	Befor	re	Aft	ter
sec	O2, %	CO2, %	O2, %	CO2, %
(A)	(B)	(C)	(D)	(E)
1 47(30-77)	14.85(13.67-16.12)	4.92(4.05-6.02)	10.13(6.12-11.44)	6.72(5.28-8.08)

Contributor: Craig, F. N.

Reference: Hill, L., and Flack, M., J. Physiol., Lond. 37:77, 1908.

Section 2: Voluntary Hyperventilation

Subjects at rest.

T-t-1 Vantilation	Alve	olar CO2 ¹
Total Ventilation L/min	Constant Frequency %	Constant Tidal Volume
(A)	(B)	(C)
5	6.08	5.86
2 10	4.37	4.71
3 20	2.86	3.54
40	2.19	2.59

/1/ Recalculation of published data.

Contributor: Craig, F. N.

Reference: Sunahara, F. A., Girling, F., Snyder, R. A., and Topliff, D., J. Aviat. M. 28:13, 1957.

Part II: EXERCISE

Section 1: Effect on Expired and Alveolar CO2

		· · · · · · · · · · · · · · · · · · ·	<u> </u>	
	O- W-tal-a	Total Ventilation	CC)2
Condition	Oz Uptake L/min	L/min	Expired Air %	Alveolar Air %
(A)	(B)	(C)	(D)	(E)
1 Rest, bed	0.24	7.7	3.19	5.97
2 Rest, standing	0.33	10.4	3.14	5.70
3 Walking	0.67	16.3	4.25	6.04
4	1.07	24.8	4.62	6.10
5	1.60	37.3	4.67	6.36
6	2.01	46.5	4.72	6.20
7	2.54	60.9	4.79	6.10

Contributor: Craig, F. N.

Reference: Douglas, C. G., and Haldane, J. S., J. Physiol., Lond. 45:235, 1912-1913.

Section 2: Effect on Composition of Expired Air

Bicycle ergometer.

O ₂ Uptake	Total Ventilation	Expired Airl		
L/min	L/min	O2, %	CO2, %	
(A)	(B)	(C)	(D)	
0.25	6.5	17.05	3.29	
2 0.50	10.5	16.35	3.99	
3 1.00	20.0	16.00	4.54	
1.50	30.0	15.95	4.84	
5 2.00	42.5	16.15	4.80	
5 2.50	56.5	16.65	4.34	

/1/ Recalculation of published data.

Contributor: Craig, F. N.

Reference: Bock, A. V., Vancaulaert, C., Dill, D. B., Folling, A., and Hurxthal, L. M., J. Physiol., Lond. 66:136, 1928.

140. SUMMARY, FACTORS AFFECTING COMPOSITION OF RESPIRED AIR: MAN (Continued)

Part II: EXERCISE (Concluded)

Section 3: Effect on Composition of Expired Air,

Exercise vs Recovery

Treadmill experiment. O2 consumption three times basal.

•		
Conditions	O2. %1	CO2, %1
(A)	(B)	(C)
	Male	
Rest	16.77	3.95
Exercise	15.78	4.68
Recovery	16.81	4.27
	Female	
Rest	17.09	3.47
Exercise	16.09	4.18
Recovery	17.09	3.86
	Rest Exercise Recovery Rest Exercise	(A) (B) Male Rest 16,77 Exercise 15.78 Recovery 16.81 Female Rest 17.09 Exercise 16.09

/1/ Recalculation of published data.

Contributor: Craig, F. N.

Reference: Bruce, R. A., Pearson, R., Lovejoy, F. W., Yu, P. N., and Brothers, G. B., J. Clin. Invest. 28:1431, 1949.

Section 4: Effect on Blood Lactic Acid and Composition of Alveolar Air Bicycle ergometer.

O ₂ Uptake L/min		Alve	Blood Lactic Acid	
		O2, %	CO2. %	mEq/L
	(A)	(B)	(C)	(D)
1	0.4	14.55	5.47	1.2
2	0.8	14.75	5.40	1.3
3	1.2	14.06	5.96	1.6
4	1.6	13.99	6.24	2.2
5	2.0	14.33	6.17	3.7
6	2.2	14.75	5.96	5.1

/1/ Recalculation of published data.

Contributor: Craig, F. N.

Reference: Dill, D. B., Edwards, H. T., Folling, A., Oberg, S. A., Pappenheimer,

A. M., Jr., and Talbott, J. H., J. Physiol., Lond. 71:48, 1931.

Part III: HEAT

Section 1: Increased Body Temperature; Subjects at Rest in Hot Baths Four subjects. O = oral, R = rectal.

Temp	erature	Alve	Total Ventilation	
Body, °C	Bath, °C	O2, %	CO2, %	L/min
(A)	(B)	(C)	(D)	(E)
36.8 0		14.82	5.58	7.0
1 39.7 O	42	17.82	3.27	18.0
38.2 R	37	14.87	5.46	8.5
2 39.3 R	41	16.04	3.36	38.0
37.8 R		15.61	4.93	5.0
39.2 R	43	16.04	3.10	39.0
36.7 O		13.36	6.58	9.5
39.2 O	42	16.11	3.82	25.5

/1/ Recalculation of published data.

Contributor: Craig, F. N.

Reference: Hill, L., and Flack, M., J. Physiol., Lond. 38:57, 1909.

Section 2: Increased Body Temperature during Exercise Bicycle ergometer. Room temperature, 34°C.

	Exercise min	Rectal Temperature °C	Total Ventilation L/min	O2 Uptake L/min	Alveolar CO21
	(A)	(B)	(C)	(D)	(E)
1	10	38.0	45	2.1	6.17
2	20	38.4	47	2.1	5.90
3	30	38.8	48	2.1	5.47
4	40	39.2	50	2.1	5.34
5 !	50	39.6	52	2.1	5.19

/1/ Recalculation of published data.

Contributor: Craig, F. N.

Reference: Dill, D. B., Edwards, H. T., Bauer, P. S., and Levenson, E. J., Arbeitsphysiologie 4:508, 1931.

140. SUMMARY, FACTORS AFFECTING COMPOSITION OF RESPIRED AIR: MAN (Continued)

Part IV: CO2 INHALATION

Section 1: Various Exposure Times

Subjects at rest. R.Q. = respiratory quotient.

_	CO ₂ Inhalation	Total Ventilation	Insp	pired	Exp	ired	O ₂ Uptake	CO ₂ Output	R.Q.
	min	L/Min	02, %	CO2, %	O2, %	CO2, %	cc/min	cc/min	16.60.
	(A)	(B)	(C)	(D)	(E)	(F)	(G)	(H)	(I)
1	0	7.3	20.93	0.03	16.76	3.38	318	243	0.77
2	3	33.8	19.42	5.83	18.24	6.48	446	206	0.46
3	11	43.2	19.27	5.99	18.30	6.54	466	225	0.48
4	18	46.6	19.11	6.10	18.24	6.75	447	293	0.66

Contributor: Craig, F. N.

Reference: Campbell, J. M., Douglas, C. G., Haldane, J. S., and Hobson, F. G., J. Physiol., Lond. 46:301, 1913.

Section 2: Various Concentrations

Inspired CO ₂	Total Ventilation	Alveolar CO21
(A)	(B)	(C)
1 0.18	12.9	6.34
2 1.02	16.6	6,45
	15.6	6.69
3 2.22		
4 4.17	27.2	6.83
5 5.31	41.1	6.99
6 7.50	71.0	8.37

/1/ Recalculation of published data.

Contributor: Craig, F. N.

Reference: Barcroft, J., and Margaria, R., J. Physiol., Lond. 72:175, 1931.

Section 3: During Exercise

One subject.

	Time ¹ Treadmill Speed		Insp	Inspired		ired	Total Ventilation	O ₂ Uptake
	min	mi/hr	02. %	CO2. %	02, %	CO2, %	L/min	L/min
	(A)	(B)	(C)	(D)	(E)	(F)	(G)	(H)
1	0	1.5	17.36	1.93	14.21	5.03	15.0	0.43
2	16	1.5	16.54	4.36	14.20	6.37	22.0	0.47
3	31	1.5	15.81	6.45	14.60	7.47	37.5	0.41
4	52	3.0	17.36	1.93	13.95	5.06	24.0	0.75
5	63	3.0	16.54	4.36	14.04	6.65	35.0	0.78
6	81	3.0	15.81	6.45	14.03	8.07	51.5	0.82
7	104	4.0	17.36	1.93	13.78	5.42	36.0	1.17
8	121	4.0	16.54	4.36	13.69	6.95	47.0	1.20
9	150	4.0	15.81	6.45	13.39	8.50	60.0	1.32

/1/ Start of each test

Contributor: Craig, F. N.

Reference: Craig, F. N., J. Appl. Physiol. 7:467, 1955.

Part V: O2 INHALATION

Section 1: Various Concentrations

_	Insp	ired	Expired		
	O2, %	CO2, %	02, %	CO2, %	
	(A)	(B)	(C)	(D)	
1	80.24	0.20	72.21	5.84	
2	63.67	0.14	57.57	5.41	
3	20.93	0.03	14.50	5.54	
4	15.63	0.07	10.60	5.45	
5	12.78	0.07	7.80	5.28	
6	11.33	0.10	8.96	3.85	
7	11.09	0.10	7.10	4.89	
8	6.23	0.09	4.30	3.57	

Contributor: Craig, F. N.

Reference: Haldane, J. S., and Priestley, J. G., J. Physiol.,

Lond. 32:225, 1905.

Part V: O2 INHALATION (Concluded)

Section 2: N₂ in Expired Air

 N_2 as an increment over the N_2 contained in an inspired gas mixture containing 1% of N_2 in O_2 . Subjects at rest, submerged in water. Ranges in parentheses are estimate "c" of the 95% range (cf Introduction).

	Time on Gas Mixture min	N ₂ Increment
	(A)	(B)
1	1	0.76(1.58-0.41)
2	4	0.17(0.28-0.07)
3	8	0.15(0.18-0.11)
4	13	0.11(0.15-0.05)
5	30	0.08(0.15-0.05)
6	60	0.05(0.06-0.03)
7	90	0.04(0.07-0.02)

Contributor: Craig, F. N.

Reference: Blevins, W. V., Frankel, H., Garren, H., and Craig, F. N., Chemical Corps Medical Laboratories Research Rept. No. 216, Army Chemical Center, Maryland, 1953.

Part VI: ADDED RESISTANCE

The effect of added resistance on the composition of alveolar air. Resistance the same on inspiration and expiration.

Resistance mm H ₂ O/cc/sec	O2, %1	CO ₂ , %1
(A)	(B)	(C)
1 0.0772	13.93	5.70
2 0.308	13.50	5.95
3 0.0773	14.18	5.60

/1/ Recalculation of published data. /2/ Before added resistance. /3/ After added resistance.

Contributor: Craig, F. N.

Reference: Cain, C. C., and Otis, A. B., J. Aviat. M. 20:149, 1949.

Part VII: ADDED DEAD SPACE

Average of three subjects.

-	Added Dead Space Total Ventilation		Ex	pired	Alveolar	
	L	L/min	O2, %	CO2. %	O2. %	CO2. %
	(A)	(B)	(C)	(D)	(E)	(F)
1	0	8.6	17.93	3.00	15.92	4.79
2	1.0	17.7	19.41	1.51	15.52	4.90
3	2.0	28.9	20.02	0.86	14.40	5.95
4	3.0	38.8	20.34	0.54	10.32	6.99

Contributor: Craig, F. N.

Reference: Swann, H. E., Jr. (thesis), Univ. of Maryland, 1950.

140. SUMMARY, FACTORS AFFECTING COMPOSITION OF RESPIRED AIR: MAN (Concluded)

Part VIII: ACIDOSIS

One subject.

Day	Ingested NH ₄ Cl mM	Alveolar CO21
(A)	(B)	(C)
1 1	0	5.44
2 2	374	5.15
3 3	374	4.26
4 4	281	3.90
5 5	0	4.25
6 6	0	4.81
7 7	0	5.15
8 8	0	5.42

/1/ Recalculation of published data.

Contributor: Craig, F. N.

Reference: Haldane, J. B., J. Physiol., Lond. 55:265, 1921.

Part IX: ALKALOSIS

One subject.

Time hr	Condition	Alveolar CO ₂
(A)	(B)	(C)
1	Control	5.8
2 0.5	Ingestion 57.5 g NaHCO3	6.2
3 3.5	Peak excretion rate of NaHCO ₃	6.8
4 8.5	Urine flow returned to normal	6.1

Contributor: Cralg, F. N.

Reference: Davies, H. W., Haldane, J. B., and Kennaway, E. L., J. Physiol., Lond. $\overline{54:32}$, 1920.

Part X: INHALED PHOSGENE RETENTION

The amount retained is the difference between the amount inspired and the amount recovered in the expired air. That retained is expressed as a fraction of the amount inspired. Values in parentheses are estimate "c" of the 95% range (cf Introduction).

Species	Retained Gas %	Reference
(A)	(B)	(C)
1 Rhesus monkey	0.792(0.512-0.980)	1
2 Dog	0.740(0.518-0.937)	2
3 Goat	0.628(0.365-0.941)	3

Contributor: Craig, F. N.

References: [1] Weston, R. E., and Karel, L., J. Indust. Hyg. 29:29, 1947. [2] Weston, R. E., and Karel, L., J. Pharm. Exp. Ther. 88:195, 1946. [3] Karel, L., and Weston, R. E., J. Indust. Hyg. 29:23, 1947.

141. EFFECTS OF PULMONARY FIBROSIS ON PULMONARY FUNCTION: MAN

Ranges in parentheses are estimate "d" of the 95% range (cf Introduction).

R = rest, E = exercise.

Reference	(F)	1, 4-6, 13.	24		2, 3		5,24		5, 6, 9, 11, 15	21,24	5, 15, 19, 22,	24,26		6-8, 15, 17,	73-70	6.15.20.21.	92	01 21 01	01,01,01		12		16,24
O ₂ Diffusing Capacity ⁴ , ⁶ ml/min/mm Hg	(K)	15(6-20)					18(15-25)		14(9-25)	16(13-22)	9(5-12)		15(12-18)	10(6-16)	15(10-17)	8(5-10)	15/12-251	177777		14			
O2 Saturation	(3)	90(85-97)	30/30-30) 88/80-04)	00(00-14)	90(80-92)		90(80-92)		39(34-45) 92(85-95)	38(34-40) 88(80-92)	35(30-40) 80(60-85)	0	34(30-40) 75(50-90)	38(35-41) 88(80-96)	85(75-97)	38(35-42) 90(88-96)	35(30-40) 75(60-85)	100 02/08	(06-07)00	87	(26-06)56	93(90-96)10	40(35-42) 92(88-96) 38(35-40) 88(70-90)
Arterial Blood Partial Pressure CO24 mm Hg	3	39(34-42) 90(85-97)	30/30-30)	120-00120	39(30-42)		39(34-42)		39(34-45)	38(34-40)	35(30-40)		34(30-40)	38(35-41)	(37(32-42)	38(35-42)	35(30-40)	100		41	41(35-50)		40(35-42)
Partial Pressure O24 mm Hg	(H)	70(65-90)	65(60-85)	160-00160	70(50-80) 39(30-42) 90(80-92)		70(60-90) 39(34-42) 90(80-92)		75(65-90)	70(60-80)	(08-06)09		50(30-80)	85(64-90)	65(40-85)	(06-09)02	55/30-80)	100 00100		35	91(80-110) 41(35-50) 95(90-97)		75(65-90)
Alveolar O2 Pressure4, 5 mm Hg	(B)	90(80-110)			80(80-110)		90(80-110)		90(80-100)		100(90-105) 60(30-80)		110(105-115)	100(95-102) [85(64-90)	110(105-115)	105(95-110) 70(60-90)	(021-001)211	1027 007127			97(85-105)		
O ₂ Ventilatory Equivalent	(F)		120/100/100/100/100/	1001-001/071		130(100-170)				120(100-160) 110(95-115)			140(110-160) 110(105-115) 50(30-80)		150(110-170) 110(105-115) 65(40-85) (37(32-42) 85(75-97)		1601120-30017111 (100-120)	/200		160(150-200) 114			150(120-180) 95(90-100)
Residual Volume ²	(E)	80(40-110) 110(50-150)			60(30-80)		100(50-100)		110(80-180)		90(80-180)			80(60-120)		80(70-110)		50/40-60)	(2)		113(70-160)		
Vital Capacity ² %	(D)	80(40-110)			50(25-60)		80(40-100)		80(50-110)		70(50-90)			65(35-120) 80(60-120		60(40-80)		50140-601	(25 ST)25		106(95-130) 113(70-160		10(60-90)
Maximal Breathing Capacity ² %	(C)	80(40-110)			60(40-80)		90(50-100)		90(70-120)		80(60-110)			80(50-170)		90(70-120)		65/50-1001	(001 00)	i	103(70-120)		90(70-100)
No. of Subjects, Dynamic Status	(B)	62 R	Ĺ	1	18 R	ы	12 R		110 R	ы	27 R	1	<u>Э</u>	58 1 R	ы	36 R	E	3 B		ы	30 R		57 R E
Disease	(A)	Extensive			Tuberculous pleuritis, "fibrothorax"		Widespread	bronchiectasis	Silicosis		Jq.	fibrosis ⁹		Ĭ.	sarcoidosis	Beryllium	granulomatosis	Hamman-Rich			ä	earth fibrosis	Asbestosis
		-	^	1	m	4	S		9	2	00	(5	01		12	13	4		15	16	17	18

O2 = minute volume (BTPS)/O2 uptake (STPD), /4/ Breathing air at sea level. /5/ Calculated from alveolar equation and assumption that CO2 arterial pressure = CO₂ alveolar pressure. /6/ Determined by Riley's method [26] or by Filley's D_{CO} method [27]; D_{O2} = D_{CO} × 1.23, ml O₂/min/mm Hg. /7/ Without pleural thickening. /8/ Most patients reviewed had 1st or 2nd stage silicosis only, since 3rd stage is so often complicated by emphysema. /9/ Not classifiable as Hamman-Rich syndrome. /10/ Blood sampled after, rather than during, exercise. /1/ Data on cases with severe pulmonary emphysema not included. /2/ Results expressed in % of predicted normal. /3/ Ventilatory equivalent for

Contributors: (a) Filley, G. F., (b) Armstrong, B. W., (c) Nims, R. G.

Carroll, D., Bliss, H. A., Kushner, M., Richards, D. W., Jr., and Cournand, A., ibid 10:156, 1951. [23] Stone, D. J., Schwartz, A., and Lovelock, F. J., ibid 15:468, 1953. [24] Baldwin, E. de F., Cournand, A., and Richards, D. W., Jr., Medicine, Balt, 28:1, 1949. [25] McClement, J. H., Renzetti, A. B., L. L. Bell, J. C., and Blount, S. G., Jr., Am. Rev. Tuberc. 69:71, 1954. [6] Wright, G. W., and Filley, G. F., Am. J. M. 10:642, 1951. [7] Riley, R. L., Riley, M. C., and Hill, H. McD., Bull, Johns Hopkins Hosp. 91:345, 1952. [8] Coates, E. O., and Comroe, J. H., Jr., J. Clin. Invest, 30:848, 1951. [9] Motley, H. L., Lang, L. P., and Gordon, B., Am. Rev. Tuberc, 61:201, 1950. [10] Silverman, J. J., and Talbot, T. J., Ann. Int. M. 38:1326, 1953. [11] McCann, W. S., Hurtado, A., Kaltreider, N., and Fray, W. W., J. Am. M. Ass. 103:810, 1934. [12] Motley, H. L., Smart, R. H., and Valero, A., Health 11:196, 1955. [17] Williams, M. H., Jr., J. Clin. Invest. 32:909, 1953. [18] Merrill, J. M., Callaway, J. J., and Meneely, G. R., South, M. J. 49:997, 1956. [19] Du Bose, H. M., Meador, R. S., and McCain, B. E., Am. J. M. 17:151, 1954. [20] Wright, G. W., Filley, G. F., Proemmel, D. D., Princi, F., Place, R., and Grinnell, R., Sympos. Mil. Physiol., Wash., Series 4, GE 61/1, P135 Dec. 4-6, 1947. [21] Kennedy, B. J., Pare, J. A., Pump, 1953. [2] Wright, G. W., Yee, L. B., Filley, G. F., and Stranahan, A., J. Thorac, Surg. 18:372, 1949. [3] Wright, G. W., and Filley, G. F., unpublished.
4] Gaensler, E. A., Cugell, D. W., Lindgren, I., Verstraeten, J. M., Smith, S. S., and Streider, J. W., J. Thorac, Surg. 29:163, 1955. [5] Anderson, R. W., and Cournand, A., Am. J. M. 11:667, 1951. [27] Riley, R. L., Donald, K. W., and Cournand, A., J. Appl. Physiol. 4:102, 1951. [28] Filley, G. F., MacIntosh, D. J., and Wright, G. W., J. Clin, Invest. 33:530, 1954. Arch. Indust. Health 13:265, 1956. [13] Anno, H., and Tomashefski, J. F., Am. Rev. Tuberc. 71:333, 1955. [14] Blair, E., and Hickam, J. B., ibid 74:343, 1956. [15] Cugell, D. W., Marks, A., Ellicott, M. F., Badger, T. L., and Gaensler, E. A., ibid 74:317, 1956. [16] Wright, G. W., Arch. Indust. References: [1] Wilson, R. H., Ebert, R. B., Borden, C. W., Pearson, R. T., Johnson, R. S., Falk, A., and Dempsey, M. E., Am. Rev. Tuberc, 68:177, Himmelstein, A., and Cournand, A., Am. Rev. Tuberc. 67:154, 1953. [26] Austrian, R., McClement, J. H., Renzetti, A. D., Jr., Donald, K. J., Riley, K. K., Beck, J. C., Johnson, L. G., Epstein, N. B., Venning, E. H., and Brown, J. S., Am. J. M. 10:134, 1951. [22] West, J. R., McClement, J. H.,

142. COMPARATIVE PATHOLOGY OF THE PNEUMOCONIOSES

The term pneumoconiosis is used in a generic sense to include the deposition of any insoluble exogenous particles in lung tissue, regardless of the presence or absence of sequellae. There are many more pneumoconioses than the ones here listed, including those considered benign or asymptomatic [1], and those manifestly of a mixed variety in which silica is the more significant component. It must be strongly emphasized that the tabulation here presented should be considered to apply to the respective pneumoconioses only when they are of moderate severity. It is obvious that the amount of anatomic, physiologic, and immunologic alteration depends largely upon whether the involvement by the particular pneumoconiosis is mild, moderate, or severe. Any other application of this tabulation would be misleading and result in confusion.

_	General	Specific	Anthracosis	Silicogie	Ashestosis	Chronic	Bauxite Fume Pneumoconiosis	Reference
	Effect	Effect	mini acosis	bineobis	11806810318	Berylliosis	(Shaver's Disease)	, itererence
	(A)	(B)	(C)	(D)	(E)	(F)	(G)	(H)
1	Anatomic	Emphysema	+	+	+	+	+	C,3-5;D,6;E,7; F,8-11;G, 12-14
2		Hilar fibrosis	0	+	0	?	+	D,15;G,12-14
3		Nodular fibrosis	0	+	0	+	0	D,15,16;F,8-11; G,12-14
4		Alveolar fibrosis	°	0	+	+	+	C,5,17,18;D, 19-22;E,23; F,8-11;G, 12-14
5		Vascular sclerosis	0	+	+	+	+	D,6,24;E,25;F, 8-11,G,12-14
6		Pleural fibrosis	0	+	+	+	+	E,7;F,8-11;G, 12-14
7		Granulomatousinflammation	h °	0	0	+	0	F,8-11;G,12-14
8	Physi- ologic	Reduced ventilatory movements		+	+	+	+	C,26,27;D,28; E,23;F,8-11, G,12-14
9		Reduced respiratory surface	01	+	0	+	+	C,5,17,18; F, 8-11; G,12- 14
10	4	Impaired gaseous diffusion	0	02	+	+	+	F,8-11;G,12-14
11	1	Pulmonary hypertension (cor pulmonale)	+	+	+	+	+	C,27;F,8-11;G, 12-14
12	Immunologic ³		?	+	?	?4	? 4	C,3-5,17,18;D, 19;E,7,19,29, 30
13		Increased incidence pulmonary cancer	0	0	?	?4	? 4	D,19,29;E,29, 31,32

/1/ Only in cases of progressive massive fibrosis. /2/ Except in the presence of diffuse alveolar fibrosis. /3/ The propriety of classifying the increased incidence of pulmonary cancer under the heading of immunologic effect is debatable; it is done here for the sake of convenience and simplicity. /4/ Total number of cases reported is too small.

Contributor: Gross, P.

References: [1] Sander, O. A., in "Clinical Cardiopulmonary Physiology," ed. Gordon, B. L., p 350, New York: Grune and Stratton, 1957. [2] Di Biasi, W., Virchows Arch. 319:505, 1951. [3] Heppleston, A. G., J. Path. Bact., Lond. 59:453, 1947. [4] Fletcher, C. M., in "ILO 3rd Internat. Conf. of Experts on Pneumoconiosis, Sydney, 1950; Record of Proceedings," vol 2, p 150, Geneva: International Labor Office, 1953. [5] Hart, P. D., and Aslett, E. A., in "Chronic Pulmonary Disease in South Wales Coalminers," Special Rept. Series No. 243, vol I, London: Medical Research Council, 1942. [6] Matz, P. B., Am. J. M. Sc. 196:548, 1938. [7] Stone, M. J., Am. Rev. Tuberc. 41:12, 1940. [8] Hardy, H. L., in "Pneumoconiosis," 6th Saranac Symposium, Trudeau School of Tuberculosis, ed. Vorwald, A. J., et al, p 133, New York: Paul B. Hoeber, Inc., 1950. [9] Wright, G. W., ibid, p 173. [10] Vorwald, A. J., ibid, p 190. [11] Vorwald, A. J., in "Clinical Cardiopulmonary Physiology," ed. Gordon, B. L., p 359, New York: Grune and Stratton, 1957. [12] Wyatt, J. P., and Riddell, A. R., Am. J. Path. 25:447, 1949. [13] Riddell, A. R., in "Pneumoconiosis," 6th Saranac Symposium, Trudeau School of Tuberculosis, ed. Vorwald, A. J., et al, p 459, New York: Paul B. Hoeber, Inc., 1950, [14] Shaver, C. G., and Riddell, A. R., J. Indust. Hyg. 29:145, 1947. [15] Di Biasi, W., Tuberkulosearzt 7:343, 1953. [16] Gardner, L. U., Pub. Health Rept., Wash. 50:695, 1935. [17] Gough, J., J. Path. Bact., Lond. 51:277, 1940. [18] Fletcher, C. M., in "Beiträge zur Silicose-Forschung; Bericht über die Medizinischwissenschaftliche Arbeitstagung über Silicose," (Sonderband) p 119, Bochum: Bergbau-Berufsgenossenschaft, 1951. [19] Union of South Africa Rept. of the Departmental Committee of Enquiry into the Relationship between Silicosis and Pulmonary Disability and the Relationship between Pneumoconiosis and Tuberculosis, Pretoria: The Government Printer, 1955. [20] Gardner, L. U., J. Indust. Hyg. 14:18, 1932. [21] Gardner, L. U., ibid 19:111, 1937. [22] Vigliani, E. C., and Mottura, G., Brit. J. Indust. M. 5:148, 1948. [23] Di Biasi, W., Arch. Gewerbepath. 8:139, 1937. [24] Geever, E. F., Am. J. M. Sc. 214:292, 1947. [25] Vorwald, A. J., personal communication. [26] Motley, H. L., in "Clinical Cardiopulmonary Physiology, "ed. Gordon, B. L., p 331, New York: Grune and Stratton, 1957. [27] Levine, E. R., and Liu. C. K., ibid, p 447. [28] Rossier, P. H., in "ILO 3rd Internat. Conf. of Experts on Pneumoconiosis, Sydney, 1950; Record of Proceedings," vol 2, p 26, Geneva: International Labor Office, 1953. [29] Merewether, E. R. A. ibid, vol 1, p 32. [30] Cartier, P., ibid, vol 1, p 32. [31] Lynch, K. M., Mclver, F. A., and Cain, J. R., Am. M. Ass. Arch. Indust. Health 15:207, 1957. [32] Isselbacher, K. J., Klaus, H., and Hardy, H. L., Am. J. M. 15:721, 1953.

143, PHYSIOLOGIC CLASSIFICATION OF HYPOXIAS

Hypoxias are presented in four major groups: (1) Anoxic. Failure in oxygenation of pulmonary blood flow (low pO2 in pulmonary venous blood). (2) Hemic. Lack of oxygen-carrying capacity of blood. (3) Circulatory. Failure in mechanics of delivery of normally oxygenated blood. (4) Histotoxic. Cellular toxicity interfering with oxygen utilization.

Refer	ence	(E)		1.7	2-7	5-7	8.9.14	-		_	_			8,10		11		12			r 13,14		14,15	_		16	16	nt 17,18		18	18-20				21-24	25-27
	Clinical State	(G)		Fire damp, black damp.	Mountain sickness, high altitude blackout.	In experimental studies, anesthesia accidents.	Obstructive lesions: emphysema, bronchospasm.	respiratory tract obstruction, paralysis of respira-	tory muscles, tetanus, strychnine poisoning.	Space-occupying lesions: pneumothorax, pleural	effusions, certain consolidations, thoracic cage	deformity. CNS depression from drugs, anesthet-	ics, CNS lesions.	Fibrosis or edema of alveolar wall; infection, pneu-	moconiosis, mitral stenosis, left ventricular failure.	Certain consolidations, incomplete bronchial	obstruction.	Pulmonary hemangioma or arterio-venous shunt.			Anemias of blood loss, deficiency state, hemolysis or	bone marrow depression.	Toxicity of CO, nitrites, chlorates, various coal tar	derivatives; rare congenital metabolic disorders.		Shock associated with hemorrhage, burns, trauma or infection.	Peripheral vascular collapse, states with sequestration of blood.	Anomalous vena caval drainage, transposition of great 17,18	Vessels, persistent truncus arteriosus.	Cor biloculare, cor triloculare blatriatum.	Fallot type: pulmonary or tricuspid stenosis, or	atresia With interatrial or interventricular com- munication. Elsenmenger type: pulmonary hyper-	tension with "reverse" shunt through atrial septal	defect, ventricular septal defect or persistent ductus arteriosus.	Heart failure, myocardial infarction, myocarditis.	Cardiac tamponade, constrictive pericarditis,
	Mechanism	(C)	Anoxic	Lowered pO2 in inspired air.		_	Lowered pO2 in alveolar air.						1	Impaired alveolo-capillary	diffusion.	Blood passage through non-venti-	lated segments of lung.	nated blood around	normal alveoli.	Hemic	ntration of oxygen		nto COHb,	metHb or sulfHb.	Circulatory		Low circulating blood 110w.	blood into left		chamber.		neart or into aorta (rignt to leit shunt).			Low cardiac output resulting from diseased myocardium.	lting from
.	Cause	(B)		Dilution of oxygen	Rarified atmosphere	Selective reduction O2	Ventilatory insufficiency	,					A 1 1	Alveolar wall block		Physiologic intrapulmonary	shunt	Pulmonary arterio-venous	shunt		Reduction in total circulating	hemoglobin	Reduction in functional	circulating hemoglobin		Blood volume loss	Volume capacity increase	Cyanotic congenital Anomalous inflow or outflow	Abonco of one or mone conding	chambers	Abnormal communication	Delween lesser and Breater circulations			Myocardial fault	Constrictive lesion of heart
	Type	(A)		1 Ambient	2	3	4 Respiratory						U	0		9		2			8 Anemic		9. Toxic			10 Volumetric	11	12 Cyanotic congenital			14				15 Minute flow discrepancy	16

17	17 Minute flow	Obstructive lesion of heart	Low cardiac output resulting from	Low cardiac output resulting from Heart valve lesions, increased pulmonary or systemic 19,27	19,27
	discrepancy		high resistance to flow.	vascular resistance.	
18	(concluded)	Relative minute flow insuffi-	Oxygen demands of tissues in	Beriberi, thyrotoxicosis, arterio-venous fistula.	27,28
		ciency	excess of minute flow supply.		
19	19 Peripheral	Arterial obstruction	Distal ischemia.	Coarctation of aorta, atherosclerosis, thrombosis,	29-32
	vascular			embolism, arteritis, arteriolitis; laceration,	
				division, extrinsic pressure on artery.	
20		Venous stasis	Peripheral congestion.	Congestive heart failure, venous obstruction, venous 32	32
				valve incompetence.	
21		Lymph stasis	Low capillary blood flow as a result	Low capillary blood flow as a result Chronic infection of lymphatics, general edematous	32
			of high tissue tension	states, idiopathic.	
22		Vasospastic states	Distal ischemia resulting from	Raynaud's disease, arterial or venous spasm, certain 32-34	32-34
			abnormal degree of angiospasm.	cold injuries.	
			Histotoxic		
23	23 Enzymatic	Specific enzyme poisoning	Failure of oxygen utilizing enzymes. Cyanide poisoning.		35

Contributors: (a) Wesolowski, S. A., (b) Bruce, R., (c) Finch, C. A., (d) Selzer, A., (e) Stickney, J. C.

Water and electrolyte imbalance Distorted cellular chemistry.

23 Enzymatic 24 Imbalance

14,36,37

Hyponatremic states.

Graduate School, Washington, D. C., 1951. [17] Taussig, H. B., Am. Heart J., 16:728, 1938. [18] Taussig, H. B., "Congenital Malformations of the Heart," [4] Barcroft, J., Binger, C. A., Bock, A. V., Doggart, J. H., Forbes, H. S., Harrop, G., Meakins, J. C., and Redfield, A. C., Philos. Trans. Roy. Soc. London, B 211:351, 1922. [5] Schneider, E. C., and Clarke, R. W., Am. J. Physiol. 76:354, 1926. [6] Stickney, J. C., and Van Liere, E. J., Physiol. Rev. 33:13, 1953. [7] Van Liere, E. J., "Anoxia: Its Effect on the Body," Chicago: Univ. of Chicago Press, 1942. [8] Baldwin, E. F., Cournand, A., and Vascular Diseases," 2nd ed, Philadelphia: W. B. Saunders Co., 1955. [33] Raynaud, M., "Selected Monographs," (trans. by Barlow, T.) vol 121, p 1-183, Manual of Pharmacology," 7th ed, p 715, Philadelphia: W. B. Saunders Co., 1948. [36] Moore, F. D., J. Am. M. Ass. 154:379, 1954. [37] Gamble, J. L., delphia: W. B. Saunders Co., 1956. [12] Burchell, H. B., and Clagett, O. T., Am. Heart J. 34:151, 1947. [13] Castle, W. B., in Cecil's "Textbook of Medicine," p 1176, Philadelphia: W. B. Saunders Co., 1955. [14] Best, C. H., and Taylor, N. B., "The Physiological Basis of Medical Practice," p 419, London: Bailliere, Tindall, and Cox, Ltd., 1955. [15] Finch, C. A., N. England J. M., 239:470, 1948. [16] Symposium on Shock, Army Medical Service References: [1] Haldane, J. S., and Priestley, J. C., "Respiration," p 426, London: Oxford University Press, 1935. [2] Douglas, C. G., Haldane, J. S., 10] Hamman, L., and Rich, A. R., Bull. Johns Hopkins Hosp. 74:177, 1944. [11] Adams, W. E., in Christopher's "Textbook of Surgery," p 402, Phila-E. A., Jr., Warren, J. V., and Brannon, E. S., ibid 35:529, 1948. [22] Gore, I., and Saphir, O., ibid 34:827, 1947. [23] Gore, I., and Saphir, O., ibid 30] Hughes, C. W., ibid 141:297, 1955. [31] Gross, R. E., Circulation 7:757, 1953. [32] Allen, E. V., Barker, N. W., and Hines, E. A., "Peripheral London: The New Sydenham Society, 1888. [34] Pichotka, J., Lewis, R. B., and Freytag, E., Texas Rep. Biol. M. 9:613, 1951. [35] Sollmann, T., "A 34:831, 1947. [24] Freis, E. D., Schnaper, H. W., Johnson, R. L., and Schreiner, G. E., J. Clin. Invest. 31:131, 1952. [25] Sawyer, C. G., Burwell, New York: The Commonwealth Fund, 1947. [19] Wood, P., Brit. M. Bull. 8:348, 1952. [20] Taussig, H. B., Am. Heart J. 33:413, 1947. [21] Stead, Henderson, Y., and Schneider, E. C., Philos. Trans. Roy. Soc. London, B 203:185, 1913. [3] Hingston, R. W. G., Geographical J., Lond. 65:4, 1925. Richards, D. W., Jr., Medicine, Balt. 28:1, 1949. [9] Sollmann, T. A., "A Manual of Pharmacology," p 200, Philadelphia: W. B. Saunders Co., 1948. C. S., Dexter, L., Eppinger, E. C., Goodale, W. T., Gorlin, R., Harken, D. E., and Haynes, F. W., Am. Heart J. 44:207, 1952. [26] Isaacs, J. P., Berglund, E., and Sarnoff, S. J., ibid 48:66, 1954. [27] Wood, P., "Diseases of the Heart and Circulation," London: Eyre and Spottiswoode, 1956. E., "Arteriovenous Aneurysm," New York: The Macmillan Co., 1937. [29] Leriche, R., and Morel, A., Ann. Surg. 127:193, 1948. 'Chemical Anatomy, Physiology and Pathology of Extracellular Fluid," Cambridge: Harvard Univ. Press, 1954. 28] Holmon,

144. PHYSIOLOGY OF DYSPNEA

Dyspnea is defined as breathing associated with effort or distress, including subjective breathlessness and objective evidence of labored breathing.

Part I: GENERAL CAUSES

1	Abnormal hemoglobins	10	Fear
2	Acidosis	11	Increased body metabolism
3	Anemia	12	Neuromuscular defects
4	Apprehension	13	Pain
5	Cardiac and respiratory congenital deformities	14	Pulmonary edema
6	Congestive heart failure	15	Pulmonary embolism
7	Exercise	16	Pulmonary fibrosis
8	Exhaustion	17	Pulmonary infection
9	Fatigue	18	Respiratory obstruction, acute and chronic

Contributor: Tomashefski, J. F.

References: [1] Richards, D. W., Jr., Circulation 7:15, 1953. [2] Means, J. H., Medicine 3:309, 1924. [3] Comroe, J. H., Forster, R. E., Du Bois, A. B., Briscoe, W. A., and Carlson, E., "The Lung," Chicago: Yearbook Publishers, 1955. [4] Christie, R. V., Quart. J. M. 7:421, 1938. [5] Gordon, B. L., "Clinical Cardiopulmonary Physiology," New York: Gruen and Stratton, 1957.

Part II: MECHANISMS INVOLVED

(A)	(B)	
	[\ \B)	(C)
	Anatomical restriction of ventilation.	
Proathing: decreased capacity	Decreased lung compliance.	1,2
realining. decreased capacity	Increased effort of breathing.	1,2
	Mechanical airway resistance.	
Breathing: increased work of		1, 3, 4
reatining. Increased work of		1, 3, 4
	1	
lungs: decreased diffusing capacity	Loss of lung tissue and decreased diffusing surface	5,6
	area.	
ungs: impaired distribution of air and blood		5,7,8,9
	· · · · · · · · · · · · · · · · · · ·	
leuroanatomical; neurophysiological		10,11
hysiochemical	l v	11,12
	hypercapnia, hypoxia.	
		a
exchange		
3 - 1	reathing: decreased capacity reathing: increased work of ungs: decreased diffusing capacity ungs: impaired distribution of air and blood euroanatomical; neurophysiological hysiochemical issue level: impaired gas transport and exchange	Increased effort of breathing. Mechanical airway resistance. Oxygen consumption of respiratory muscles large in relation to flow of oxygen through these muscles. Alveolar-capillary block. Loss of lung tissue and decreased diffusing surface area. Altered ventilation perfusion relationships. Decreased effective alveolar ventilation. Increased respiratory dead space. Central receptors: thalamic and cortical centers. Mechanoreceptors, chemoreceptors: sensory receptors possibly located in lung parenchyma, airways, joints, muscles, aortic and carotid bodies. Alterations of ventilation or respiratory drive. Increased respiratory stimulation as seen with hypercapnia, hypoxia.

Contributor: (a) Tomashefski, J. F.

References: [1] Otis, A. B., Physiol. Rev. 34:449, 1954. [2] Fenn, W. O., Am. J. M. 10:77, 1951. [3] Mead, J., and Whittenberger, J. L., J. Appl. Physiol. 5:779, 1953. [4] Cournand, A., Richards, D. W., Jr., Bader, R. A., Bader, M. E., and Fishman, A. P., Trans. Ass. Am. Physiol. 67:162, 1954. [5] Donald, K. W., Riley, R. L., Renzetti, A. D., Jr., and Cournand, A., J. Appl. Physiol. 4:497, 1952. [6] Austrian, R., McClement, J. H., Renzetti, A. D., Jr., Riley, R. L., and Cournand, A., Am. J. M. 11:665, 1951. [7] Riley, R. L., and Cournand, A., J. Appl. Physiol. 12:825, 1949. [8] Riley, R. L., and Cournand, A., ibid 4:78, 1951. [9] Riley, R. L., Cournand, A., and Donald, K. W., ibid 4:102, 1951. [10] Comroe, J. H., Forster, R. E., Du Bois, A. B., Briscoe, W. A., and Carlson, E., "The Lung," Chicago: Yearbook Publishers, 1955. [11] Cournand, A., and Richards, D. W., "Physiologic Derangements of the Respiratory System, "p 416, New York:McGraw-Hill, 1957. [12] Gray, J. S., "Pulmonary Ventilation and Its Physiologic Regulation," Springfield, Illlnois: Thomas, 1950.

145. O₂ CONSUMPTION: PROTOZOA

Like our other tables covering oxygen consumption, this one should be used with utmost caution and circumspection. The figures reflect order of magnitude; often a value may not prove accurate for a particular requirement. The table, however, does have special utility as an annotated bibliography. Values, unless otherwise specified, are cubic millimeters oxygen per million cells per hour for mature protozoa. B = bloodstream; C = culture; G = in presence of glucose.

Species	Temp °C	Rate	Remarks	Reference
(A)	(B)	(C)	(D)	(E)
l Balantidium coli	37	9.401	C; G.	1
2	28	4.231	C; G.	1
3 Leishmania brasiliensis	28	0.42	C; G.	2,3
4	32	0.32	C; G	2,3
5	37	0.65	C; G.	2,3
6 L. donovani	25	0.44	C; G.	2-5
7	28	0.18	C; G.	2-5
8	32	0.27	C; G.	2-5
9	37	0.38	C; G.	2-5
0 L. tropica	28	0.39	C; G.	2-4
1	32	0.31	C; G.	2-4
2	37	0.45	C; G.	2-4
Leptomonas ctenocephali	28	0.272	C: G.	6
4 Paramecium calkinsi	25	250	Reactive for mating.	7
5	25	450	Non-reactive for mating.	7
6 Plasmodium cathemerium	38	0.10	1/4 grown; G.	8
7	38	0.25	3/4 grown; G.	8
8 P. cynomolgi	38	0.47	Segmenters; G.	8
9 P. inui	38	0.47	Rings, amebic.	8
	38		_	8
		0.08	Rings.	
l D Nambana	38	0.34	3/4 grown segmenters; G.	8
P. lophurae	38	0.18	1/2-3/4 grown; G.	8
Strigomonas fasciculata	28	0.372	C; G.	6
S. oncopelti	28	0.412	C; G.	6
Trichomonas foetus	28	2.15	C; G.	9
T. hepatica	38	6.00	C; G.	10
7 T. vaginalis	38	2.69	C; G.	11
8	38	0.96	С.	11
7 Trypanosoma congolense	37	1.53	B; G.	12
T. conorhini	28	0.26	C; G,	12
l T. cruzi	28	0.44	B; G.	2,12
2	37	1.09	B; G.	2,12
3	37	1.24	B; G.	2,12
4	28	0,25	C; G.	2,3,13
5	32	0.43	C; G.	2,3,13
6	37	0.33	C; G.	2,3,13
7 T. equinum	37	1.66	B; G.	12
8 T. equiperdum	28	0.53	B; G.	2,12
9	37	0.91	B; G.	2,12
	37	1.85	B; G.	2,12
T. evansi	37	1.66	B; G.	12
T. gambiense	37	1.70	B; G.	12
3	28	0.14	C: G.	2,12
	30	0.38	C; G.	2,12
	37	0.21	C; G.	2,12
T. hippicum	37	0.66	B; G.	2,14
, i mppicum	38	2.00	B; G.	2,14
T. lewisi	37	0.69	B; G. Old.	2,14
) i. lewisi	37			
		0.50	B; G. Young.	15,16
	37	125.53	B, 4 da, untreated hosts; G.	17
1	37	92.43	B, 4 da, treated hosts; G.	17
T. pipistrelli	30	0.13	C; G.	12
T. rhodesiense	28	0.77	B; G.	2,18
4	37	1.03	B; G.	2,18
5	37	1.94	B; G.	2,18

/1/ cu mm O_2 per 1,000 organisms per hr. /2/ Calculated from dry weight. /3/ cu mm O_2 per 2 x 10^8 organisms per hr.

145. Oz CONSUMPTION: PROTOZOA (Concluded)

Values, unless otherwise specified, are cubic millimeters oxygen per million cells per hour for mature protozoa. B = bloodstream; C = culture; G = in presence of glucose.

Species	Temp °C	Rate	Remarks	Reference
(A)	(B)	(C)	(D)	(E)
56 Trypanosoma vivax, rat strain	36.5	1.17	B; G. Old.	19
57	36.5	2.00	B; G. Young.	19
58 T. vivax, sheep strain	36.5	0.63	B; G. Old.	19
	36.5	2.82	B; G. Young.	19

Contributors: (a) Silverman, M., (b) Vernberg, W. B., (c) Von Brand, T., (d) Wichterman, R., (e) Ivey, M.

References: [1] Agosin, M., Von Brand, M., and Von Brand, T., J. Infect. Dis. 93:101, 1953. [2] Von Brand, T., and Johnson, E. M., J. Cellul. Physiol. 29:33, 1947. [3] Chang, S. L., J. Infect. Dis. 82:109, 1948. [4] Adler, S., and Ashbel, R., Arch. zool. ital. 20:521, 1934. [5] Fulton, J. D., and Joyner, L. P., Trans. Roy. Soc. Trop. M. Hyg., Lond. 43:273, 1949. [6] Lwoff, A., Zbl. Bakt. 130:498, 1934. [7] Boell, E. J., and Woodruff, L. L., J. Exp. Zool. 87:385, 1941. [8] Maier, J., and Coggeshall, L. T., J. Infect. Dis. 69:87, 1941. [9] Riedmuller, L., Zbl. Bakt. 137:428, 1936. [10] Williams, R., Massart, L., and Peeters, G., Naturwissenschaften 30:169, 1942. [11] Read, C. P., and Rothman, A., Am. J. Hyg. 61:249, 1955. [12] Von Brand, T., Tobie, E. J., and Mehlman, J. Cellul. Physiol. 35:273, 1950. [13] Von Brand, T., Johnson, E. M., and Rees, C. W., J. Gen. Physiol. 30:163, 1946. [14] Harvey, S. C., J. Biol. Chem. 179:435, 1949. [15] Moulder, J. W., Science 106:168, 1947. [16] Moulder, J. W., J. Infect. Dis. 83:42, 1948. [17] Zwiesler, J., and Lysenka, M., J. Parasit., Lanc. 40:531, 1954. [18] Christophers, S. R., and Fulton, J. D., Ann. Trop. M. Parasit., Liverp. 32:43, 1938. [19] Desowitz, R., Exp. Parasitol. 5:250, 1956.

146. O2 CONSUMPTION: HELMINTHS

Like our other tables covering oxygen consumption, this one should be used with utmost caution and circumspection. The figures reflect order of magnitude; often a value may not prove accurate for a particular requirement. The table, however, does have special utility as an annotated bibliography. Values, unless otherwise specified, are cubic millimeters oxygen per milligram dry substance per hour for adult animals. G = in presence of glucose.

Species	Temp	Rate	Remarks	Reference
(A)	(B)	(C)	(D)	(E)
l Ascaridia galli	37	2.5		1
2 Ascaris lumbricoides	30	0.38	Eggs, 0-2 da.	2
3	30	0.80	Eggs, 10-20 da.	2
4	30	0.15	Eggs, 45 da.	2
5	37	0.821	Small.	3
6	37	0.331	Large.	3
7	37	0.591	Males.	4
8	37	0.321	Females.	4,5
9	39	0.421	Small.	6
0 Diphyllobothrium latum	37	2.7	Proglottids.	7
1	37	15.0	Proglottids, G.	7
2	22	0.34	Plerocercoids, G.	7
3	22	0.67	Plerocercoids, G.	7
4 Euplanaria tigrina	20	1.8	Starved.	8
5	20	1.4	Normal fed.	8
6	25	2.0	Starved.	8
7	25	2.2	Normal fed.	8
8	30	2,5	Normal fed.	8
9	35	3,5	Starved.	8
0	35	2.6	Normal fed.	8
l Eustrongylides ignotus	37	0,56 ¹	Larvae.	9
2 Fasciola hepatica	37.5	1.94		1
3 Gorgoderina attenuata	21	0.40		10
4 Gynaecotyla adunca	23.6	0.132		11
5	30.4	0.292	In air.	11
6	30.4	0.132	In 5% O ₂ .	12
7	30.4	0.102	In 100% Oz.	12
8 Haemonchus contortus	30	9.7	Eggs (morula).	1
9	30	10.7	Eggs (blastula).	ì
0	30	12.6	Larvae.	1
l Heterakis spumosa	38	4.0		13
2 Monieza expansa	37.5	1.1	Head region; G.	14

/1/ Calculated on dry matter percentage. /2/ Based on volume determinations.

146. O2 CONSUMPTION: HELMINTHS (Concluded)

Values, unless otherwise specified, are cubic millimeters oxygen per milligram dry substance per hour for adult animals. G = in presence of glucose.

Species	Temp °C	Rate	Remarks	Reference	
(A)	(B) (C)		(D)	(E)	
33 Monieza expansa (concluded)	37.5	0.9	Mature proglottids; G.	14	
34	37.5	0.6	Gravid proglottids; G.	14	
35 Nematodirus spp	37	5.1		1	
36 Neoaplectana glaseri	30	12.6		1	
37 Nippostrongylus muris	30	18.4	Larvae, l da.	1	
38	30	13.0	Larvae, 4 da.	1	
39	30	9.2	Larvae, 12 da.	1	
40	37	6.8		1	
41 Ostertagia circumcincta	38	7.4		13	
Paramphistomum cervi	38	0.03		13	
13 Planaria alpina	5	30		15	
14	15	240		15	
15 P. gonocephala	5	40		15	
16	15	170		15	
17 Schistosoma mansoni	37.5	6.0	Pairs.	16	
18	37,5	8.7	Pairs; G.	16	
19	37.5	9.1	Males; G.	16	
50	37.5	10.7	Females; G.	16	
51		8.5	Pairs, untreated hosts; G.	17	
52		2.9	Pairs, treated hosts; G.	17	
3 Strongylus equinus	38	3,3		13	
4 S. vulgaris	38	3.6		13	
5 Syphacia obvelata	38	4.4		13	
66 Tetrameres confusa		0.24		18	
7 Trichinella spiralis	37.5	2.35	Larvae	19	
58	37.5	2.37	Larvae; G.	19	

Contributors: (a) Chang, S. L., (b) Silverman, M., (c) Vernberg, W. B., (d) Von Brand, T., (e) Sawaya, P.

References: [1] Rogers, W. P., Parasitology, Lond, 39:105, 1948. [2] Passey, R., and Fairbairn, D., Canad, J. Biochem. Physiol. 33:1033, 1955. [3] Kreuger, F., Zool, Jahrb. Abt. allgem. Zool. 57:1, 1936. [4] Adam, W., Zschr. vergl. Physiol. 16:229, 1932. [5] Von Brand, T., ibid 21:220, 1934. [6] Laser, H., Biochem. J., Lond, 38:333, 1944. [7] Friedheim, E. A., and Baer, J. G., Biochem. Zschr. 265:329, 1933. [8] Sawaya, P., and Ungaretti, M. D., Bol.fac. filosof. ciênc. e letras, Univ. São Paulo, Zoologia 13:330, 1948. [9] Von Brand, T., Biol. Bull. 82:1, 1942. [10] Goodchild, C., J. Parasit., Lanc. 40:591, 1954. [11] Hunter, W., and Vernberg, W., Exp. Parasitol. 4:54, 1955. [12] Hunter, W., and Vernberg, W., ibid 4:427, 1955. [13] Lazarus, M., Austral. J. Sc. Res. B 3:245, 1950. [14] Alt, H. L., and Tischer, O. A., Proc. Soc. Exp. Biol. 29:222, 1931. [15] Bläsing, I., Zool. Jahrb. 64:112, 1953. [16] Bueding, E., J. Gen. Physiol. 33:475, 1950. [17] Bueding, E., Peters, L., Koletsky, S., and Moore, D., Brit. J. Pharm. 8:15, 1953. [18] Villella, G., and Ribeiro, L., Anais da Acad. Brasileina de Ciencias 27:87, 1955. [19] Stannard, J. N., McCoy, O. R., and Latchford, W. B., Am. J. Hyg. 27:666, 1938.

147. O2 CONSUMPTION: INVERTEBRATES

Like our other tables covering oxygen consumption, this one should be used with utmost caution and circumspection. The figures reflect order of magnitude; often a value may not prove accurate for a particular requirement. The table, however, does have special utility as an annotated bibliography. Values, unless otherwise specified, are cubic millimeters oxygen per gram fresh weight per hour for adult animals.

Class and/or Species	Temp oC	Rate	Reference
(A)	(B)	(C)	(D)
	Porifera		
Suberites massa	22.4	24.1	1
Hydrozoa	Coelenterata		
Carmarina hastata	16	6.0	2
	20	8.0	2
	25	2.0	3
Scyphozoa			
Aurelia aurita	13	3.4	4
	17	5.0	4
Rhizostoma pulmo	16	7.2	2
	26	15.3	5
Anthozoa Anemonia sulcato	10	12.4	£.
Anemonia sulcato	Ctenophora	13.4	6
Beroe ovata	16	5.0	2
Cestus veneris	16	2.6	2
	25	25,0	3
	Echinodermata		
Asteroidea			
Asterias rubens	15	30	7
A. rubens, Baltic Sea	15	21	8
A. rubens, North Sea	15	24	8
Echinoidea	25	1,5	2
Strongylocentrotus lividus	25	15	3
Holothuroidea Holothuria impatiens	25	17	3
H. stellata	25	4	3
Ophiuroidea		•	
Ophioderma longicauda	25	8	9
	25	32	3
	Mollusca		
Cephalopoda			
Eladone moschata	16	181	9
	25	28	3
Octopus vulgaris	16	47 87	10
	20	117	2
	25	68	3
	25	102	3
Sepia officinalis	15	320	3
Gastropoda			
Aplysia limacina	16	30	9
Australorbis glabratus	10	16.5	11
	30	133	11
Helix pomatia	20	94	12
Limax agrestis	20	350	13
Lymnaea stagnalis	10	36.7	11
i Pleurobranchea meckeli	20	123	11
Pleurobranchea meckeli Pterotrachea coronata	25 16	7.8	2
Pterotrachea coronata	20	11	2
Tethys leporina	16	12	2
)	20	15	2
Pelecypoda			
Mytilus sp	20	22	14
2	22.3	55	15
M. edulis	14	13	10
M. galloprovincialis	25	18	3

147. Oz CONSUMPTION: INVERTEBRATES (Continued)

Values, unless otherwise specified, are cubic millimeters oxygen per gram fresh weight per hour for adult animals.

	Class and/or Species	Temp °C	Rate	Reference
	(A)	(B)	(C)	(D)
	Lovi	Annelida		
45	Oligochaeta	35	100	. /
45 46	1	25	109	16
40 47	1, -	25	496	16
	•	18.5		17
48	, —	25	10101	18
49		18.5	64	19,20
50		20	170	13
51	L. communis	21.5	206	21
52		10	45	22
53	L. terrestris	20.5	138	21
54	1	25	271	16
55		25	60	16
6	• •	25	272	16
7	Pontoscolex sp, large	25	145	16
8	1	25	200	23
9		18.7	408	17
	Polychaeta		2.0	
0	·	12	30	24
1	Chaetopterus pergamentaceus	15	8	25
2	Glycera siphonostoma	25	15	6
3		15	26	25
4		10	62	26
5		17	43	26
6	Spirographis spallanzani	25	135	27
_		Sipunculoidea		
7	Sipunculus nudus	16	50	9
		Arthropoda		
٥	Crustacea	1.7	240	2.0
8	Asellus sp (isopod)	17	348	28
9		10	700	29
0	, , , ,	15	30	30
1	A. leptodactylus (crayfish)	20	70	31
2	A. torrentium (crayfish)	20	100	32
3	Callianaxa subterranea	15	930	3
4	Carcinus maenus (shore crab)	15	625	3
5	Dronia vulgaris (crab)	15	3000	3
6	Emerita talpodia	20	112	33
7	Eriphia spinifrons	15	1828	3
8	Galathea squamifera (crab)	15	215	3
9	Homarus americanus (lobster)	15	507	25
0	llia nucleus	15	253	3
1	Maja verrucosa (crab)	15	1460	3
2	Ocypode albicans (ghost crab)	26	139	34
3	Pachygrapus marmoralus (shore crab)	15	1137	3
4	Paguristis maculata	15	1600	3
5	Palaemon serratus (prawn)	16	106	9
6		19	128	10
7	Palinurus vulgaris (rock lobster)	15	12,874	3
8	Pandalina brevirostrus	15	20	35
9	Pandalus montagui (prawn)	15	289	35
0	Pilumnus hirtellus	15	160	3
1	Pugettia producta (kelp crab)	15	100	36
2	Sicyonia sculpa	15	443	3
3	Spirontocaris cranchi	15	6	35
4	S. securifrons	15	349	35
5	Talorchestia meglopthalma (beach flea)	17	180	28
6		20	246	37
7	Trichodactylus petropolitanus	20	0.802	38
8		20	0.191	38
9		20	0,253	38

^{/1/} Normal fed. /2/ Starved. /3/ Dry weight.

147. Oz CONSUMPTION: INVERTEBRATES (Continued)

Values, unless otherwise specified, are cubic millimeters oxygen per gram fresh weight per hour for adult animals

	Class and/or Species	Temp °C	Rate	Reference
	(A)	(B)	(C)	(D)
	Arthro	poda (concluded)		
	Onychophora			
100	Epiperipatus brasiliensis	25	230	39
101	Peripatus accacioi	10	37	40
102		20	92	40
03		30	226	40
	Insecta			
104	Aedes aegypti (mosquito),d	26	2330	41
05	ę	26	4200	41
06	Anopheles quadrimaculatus (mosquito), d	26	2300	41
07	Ŷ	26	2840	41
08	Apis mellifera, (hive bee)	20	17,466	42
09	True flight	20	87,000	43
10	Culex sp (mosquito)	20	575	45
11	C. pipiens, d	26	3430	41
12	₽	26	2580	41
13	Drosophila sp (fruit fly)	20	1560	46
14	True flight	20	21,800	46
15	D. repleta (fruit fly)	20	1680	47
16	True flight	20	21,000	47
17	Formica sp (ant)	20	532	48
18	Geotrupes sp	21	447	48
19	Limnophilus vittatus (trichopterid)	10	500	29
20	Lucelia sericata, true flight	20	95,600	49
21	Melanotus communis (click beetle)	21	1920	28
22		27	2400	28
23	Melolontha sp (beetle)	20	724	50
24	• • • •	20	960	51
25	Musca sp (house fly)	20	3200	51
26		20	5112	42
27	M. domestica	20	1980	28
28	Passalus cornutus (beetle)	17	30	28
29	Periplaneta orientalis (cockroach)	20	277	12
30	,	25	450	51
31	Venessa sp (butterfly)	20	600	14
32	True flight	20	100,000	14
33	Zootermopsis angusticollis (termite)	20	400	52
34	Z. nevadensis (termite)	20	423	53

Contributor: Flemister, L. J.

References: [1] Putter, A., Zschr. allgem. Physiol. 16:65, 1914. [2] Vernon, H. M., J. Physiol., Lond. 19:18, 1896. [3] Montuori, A., Arch. ital. biol. 59:213, 1913. [4] Thill, H., Zschr. wiss. Zool. 150:51, 1937. [5] Krumbach, M., Zool. Jahrb. Abt. allgem. Zool. 53:212, 1933. [6] Von Buddenbrock, W., Zschr. vergl. Physiol. 26:303, 1938. [7] Meyer, H., Zool. Jahrb. Abt. allgem. Zool. 55:349, 1935. [8] Bock, K. J., and Schlieper, C., Kielers Meeresforschungen 9:201, 1953. [9] Cohnheim, O., Zschr. physiol. Chem. 76:298, 1912. [10] Jolyet, and Regnard, Arch. Physiol. pp 44-62, 584-633, 1877. [11] Von Brand, T., and Mehlman, B., Biol. Bull. 104:301, 1953. [12] Vernon, H. M., J. Physiol., Lond. 21:443, 1897. [13] Thunberg, T., Skand. Arch. Physiol. 17:133, 1905. [14] Krogh, A., "The Comparative Physiology of Respiratory Mechanisms," Philadelphia: Univ. of Pa. Press, 1941. [15] Bruce, R., Biochem. J., Lond. 20:829, 1926. [16] Mendes. E. G., and Valente, D., Bol. fac. filosof. ciênc. e letras, Univ. São Paulo, Zoologia 18:91, 1953. [17] Koenen, M.L., Zschr. vergl. Physiol. 33:436, 1951. [18] Mendes, E. G., Gonzalez, M. D., and Coutinho, M. L., Bol. fac. filosof. ciênc e letras, Univ. São Paulo, Zoologia 16:289, 1951. [19] Lesser, E. J., Zschr. Biol. 50:421, 1908. [20] Lesser, E. J., Zschr. Biol. 51:294, 1908. [21] Konopacki, M., Mem. Acad. Sc., Cracovie, p 357, 1907. [22] Johnson, M. L., J. Exp. Biol. 18:266, 1942. [23] Brazda, P., Proc. Soc. Exp. Biol. 42:734, 1939. [24] Borden, M. A., J. Marine Biol. Ass., Plymouth 17:709, 1931. [25] Bosworth, M. W., et al, J. Cellul. Physiol. 9:77, 1936. [26] Ewer, R. F., and Fox, H. M., Proc. Roy. Soc., Lond., B129:137, 1940. [27] Mendes, E. G., Pubbl. Staz. Zool. Napoli 22:349, 1950. [28] Edwards, G. A., J. Cellul. Physiol. 27:53, 1946. [29] Fox, H. M., and Baldes, E. J., J. Exp. Biol. 12:174, 1935. [30] Lindstedt, P., Zschr. Fischerei 14:193, 1914. [31] Wolsky, A., and Holmes, B. E., Ungar, biol. forsch. Arch. 6:123, 1933. [32] Wolsky, A., ibid 7:116, 1934. [33] Edwards, G. A., and Irving, L., J. Cellul. Physiol. 21:169, 1943. [34] Flemister, L. J., and Flemister, S. C., Biol. Bull. 101:259, 1951. [35] Fox, H. M., Proc. Zool. Soc., Lond. 106:945, 1936. [36] Weymouth, F. W., et al, Physiol. Zool. 17:50, 1944. [37] Edwards, G. A., and Irving, L., J. Cellul. Physiol. 21:183, 1943. [38] Valente, D., Bol. fac. filosof. ciênc. e letras, Univ. São Paulo, Zoologia 9:98, 1945. [39] Morrison, P. R., Biol. Bull. 91:181, 1946. [40] Mendes, E. G., and Sawaya, P., Ciencia e Cultura 9:120, 1957. [41] Mercado, T. I., Trembley, H. L., and Von Brand, T., Physiol. comparata et Oecologia 4:200, 1956. [42] Paron, M., Ann. dessc. nat. Zool. 9:1, 1909. [43] Jongbloeb, J., and Wiersma. C. A., Zschr. vergl. Physiol. 21:519, 1934. [44] Ellinger, T., Zschr. physiol. chem. Biol. 2:113, 1915. [45] Chadwick, L. E., Biol. Bull. 93:229, 1947. [46] Chadwick, L. E., and Gilmour, D., Physiol. Zool. 13:398, 1940. [47] Slowzoff, B., Biochem. Zschr. 19:497, 1909. [48] Davis, R. A., and Fraenkel, G., J. Exp. Biol. 17:402, 1940. [49] Regnault and Reiset, Ann. de chim. et de phys. 3:26, 1849. [50] Battelli, F., and Stern, L., Biochem. Zschr. 56:50, 1913. [51] Davis, J. G., and Slater, W. K., Biochem. J., Lond. 22:331, 1928. [52] Cook, S. F., and Smith, R. E., J. Cellul. Physiol. 19:211, 1942. [53] Cook, S. F., Biol. Bull. 63:246, 1932.

148. OZ CONSUMPTION: VERTEBRATES OTHER THAN MAMMALS

Like our other tables covering oxygen consumption, this one should be used with utmost caution and circumspection. The figures reflect order of magnitude; often a value may not prove accurate for a particular requirement. The table, however, does have special utility as an annotated bibliography. Values are cubic millimeters oxygen per gram fresh weight per hour for adult animals.

	Animal	Temp °C	Rate	Reference
_	(A)	(B)	(C)	(D)
		Ascidicea		
1	Ascidia mentula	25	4.8	1
		Thaleacea	73.0	1
2	Salpa max. africana	25 16	23.0 8.0	2
3	S. pinnata	20	12.0	2
5	S. tilesii	16	2.0	2
6	S. tilesii	20	2.8	2
j	C	ephalochordata		
7	Amphioxus sp	25	149	1
8	A. lanceolatus	16	35	2
9		20	45	2
Ļ		Pisces		
	Anguilla vulgaris (eel)	25	128	1 3
		25	1.3	4
	Astronotus ocellatus (cichlid)	20	0.9	4
	Cichla temensis (cichlid) Cobitis fossilis	20	51	5
	Crenichthys baileyi	21	284	6
16	Crementifys barieyi	37	546	6
17	Cyprinus carassius (goldfish)	20	113	7
18	Resting	20	85	8
19	Active	20	160	8
20	C. carpio	19.5	100	9
21	C. tinca	20	104	10
22	Esox lucius (pike)	18	102	10
23	Heliasis chromis	16	93	2
24		20	162	2
25	Lepidosiren paradoxa (lungfish)	20	42	3
٦/	Protopterus aethiopicus (African lungfish)	20	10	11
26	Fasting Feeding	20	52	11
28	3	15	226	10
29	Sargus rondeletti	25	375	1
30		20	726	12
31	Serranus scriba	16	116	2
32		20	151	2
33	- L	19	175	13
34		20	62	14
35		20	174	12
36		20 21	62 120	12 15
37	Tautogolabus adspersus (cunner)	26	192	15
38		Amphibia	176	1.7
39	Molge sp	Z0 20	110	16
40	0 1	20	123	17
41	Rana esculenta	20	70	17
42	Winter	20	85	18
43		20	437	18
44		20	100	19
45	Summer	20	210	19
46		25.3	106	20
47	R. temporaria	16	86	17
48	W	20	89	17
49		19 19	85 554	18 18
50 51	Summer Typhlonectes compressicauda (coecilid)	20	33	21
21	1 Jenionectes compressicada (coecina)			

148. O2 CONSUMPTION: VERTEBRATES OTHER THAN MAMMALS (Continued)

Values are cubic millimeters oxygen per gram fresh weight per hour for adult animals.

	Animal	Temp oC	Rate	Reference
	(A)	(B)	(C)	(D)
	F	leptilia		
	Chelonia			
52	Malaclemys centrata (diamondback terrapin)	24	35	22
3	Testudo vicina (Galapogos tortoise)	17.2	8.9	23
4		22	22	23
	Crocodilia			
55	Alligator lucius	25	64	20
6	A. mississippiensis	19.5	7,5	23
7		22	8.9	23
	Squamata			
8	Anguis fragilis	20	40	17
9	Coluber natrix	20	92	16
0		20	150	24
1	Constrictor constrictor	16	4.9	23
2		22	10.0	23
3		30	24.0	23
4	Crotalus atrox	16	6.8	23
5		22	16.4	6
6		30	35.5	6
7	Drymarchon corais couperi (gopher)	16	10.1	23
8	American control (Robins,)	22	20.0	23
9		30	47.0	23
o	Iguana tuberculata	22	22.2	23
1	Aguana tubereusata	30	52.0	23
2	Lacerta agilis	20	1980	25
3	L. viridis	25	170	20
4	Python molurus	16	6.2	23
5	P. reticulatum	22	12.2	23
6	P. sebae	30	26.7	
7		20		23
8	Storeria dekayi, d	20	266 183	26
0		Aves	103	26
9		nves	2900	27
ó	Chicken, 9		630	28
1	Chicken, Rhode Island Red, day		497	29
2	Night		497	29
3			950	30
4			800	31
5	Goose		547	32
6	00036		592	28
7	Humminghind at noon			
8	Hummingbird, at noon At midnight		17,000	33
9		2.4	1000	33
0		24	12,300	34
1	8 (22	13,900	34
	Pigeon Sparrow		710	30
2	Arctic		2100	27
3			2750	3.5
4	Bunting, snow (Plectrophenox nivalis)		3350	35
	Gull, arctic (Larus hyperboreus)		1640	35
5	Jay, Canada (Perisoreus canadensis)		2725	35
6	Raven, arctic		940	35
_	Tropical			
7	llawk, night (Nyctidromas albicollis)		1750	35
8	Manakin (Pipra mentalis)		4620	35
	Wild			
9	Aluda arvenis	10	3512	36
0	Anthus pratensis	10	3614	36
1	Carduelis carduelis	10	5336	36
2	C. cannabina	10	4508	36
3	Chloris chloris	10	4671	36

148. O2 CONSUMPTION: VERTEBRATES OTHER THAN MAMMALS (Concluded)

Values are cubic millimeters oxygen per gram fresh weight per hour for adult animals.

	Animal	Temp	Rate	Reference
	(A)	(B)	(C)	(D)
		Aves (concluded)		
V	Vild (concluded)			
104	Corturnix corturnix	10	2080	36
105	Emberiza calandra	10	3222	36
06	E. citrinella	10	4551	36
07	Fringilla coelebs	10	3621	36
08	Guardelis linaria	10	5566	36
09	Lullula arborea	10	3672	36
10	Passer montana	10	4427	36

Contributor: Flemister, L. J.

References: [1] Montouri, A., Arch. ital. biol. 59:213, 1913. [2] Vernon, H. M., J. Physiol., Lond. 19:18, 1896. [3] Sawaya, P., Bol. fac. filosof. ciênc. e letras, Univ. São Paulo, Zoologia 11:255, 1946. [4] Sawaya, P., ibid 11:333, 1946. [5] Baumert, W., "Chemische Untersuchungen über die Respiration des Schlampeitzgers," 1855. [6] Sumner, F. B., and Lanham, U. N., Biol. Bull. 82:313, 1942. [7] Ege, R., and Krogh, A., Int. Rev. Hydrobiologie 6:48, 1914. [8] Fry, F. E., and Hart, J. S., Biol. Bull. 94:66, 1948. [9] Knauthe, K., Pflügers Arch. 73:490, 1898. [10] Lindstedt, P., Zschr. Fischerei 14:193, 1914. [11] Smith, H. W., J. Cellul. Physiol. 6:43, No. 335, 1935. [12] Baldwin, F. M., Proc. Iowa Acad. Sc. 30:173, 1924. [13] Jolyet and Regnard, Arch. Physiol. pp 44-62, 584-633, 1877. [14] Hall, F. G., Biol. Bull. 61:457, 1931. [15] Haugaard, N., and Irving, L., J. Cellul. Physiol. 21:19, 1943. [16] Hill, A. V., J. Physiol., Lond. 43:379, 1911. [17] Vernon, H. M., J. Physiol. 21:443, 1897. [18] Bohr, C., Skand. Arch. Physiol. 10:74, 1899. [7] Bohr, C., ibid 15:23, 1903. [20] Krehl, L., and Soetbeer, F., Pflügers Arch. 77:611, 1899. [21] Sawaya, P., Bol. fac. filosof. ciênc. e letras, Univ. São Paulo, Zoologia 12:43, 1947. [22] McCutcheon, F. H., Physiol. Zool. 16:255, 1943. [23] Benedict, F. G., "The Physiology of Large Reptiles." Carnegie Institution of Washington, 1932. [24] Cohnheim, O., Zschr. physiol. Chem. 76:298, 1912. [25] Potts, R., Landwirtsch. Versuchs. Stationen 18:81, 1875. [26] Clausen, H. J., J. Cellul. Physiol. 8:367, 1936. [27] Benedict, F. G., and Fox, E. L., Pflügers Arch. 322:357, 1933. [28] Voit, E., Zschr. Biol. 41:113, 1901. [29] Benedict, F. G., et al, Storrs Agr. Exp. Sta. Bull. 177:1, 1932. [30] Riddle, S., Mo. Rsch. Bull. 166:59, 86, 1932. [31] Hari, Y., and Kriwuscha, A., Biochem. Zschr. 88:345, 1918. [32] Hari, Y., ibid 87:313, 1917. [33] Pearson, O. P., Scient. Am. 188:69, 1953. [34] Pearson, O. P., Condor 52:145, 1950. [35] Scholander, P. F., et al, Biol. Bull. 99:259, 1950. [36]

149. Oz CONSUMPTION: MAMMALS

Like our other tables covering oxygen consumption, this one should be used with utmost caution and circumspection. The figures reflect order of magnitude; often a value may not prove accurate for a particular requirement. The table, however, does have special utility as an annotated bibliography. Values are cubic millimeters oxygen per gram fresh weight per hour for adult animals, unless otherwise indicated.

Animal	Rate	Remarks	Reference
(A)	(B)	(C)	(D)
N	Ionotremata		
1 Anteater, spiny (Echidna sp)	1100		1
Platypus, duckbilled (Ornithorynchus sp)	460		1
	Marsupiala		-
Cat, Australian native (Dasyurus sp)	560		1
Kangaroo, rat (Bettongia sp)	950		1
5 Opossum, Australian (Trichosaurus sp)	700		1

149. O₂ CONSUMPTION: MAMMALS (Continued)

Values are cubic millimeters oxygen per gram fresh weight per hour for adult animals.

	values are cubic infilimeters oxygen per gram fresh w	ergitt per nour	TOT AUGIC ATTITUES	•
	Animal	Rate	Remarks	Reference
	(A)	(B)	(C)	(D)
_	Insectivora			
6	Shrew, long-tailed (Sorex c. cinereus)	13,700		2
7		7200		2
	Shrew, Monterey (S. trowbideii montereyensis)			
8	Shrew, short-tailed (Blarina brevicauda kirtlandi)	5200		3
9	Shrew, Sonoma (Sorex pacificus sonomae), d	6100		2
10	Q	5500		2
11	Shrew, wandering (S. v. vagrans)	8600		2
	Chiroptera			
12	Bat, big brown (Eptesicus f. fuscus)	800		3
13	Bat, little brown (Myotis 1. lucifugus)	1500		3
• •	Edentata	1300		
		301		4
14	Armadillo	201		
15	Sloth, three-toed (Choloepus sp)	216		5
16	Sloth, two-toed (Bradypus sp)	168		5
	Sirenia			
17	Manatee (Trichechus latirostris)	120		6
	Odontoceti			
18	Porpoise (Tursiops truncatus)	360		7
. 0		700		
10	Proboscidea	155	37	0
19	Elephant, Indian, 9	155	37 yr.	8
	Perissodactyla			
20	Horse	250		9
	Artiodactyla			
21	Cattle, 9	184		10
22		390		9,11
23	Pig	220		íi
24	Sheep	220		10
25		340		9,11
	Rodentia			
26	Dormouse (Myoxus arbor)	15	Hibernating.	12
27		852	Awake.	12
	Guinea pig	816		10
	Hamster (Cricetus auratus)	1050		12
			TT:h	
	Hamster, golden	70	Hibernating.	13
31		2900	Awake.	13
32	Lemming (Dicrostonyx groenlandicus rubicatus)	1700		14
33	Mouse (Mus sp)	2500	Resting.	9
34		20,000	Running.	9
35	Mouse, California harvest (Reithrodontomys megalotus longi-			
-	caudus)	3800	Resting.	2
24	Mouse, deer	1650	Basal.	15
	Mouse, deer (Peromyscus maniculatus)	3600	Resting.	3
	Mouse, Gapper's redback (Clethrionomys g. gapperi)	3600	Resting.	3
39	Mouse, house	1530	Basal.	15
40	Mouse, house (Mus musculus)	3500	Resting.	3
	Mouse, jumping (Zapus hudsonius americanus)	4200	Resting.	3
	Mouse, kangaroo (Microdipodos megacephalus nastutus), o	3700	0.	2
		3400		2
43			Dontin-	
44	Mouse, meadow (Microtus p. pennsylvanicus)	3300	Resting.	3
45		3000	Resting.	3
46	Mouse, pine (Pitymys pinetorum scalopsoides)	4300	Resting.	3
47	Mouse, Rhoad's redbacked (Clethrionomys gapperi rhoadi)	3800	Resting.	3
	Mouse, white	1600	Basal.	15
49		3600	Resting.	3
	Mouse, woodland jumping (Napaeozapus i. insignis)	3100	6.	3
51	Rabbit	640		9
	Itabult			
52	D. (D.)	850		9
53		2000		1
54	ď	692	6-9 mo.	16
55	Rat, white (Rattus rattus)	770		17
56		1270		14
57	Squirrel, arctic ground (Citellus parryii)	600		14
				3
58		2000	1911	
59	Woodchuck (Marmota sp)	14	Hibernating.	18
60		262	Awake.	18
-				

149. O2 CONSUMPTION: MAMMALS (Concluded)

Values are cubic millimeters oxygen per gram fresh weight per hour for adult animals, unless otherwise indicated.

Animal	Rate	Remarks	Reference
(A)	(B)	(C)	(D)
Car	nivora		
Bear, polar (Thalarctos maritimus)	700	Cubs.	14
2 Cat (Felis catus)	710		9
Coati (Nasua navica)	500		14
Dog (Canis familiaris)	580		9
55	250	Young.	19
Dog, Eskimo (Canis familiaris)	785	Pups.	14
7 Fox, arctic white (Alopex lagopus)	505		14
8 Raccoon (Procyon carnivorous)	395		14
9 Seal (Phoco vitulina)	540		20
O Seal (Phocaena communis)	300		21
Weasel (Mustela rixosa)	5000		14
Pri	mates		
2 Man (Homo sapiens)	220	Resting.	10
73	4000	Maximal work.	22
Marmoset (Leontocebus geoffroyi)	1040		14
'5 Monkey, night (Aotus trivirgatus)	510		14

References: [1] Martin, C. J., Trans. Roy. Soc., Lond., B 195:1, 1903. [2] Pearson, O. P., Science 108:44, 1948. [3] Pearson, O. P., Ecology 28:127, 1947. [4] Scholander, P. F., et al, J. Cellul. Physiol. 21:53, 1943.

[5] Irving, L., et al, ibid 20:189, 1942. [6] Scholander, P. F., and Irving, L., ibid 17:169, 1941. [7] Irving, L., et al, ibid 17:145, 1941. [8] Benedict, F. G., "The Physiology of the Elephant," Carnegie Institution of Washington, 1936. [9] Heilbrunn, L. V., "An Outline of General Physiology," 3rd ed., Philadelphia: W. B. Saunders Co., 1952. [10] Brody, S., "Bioenergetics and Growth," New York: Reinhold Publishing Corp., 1945. [11] Voit, E., Zschr. Biol. 41:113, 1901. [12] Kayser, C., Ann. Physiol. 15:1087, 1939. [13] Lyman, C. P., J. Exp. Zool. 109:55, 1948. [14] Scholander, P. F., et al, Biol. Bull. 99:259, 1950. [15] Morrison, P. R., J. Cellul. Physiol. 31:281, 1948. [16] Moses, S., Proc. Soc. Exp. Biol. 64:54, 1947. [17] Herrington, L. P., "Heat Production and Thermal Conductance in Small Animals," New York, 1941. [18] Benedict, F. G., and Lee, R. C., "Hibernation and Marmot Physiology," Carnegie Institution of Washington, 1938. [19] Krogh, A., Internat. Zschr. physik. chem. Biol. 1:491, 1914. [20] Irving, L., et al, J. Cellul. Physiol. 7:137, 1935. [21] Scholander, P. F., Hvalraadets Skrifter No. 22, Det Norske Videnskaps Akademi i Oslo, 1940. [22] Robinson, S., Edwards, A. T., and Dill, D. B., Science N. S.

150. RESPIRATORY EXCHANGE CHARACTERISTICS: VERTEBRATES Values in parentheses are estimate "c" of the 95% range (cf Introduction).

85:409, 1937.

		parenne	505 410	CStatilati		the /5/0 lan	ge (et mittout	iction,.	
	Animal	Inspire vol		Expired vol		Respiratory Exchangel vol %		R.Q. CO ₂ /O ₂	Reference
		O ₂	CO2	O2	CO2	O ₂	CO2	002/02	
	. (A)	(B)	(C)	(D)	(E)	(F)	(G)	(H)	(1)
1	Man	20.95	0.03	16.30	4.50	14.00	5.60	0.850	1
2	Dog (Canis familiaris)			16.30	3.46	13.66	5.68	0.780	2
3	Horse (Equus caballus)							0.960	3
4	Rat, albino (Rattus norvegicus)							0.894 (0.754-1.072)	4
5	Guillemot (Cepplus grylle)			15.05	4.83			, , , , , , , , , , , , , , , , , , , ,	5
6				13.50	6.50			0.764 $(0.71-0.96)^2$	6
7	Turtle (Malaclemys centrata)3					16.46	4.69	0.714	7,8
8	Frog (Rana esculenta)5							1.926	9
10	Puffer fish (Spheroides maculatus) ⁵	0.318		0.1498		0.318		0.52	10

/1/ Dry air. /2/ Average is for 5 days, including day of last feeding; range is for 1-5 hours, 4 days after feeding. /3/ 28°C. /4/ Calculated in part from data for painted turtle (Chrysemys marginata). /5/ 20°C. /6/ Cutaneous respiration. /7/ Pulmonary respiration. /8/ Sea water.

Contributor: McCutcheon, F. H.

References: [1] Nims, L. F., in Fulton's "Textbook of Physiology," Philadelphia: W. B. Saunders Co., 1949.

[2] Romijn, C., Arch. néerl. physiol. 27:347, 1943. [3] Heilbrunn, L. V., "An Outline of General Physiology," Philadelphia: W. B. Saunders Co., 1952. [4] Krantz, N. C., and Carr, C. J., J. Nutrit. 9:363, 1935. [5] Krogh, A., "The Comparative Physiology of Respiratory, Mechanisms," Philadelphia: Univ. of Pennsylvania Press, 1941.

[6] Dukes, H. H., "Physiology of Domestic Animals," New York: Comstock, 1947. [7] Hall, F. G., J. Metab. Res. 6:293, 1924. [8] McCutcheon, F. H., Physiol. Zool. 16:255, 1943. [9] Krogh, A., Skand. Arch. Physiol., Berl. 15:328, 1904. [10] Hall, F. G., Biol. Bull. 61:457, 1931.

151. O2 CONSUMPTION: ANIMAL TISSUES

Values for oxidation quotient $(^{Q}O_{2})$ are expressed in cu mm oxygen consumed per mg dry weight of tissue per hour, unless otherwise indicated. Fresh tissue was immersed in a buffered medium (phosphate or bicarbonate) in a closed chamber containing oxygen at 1 atmosphere pressure and maintained at 37°C (some determinations at 37.5° and 38°C). The decrease in amount of gaseous O_{2} was measured as it was used by the tissue. As the rate of oxidation is limited by the amount of oxidizable nutrient available to the tissue, glucose or other nutrient was added, when necessary, to the medium.

Part 1: BLOOD-FORMED ELEMENTS, BLOOD VESSELS, LYMPH NODES, MARROW, SPLEEN, THYMUS

Tissue	Animal	Medium	Q _{O2}	Reference
(A)	(B)	(C)	(D)	(E)
1 Aorta	Man	Krebs phosphate	0.26	1
2		Krebs phosphate, glucose	0.10	2
3	Rat	Krebs-Ringer, glucose	1.03	3
4 Erythrocytes1	Man	Ringer glucose	0.045	4
5	Horse	Ringer glucose	0.06	5
6	Rabbit	Saline	0.008	6
7	1445524	Serum	0.10	7
8	Rat	Ringer glucose	0.038	8
9	Chicken embryo, 3 da	Ringer phosphate, glucose	0.472	9
ó	4 da	Timger phosphare, gracose	0.262	9
1	6 da		0.142	9
2	8 da		0.0562	9
3	9 da		0.0442	9
4	Chicken	Saline; Ringer glucose	0.14	4, 10, 11
5	Chicken	Serum	0.14	12
		Krebs-Ringer phosphate	0.17	13
6			0.58-1.79	14
7	m	Serum	0.38-1.79	4, 10
8	Turtle	Saline	6.9	15
9 Leucocytes	Man	Heparinized plasma		6
0		Serum, glucose	0.0923	
1		Serum	2.6	16
2	Rabbit, exudate	Citrated Ringer's solution	4.0-4.6	17,18
.3		Serum	7.0	18
4	Rat	Serum	9.0-9.2	19,20
.5	Goose	Citrated plasma glucose	4.4	17
6 Marrow, bone	Rabbit	Ringer-bicarbonate-glucose, pH 6.4	2.84	21
.7		pH 7.2	3.74	21
8		pH 7.6	2.64	21
9 Erythroid cells		Serum	9 (approx.)	22
0 Myeloid cells			6 (approx.)	22
1	Rat	Neutralized serum	7.45	23
2 All cells		Normal serum	42.05	24
Nucleated cells			71.55	24
4 Node, lymph	Man	Ringer glucose	3.8-5.9	25-27
5	Rat	Ringer glucose	4.4	28
6		Krebs-Ringer phosphate	0.876	29
7 Reticulocytes	Rabbit	Ringer glucose	0.25	4,10
8	1440014	Serum	1.75	12
9 Spleen	Guinea pig	Saline	8.3	30
10 Spicen	Rat	Ringer glucose	7.2-12.9	8, 31-34
11	Ital	Serum	12.5	20
12		Krebs-Ringer phosphate	1.426	29
Thrombocytes	Man	Citrated plasma glucose	6.2-8.4	15,19,35
		Citi ated piasma giucose	5.1	35
14	Dog	Canada	6.0	20
15	Rat	Serum	5.5-5.8	26, 28
6 Thymus	Rat	Ringer glucose	1.096	29
17	100	Krebs-Ringer phosphate	0.766	36
18	100 g	Ca-free Krebs-Ringer phosphate, glucose	1	_
49	400 g		0.406	36
50 Tonsil	Man	Ringer glucose	5.1	27

^{/1/} Additional information on erythrocyte oxygen consumption on Page 103, Table 85. /2/ cu mm oxygen per million cells per hr. /3/ Micromoles oxygen per 10 million white blood cells per hr. /4/ cu mm oxygen per mg cell protein per hr. /5/ cu mm oxygen per mg nitrogen per hr. /6/ cu mm oxygen per mg wet weight per hr.

Values for oxidation quotient ($^{Q}O_{2}$) are expressed in cu mm oxygen consumed per mg dry weight of tissue per hour, unless otherwise indicated.

Part 1: BLOOD-FORMED ELEMENTS, BLOOD VESSELS, LYMPH NODES, MARROW, SPLEEN, THYMUS (Concluded)

Contributors: (a) Vernberg, F. J., (b) Fitzgerald, L. R., (c) Barker, S. B., (d) Jandorf, B. J., (e) Quastel, J. H., and Scholefield, P. G.

References: [1] Kirk, J. E., Efferspe, P. G., and Chianz, S. R., J. Geront. 9:10, 1954. [2] Kirk, J. E., Laursen, T. J., and Schaus, R., ibid 10:178, 1955. [3] Krantz, J. C., Jr., Carr, C. J., and Knapp, M. J., J. Pharm. Exp. Ther. 102:258, 1951. [4] Ramsay, R., and Warren, C. O., Jr., Quart. J. Exp. Physiol., Lond. 20:213, 1930. [5] Kawashima, Y., J. Biochem., Tokyo 4:411, 1925. [6] McKinney, G. R., et al, J. Appl. Physiol. 5:335, 1953. [7] Negelein, E., Biochem. Zschr. 158:121, 1925. [8] Barker, S. B., and Klitgaard, H. M., Am. J. Physiol. 170:81, 1952. [9] O'Connor, R. J., Brit. J. Exp. Path. 32:336, 1951. [10] Ramsay, R., and Warren, C. O., Jr., Quart. J. Exp. Physiol., Lond. 22:49, 1932. [11] Engelhardt, W. A., Biochem. Zschr. 251:343, 1932. [12] Wright, G. P., J. Gen. Physiol. 14:179, 1930. [13] Rubinstein, D., and Denstedt, E. F., J. Biol. Chem. 204:623, 1953. [14] Schlayer, C., Biochem. Zschr. 293:94, 1937. [15] Glover, E. C., Daland, G. A., and Schmitz, H. L., Arch. Int. M. 46:46, 1930. [16] Bird, R. M., Clements, J. A., and Barker, L. M., Cancer 4:1009, 1951. [17] Fleischmann, W., and Kubowitz, F., Biochem. Zschr. 181:395, 1927. [18] MacLeod, J., and Rhoads, C. P., Proc. Soc. Exp. Biol. 41:268, 1939. [19] Fujita, A., Klin. Wschr. 7:897, 1928. [20] Fujita, A., Biochem. Zschr. 197:175, 1928. [21] Bird, R. M., and Evans, J. D., J. Biol. Chem. 178:289, 1949. [22] Warren, C. O., Jr., Am. J. Physiol. 131:176, 1940. [23] Berwin, I., and Gordon, A. S., ibid 173:184, 1953. [24] Landau, D., and Gordon, A. S., Endocrinology 51:157, 1952. [25] Rosenthal, O., and Lasnitzki, A., Biochem. Zschr. 196:340, 1928. [26] Warburg, O., Posener, K., and Negelein, E., ibid 152:309, 1924. [27] Wohlgemuth, J., and Klopstock, E., ibid 175:202, 1926. [28] Barker, S. B., and Schwartz, H. S., unpublished. [29] Barker, S. B., and Schwartz, H. S., unpublished. [29] Barker, S. B., and Schwartz, H. S., proc. Soc. Exp. Biol. 83:500, 1953. [30] Edson, N. L., and Leloir, L. F., Biochem. J., Lond. 30:2319, 1936. [31] Dickens, F., and Grevi

Part II: EPITHELIUM AND ASSOCIATED TISSUES

Tissue	Animal	Medium	Q _{O2}	Reference
(A)	(B)	(C)	(D)	(E)
1 Adipose, brown fat	Rat	Ringer phosphate	0.4191	1
2 Retroperitoneal fat body			7.92	2
3 White fat			0.0491	1
4 Cartilage, costal	Rabbit	Krebs-Ringer phosphate	0.41	3
5 Connective tissue cells, heart	Rat	Krebs phosphate	0.853	4
Cornea	Rabbit	No suspending medium	0.864	5
7 Epithelium			6.25	5
8 Stroma			0.231	5
9 Dermis	Rabbit	Krebs phosphate	0.27	6
Intestine, duodenum	Hamster	Phosphate saline	22.7	7
1	Rat		23.0	7
2		Krebs-Ringer phosphate, glucose	3.6	8
Upper jejunum	1	Phosphate saline	21.5	7
4	Hamster	1	14.3	7
5 Lower ileum	Rat	1	13.5	7
6	Hamster		10.0	7
7 Mucosa, gastric	Man	Ringer glucose	9.6	9
8	Rat		7.2	10
9 Colon	Rabbit	Ringer glucose; serum	11.1	9
o l	Rat	Ringer glucose	3.4-14.6	9,11
l Intestine			9.4-23.3	12,13
2 Duodenum			8.8	11
3 Jejunum			15.6	11
4 Ileum			5.3	11
5 Uterus	Rabbit	Serum	6.1	14
6 Skin	Man	Ringer glucose	2.1(0.5-2.8)	15
7 Fetus		Ringer phosphate	1.8	16
8	Guinea pig	Ringer glucose	3,0	17

^{/1/} cu mm oxygen consumed per mg wet weight per hr. /2/ Micromoles oxygen consumed per g wet weight per hr. /3/ Micromoles oxygen consumed 1 million cells per hr.

Values for oxidation quotient ($^{Q}O_{2}$) are expressed in cu mm oxygen consumed per mg dry weight of tissue per hour, unless otherwise indicated.

Part II: EPITHELIUM AND ASSOCIATED TISSUES (Concluded)

Tissue	Animal	Medium	QO ₂	Reference
(A) (B)		(C)	(D)	(E)
Skin (ccncluded)				
Newborn	Mouse	Ringer glucose	6.1	18
30	Rat		3.5	18
31 10-36 da			4.9-3.6	19
32 79 da			1.8-2.0	19,20
33 Ear	Guinea pig	Serum, Krebs-Ringer phosphate, glucose, streptomycin	1.05	21
Epidermis	Man	Ringer glucose	0.52-2,11	22
Ear	Guinea pig	Serum, Krebs-Ringer phosphate, glucose, streptomycin	5.29	23
36	Rat		3.69	23
37	Mouse		2.95	23
Dermis, ear			1.40	23
39	Rat		0.90	23
10	Guinea pig	1	2.21	23
11	Frog	Ringer phosphate (24.8°C)	0.96	24
12 Synovial membrane	Man	Krebs-Ringer phosphate	4.24	25

/4/ cu mm oxygen consumed per mg nitrogen per hour.

Contributors: (a) Vernberg, F. J., (b) Fitzgerald, L. R., (c) Barker, S. B., (d) Jandorf, B. J., (e) Quastel, J. H., and Scholefield, P. G.

and Scholefield, P. G.

References: [1] Breibart, S., and Engel, F. L., Endocrinology 55:70, 1954. [2] Haugaard, N., and Marsh, J. B., J. Biol. Chem. 194:33, 1952. [3] Laskin, D. M., and Sarnat, B. G., Surg. Gyn. Obst. 96:493, 1953. [4] Harris, H., Brit. J. Exp. Path. 37:512, 1956. [5] Langham, M., J. Physiol. 117:461, 1952. [6] Scarpelli, D. G., Knouff, R. A., and Angere, C. A., Proc. Soc. Exp. Biol. 84:94, 1953. [7] Wilson, T. H., and Wiseman, G., J. Physiol., Lond. 123:126, 1954. [8] Rose, R. L., and Archdeacon, J. W., Trans. Kentucky Acad. Sc. 14:17, 1953. [9] Rosenthal, O., and Lasnitzki, A., Biochem. Zschr. 196:340, 1928. [10] Barker, S. B., and Klitgaard, H. M., Am. J. Physiol. 170:81, 1952. [11] Dickens, F., and Weil-Malherbe, H., Biochem. J., Lond. 35:7, 1941. [12] Warburg, O., Posener, K., and Negelein, E., Biochem. Zschr. 152:309, 1924. [13] Weil-Malherbe, H., Biochem. J., Lond. 32:2257, 1938. [14] Bell, W. B., Brooks, J., and Jowett, M., J. Cancer Res. 12:369, 1928. [15] Fitzgerald, L. R., Physiol. Rev. 37:325, 1957. [16] Barron, E. S., Meyer, J., and Miller, Z. B., J. Invest. Derm. 11:97, 1948. [17] Wohlgemuth, J., and Klopstock, E., Biochem. Zschr. 175:202, 1926. [18] Loebell, R. O., ibid 161:219, 1925. [19] Adams, P. D., Arch. Derm. Syph., Chic. 36:606, 1937. [20] Adams, P. D., J. Biol. Chem. 116:641, 1936. [21] Cruickshank, C. N., Exp. Cell. Res. 7:374, 1954. [22] Ohara, K., J. Jap. Physiol. Soc. 2:1, 1951. [23] Cruickshank, C. N., and Cooper, J. R., Exp. Cell. Res. 9:363, 1955. [24] Barch, S. H., Physiol. Zool. 26:223, 1953. [25] Thomas, D. P., and Dingle, J. T., Brit. J. Exp. Path. 36:195, 1955.

Part III: GLAND TISSUES

Tissue	Animal	Medium	Q_{O_2}	Reference
(A)	(B)	(C)	(D)	(E)
I Adrenal, cortex	Cattle, beef	Potassium phosphate, KCl, MgCl2	1.1	1
2 Medulla		adenylic acid	0.6	1
3	Guinea pig	Serum	6.0	2
4		Potassium phosphate, KCl, MgCl2	0.8	1
5 Cortex		adenylic acid, citrate	6.0	1
6	Mouse	Serum	6.0	2
7	Rat		10.0	2
8		Potassium phosphate, KCl, MgCl ₂ , potassium adenylate	1.1	3
9 Kidney	Guinea pig, 8 wk	Krebs-Ringer phosphate, glucose	4.06	4
10	50-52 wk	homogenates	1.42	4
1.1	100 wk		1.15	4
12	Rat	Krebs-Ringer phosphate	3.721	5
13		Ringer phosphate	16.3	6

/1/ cu mm oxygen consumed per mg wet weight tlssue per hr.

Values for oxidation quotient ($^{Q}O_{2}$) are expressed in cu mm oxygen consumed per mg dry weight of tissue per hour, unless otherwise indicated.

Part III: GLAND TISSUES (Concluded)

Tissue	Animal	Medium	QOZ	Reference
(A)	(B)	(C)	(D)	(E)
Kidney (concl'd)	Rat (concluded)	Krebs-Ringer phosphate, glucose	11.61	7
15 Pancreas	Cat	Ringer glucose	6.0	8
16	Dog		3.2	9
17	Guinea pig	Saline	2.9	10
8	Rabbit	Ringer glucose	4.6	9
.9	Rat	Saline	3.7	10
20		Ringer glucose	5.2	11
21		Krebs-Ringer phosphate	1.041	5
.2	Pigeon	Saline	8.7	10
23 Pituitary	Mouse	Serum	8.0	2
24	Rat, young		12.0	2
5 Anterior lobe	Rat	Ringer glucose	5.9	12
:6		Krebs-Ringer phosphate	5.43	13
7 Posterior lobe		Ringer glucose	6.6	12
8		Krebs-Ringer phosphate	5.42	13
9 Salivary gland	Man	Ringer glucose	6.2	14
0	Guinea pig	Saline	5.0	10
1	Rat	Ringer glucose	9.7-24.2	11,14
2		Krebs-Ringer phosphate	2,311	5
3 Thyroid	Bull	Ringer phosphate	3.5	15
4	Bullock		3.1	15
5	Calf		2.8	15
66		Ringer glucose	2.6	16
7	Cow	Ringer phosphate	3.8	15
8	Dog	Serum	9.1	17
9		Ringer glucose	2.0	16
0	Hog		2.1	16
1	Rabbit	Ringer glucose, serum	11.7	14
12	Rat	Ringer glucose	12,5-13,0	9

/1/ cu mm oxygen consumed per mg wet weight tissue per hr.

Contributors: (a) Vernberg, F. J., (b) Fitzgerald, L. R., (c) Barker, S. B., (d) Quastel, J. H., and Scholefield, P. G.

References: [1] Sourkes, T. L., and Heneage, P., Endocrinology 50:73, 1952. [2] Fujita, A., Biochem. Zschr. 197:175, 1928. [3] Sourkes, T. L., and Heneage, P., Endocrinology 49:601, 1951. [4] Rafsky, H. A., Newman, B., and Horonick, A., J. Geront. 7:38, 1952. [5] Barker, S. B., and Schwartz, H. S., Proc. Soc. Exp. Biol. 83:500, 1953. [6] Paul, H. E., Paul, M. F., and Kopko, F., ibid 79:555, 1952. [7] Russell, R. L., and Westfall, B. A., Am. J. Physiol. 176:468, 1954. [8] Deutsch, W., and Raper, H. S., J. Physiol., Lond. 87:275, 1936. [9] Warburg, O., Posener, K., and Negelein, E., Biochem. Zschr. 152:309, 1924. [10] Edson, N. L., and Leloir, L. F., Biochem. J., Lond. 30:2319, 1936. [11] Barker, S. B., and Schwartz, H. S., unpublished. [12] Roberts, S., and Rock, M., unpublished. [13] Roberts, S., and Keller, M. R., Arch. Biochem. and Biophys. 44:9, 1953. [14] Rosenthal, O., and Lasnitzki, A., Biochem. Zschr. 196:340, 1928. [15] Weiss, B., J. Biol. Chem. 193:509, 1951. [16] Barker, S. B., unpublished. [17] Sturm, A., Zschr. ges. exp. Med. 74:555, 1930. [18] Walthard, B., ibid 79:451, 1931.

Values for oxidation quotient (QO2) are expressed in cu mm oxygen consumed per mg dry weight of tissue per hour, unless otherwise indicated.

Part IV: LIVER

Animal	Medium	Q_{O_2}	Reference	
(A)	(B)	(C)	(D)	
1 Cow	Ringer glucose	2.6	1	
2 Dog		6.0	2	
3 Guinea pig	Saline	8.1	3	
4	Ringer's solution	5.0	4	
5 8 wk	Krebs-Ringer phosphate	1.14	5	
50-52 wk		1.11	5	
7 100 wk		0.97	5	
Fatty liver	Ringer's solution	7.4	4	
Horse	Ringer glucose	2.1	1	
Mouse	Ringer's solution	18.7	6	
		8.8-13.8	7,8	
2	Krebs-Ringer phosphate	5.44	9	
Rabbit	Ringer glucose	4.2-7.7	1,10	
Rat	Ringer's solution	7.0-10.2	11-13	
5	Ringer glucose	6.5-11.6	1,6,7,12-19	
	Krebs-Ringer phosphate glucose	4.12	20	
	Lucia de Lucia de la composición dela composición de la composición dela composición de la composición de la composición de la composición dela composición dela composición de la composición dela composición de la composición de la composición de la composición de la composición dela composición dela composición dela	7.99	21	
B	(37°C)	16.871	22	
9	(42°C)	23,801	22	
	Krebs-Ringer phosphate	6.5	23	
l Castrate		5.2	23	
Cold adapted	Locke's solution	19.25	24	
Cold adapted	Locke's sodium glycerophosphate	9.19	25	
Room temperature	and a state of Bry to a fine fine a	7.87	25	
Room temperature	Locke's solution	11.32	24	
Fetus	Serum, Ringer glucose	7.1	14	
3-21 da	Ringer glucose	13.2	26	
8 10 g	Krebs-Ringer phosphate	11.0	27	
9 300 g	THE COS STANGES PROPERTY	8.0	27	
Sheep	Ringer glucose	2.5	1	
Chick, embryo, 6 da	Ringer glucose	7.5	28	
2 12 da	Transfer Bracese	4.5	28	
3 20 da		1.5	28	
Hen	Serum	14.5	29	
Arctic cod	Ringer phosphate (25°C)	0.8592	30	
6 Golden Orfe	Timber busebuare (so of	0.7922	30	
7 Menhaden	Phosphate buffer (30°C)	11.083	31	
8 Scup	- Indeputite date (30 C)	14.873	31	
7 Toadfish		4.423	31	

/1/ cu mm oxygen consumed per 100 mg wet weight per 20 min. /2/ cu mm oxygen consumed per mg wet weight per hr. /3/ cu mm oxygen consumed per g wet weight per hr.

Contributors: (a) Vernberg, F. J., (b) Fitzgerald, L. R., (c) Barker, S. B., (d) Kleiber, M., (e) Quastel, J. H.,

and Scholefield, P. G.
References: [1] Kleiber, M., Proc. Soc. Exp. Biol. 48:419, 1941. [2] Krebs, H. A., in Oppenheimer's "Handbuch der Blochemie des Menschen und der Tiere," Jena: Fischer, 1933. [3] Edson, N. L., and Leloir, L. R., Biochem. J., Lond. 30:2319, 1936. [4] Meier, R., and Thoienes, E., Arch. Exp. Path., Lpz. 169:655, 1933. [5] Rafsky, H. A., Newman, B., and Horonick, A., J. Geront. 7:38, 1952. [6] Ogata, Y., Jap. J. M. Sc. III Biophysics 2:131, 1932. [7] Crabtree, H. G., Biochem. J., Lond. 23:536, 1928. [8] Laser, H., ibid 31:1671, 1937. [9] Lipsett, M. N., and Moore, F. J., J. Biochem. 192:743, 1951. [10] Ebina, T., Tohoku J. Exp. M. 13:424, 1929. [11] Dickens, F., and Greville, G. D., Biochem. J., Lond. 27:832, 1933. [12] Meyerhof, O., and Lohmann, K., Biochem. Zschr. 171:381, 421, 1926. [13] Minaml, S., ibid 142:334, 1923. [14] Rosenthal, O., and Lasnitzki, A., ibid 196:340, 1928. [15] Dickens, F., and Simer, F., Biochem. J., Lond. 24:1301, 1920. [16] Elliott, K. A., Greig, M. E., and Benoy, M. P., ibid 31:1003, 1937. [17] Grassheim, K., Zschr. Klin. Med. 103:380, 1926. [18] Meyerhof, O., Lohmann, K., and Meier, R., Biochem. Zschr. 157:459, 1925. [19] Warburg, O., Posener, K., and Negelein, E., ibid 152:309, 1924. [20] Russell, R. L., and Westfall, B. A., Am. J. Physiol. 176:468, 1954.

Values for oxidation quotient (QO₂) are expressed in cu mm oxygen consumed per mg dry weight of tissue per hour, unless otherwise indicated.

Part IV: LIVER (Concluded)

[21] Hoexter, F. M., Endocrinology 54:1, 1954. [22] Jasper, R. L., and Archdeacon, J. W., Physiol. Zool. 24:163, 1951. [23] Eisenberg, E., Gordan, G. S., and Elliott, H. W., Endocrinology 45:113, 1949. [24] Clark, R. T., Jr., Chinn, H. I., Ellis, J. P., Pawel, N. E., and Griswold, D., Am. J. Physiol. 177:207, 1954. [25] You, R. W., and Sellers, E. A., Endocrinology 49:374, 1951. [26] Hawkins, J. A., J. Gen. Physiol. 11:645, 1928. [27] Von Bertalanffy, L., and Perozynski, W. J., Biol. Bull. 105:240. 1953. [28] Carroll, M. J., Arch. Exp. Zellforsch. 22:592, 1939. [29] Tanyia, C., Biochem. Zschr. 189:175, 1927. [30] Peiss, C. N., and Field, J., Biol. Bull. 99:213, 1950. [31] Vernberg, F. J., ibid 106:360, 1954.

Part V: LUNG

Animal	Medium	Q_{O_Z}	Reference
(A)	(B)	(C)	(D)
Man, embryo	Ringer glucose	3.7	1
Cat		3.9	2
Guinea pig		6.1	2
	Saline	7.4	3
Mouse	Ringer glucose	7.3-8.0	4
		7.1	5
Rabbit		6.7	2
Rat, embryo	Serum	10.0	6
10 g	Krebs-Ringer phosphate	9.0	7
400 g		6.0	7
Adult	Saline	7.9	3
	Ringer glucose	4.4-7.8	2,8
Pigeon	Ringer glucose	3.6	2

Contributors: (a) Vernberg, F. J., (b) Fitzgerald, L. R., (c) Barker, S. B., (d) Quastel, J. H., and Scholefield, P. G.

References: [1] Krebs, H. A., in Oppenheimer's "Handbuch der Biochemie des Menschen und der Tiere," Jena: Fischer, 1933. [2] Simon, F. P., Potts, A. M., and Gerard, R. W., J. Biol. Chem. 167:303, 1947. [3] Edson, N. L., and Leloir, L. F., Biochem. J., Lond. 30:2319, 1936. [4] Ogata, Y., Jap. J. M. Sc., Ill Biophysics 2:131, 1932. [5] Moulder, J. W., and Weiss, E., J. Infect. Dis. 88:77, 1951. [6] Fujita, A., Biochem. Zschr. 197:175, 1928. [7] Von Bertalanffy, L., and Pirozynski, W. J., Biol. Bull. 105:240, 1953. [8] Laser, H., Biochem. Zschr. 248:9, 1932.

Part VI: MUSCLE TISSUES

	Tissue	Animal	Medium	Q_{O_Z}	Reference
	(A)	(B)	(C)	(D)	(E)
1	Cardiac	Man	Krebs-Henseleit saline	2.5	1
2		Cat	Ringer glucose	0.681	2
3			Ringer phosphate	1.301	3
4	Atrium	Cattle, beef	Wollenberger	1.461	4
5	Ventricle			1.481	4
6	Conducting tissue			0.271	4
7		Dog	Ringer glucose	0.941	2
8		Young		4.2	5
9		Rat		3.8-10.4	6,7
10			Ringer phosphate	2.7	8
11		10 g	Krebs-Ringer phosphate	12.0	9
12		400 g		6.9	9
13	Auricle		Ringer phosphate, glucose	8.8	10
14	Ventricle			9.5	10
15	Skeletal	Man	Modified Hollinger technique	0.242	11
16		Rat	Ringer glucose	2.3-3.1	6,7
17	Levator ani		Krebs-Ringer phosphate	3.50	12

/1/ μl oxygen consumed per mg wet weight per hr. /2/ ml oxygen consumed per 100 ml muscle per min.

Values for oxidation quotient (QO2) are expressed in cu mm oxygen consumed per mg dry weight of tissue per hour, unless otherwise indicated.

Part VI: MUSCLE TISSUES (Concluded)

			T	0-	
	Tissue	Animal	Medium	Q _{O2}	Reference
	(A)	(B)	(C)	(D)	(E)
18	Skeletal, (concluded)	Fish, scup	Phosphate buffer (30°C)	0.413	13
19		Toadfish		0.7273	13
20		Menhaden		1.0243	13
21		Frog, resting	Ringer glucose	0.18-0.24	14-18
22		Electrical stimulation	Ringer's solution	0.79-4.24	15,17
23		Pigeon	Saline	2.1	19
24	Papillary	Cat	Lock's solution, glucose	3.60	20
25	Diaphragm	Dog, young	Ringer glucose	1.9	5
26		Rabbit		2.4	5
27		Rat	Saline, Ringer's solution	4.1-5.9	6, 14, 19, 21, 22
28			Serum	5.9	22
29			Ringer phosphate	3.4	8
30			Ringer-Locke	0.971	23
31			Krebs-Ringer phosphate	6.7	24
32				0.951	25
33		10 g		15.0	9
34		300 g		4.4	9
35				6.3	12
36		Castrate		5.9	12
37	Smooth, gastric	Man	Ringer glucose	1.3	26
38		Rat		3,5	6
39	Intestinal	Cat		1.4	2
40		Frog		0.28	16
41		Rabbit		2.6	26
42		Rat	Saline	7.1	19
43			Ringer glucose	6.3	27
44	Jejunum		Ringer-Locke	1.261	23
45	Seminal vesicles	Guinea pig	Ringer glucose	1.7	28
46		Castrate		1.4	28
47	Taenia coli	No tension	Ringer's solution	0.202	29
48		10 g tension		0.425	29
49	Uterine	Man	Ringer glucose	0.6	26
			Timber Bracone		

/1/ μ l oxygen consumed per mg wet weight per hr. /2/ ml oxygen consumed per 100 ml muscle per min. /3/ μ l oxygen consumed per g wet weight per min.

Contributors: (a) Vernberg, F. J., (b) Fitzgerald, L. R., (c) Barker, S. B., (d) Quastel, J. H., and Scholefield, P. G.

References: [1] Burdette, W. J., J. Laborat. Clin. M. 40:867, 1952. [2] Shorr, E., Cold Spring Harbor Symposia Quant. Biol. 7:323, 1939. [3] Reilly, J., Arch. Biochem. and Biophys. 43:25, 1953. [4] Murray, J. B., Am. J. Physlot. 177:463, 1954. [5] Barker, S. B., unpublished. [6] Barker, S. B., and Klitgaard, H. M., Am. J. Physiol. 170:81, 1952. [7] Field, J., II, in Potter's "Methods in Medical Research," Chicago: The Year Book Publishers, 1948. [8] Paul, H. E., Paul, M. F., and Kopko, F., Proc. Soc. Exp. Biol. 79:555, 1952. [9] Von Bertalanffy, L., and Pirozynski, W. J., Biol. Bull. 105:240, 1953. [10] Ulbrick, W. C., and Whitehorn, W. V., Am. J. Physiol. 171:407, 1952. [11] Mottram, R. F., J. Physiol., Lond. 128:268, 1955. [12] Eiscnberg, E., Gordan, G. S., and Elliott, H. W., Endocrinology 45:113, 1949. [13] Vernberg, F. J., Biol. Bull. 106:360, 1954. [14] Meyerhof, O., Lohmann, K., and Meier, R., Biochem. Zschr. 157:459, 1925. [15] Gemmill, C. L., Am. J. Physiol. 112:294, 1935. [16] Meyerhof, O., and Lohmann, K., Biochem. Zschr. 171:381, 421, 1926. [17] Ochoa, S., ibid 227:116, 1930. [18] Saslow, G., J. Cellul. Physiol. 10:385, 1937. [19] Edson, N. L., and Leloir, L. F., Biochem. J., Lond. 35:7, 1941. [20] Lee, K. S., J. Pharm. Exp. Ther. 109:304, 1953. [21] Gemmill, C. L., Bull. Johns Hopkins Hosp. 68:329, 1941. [22] Takane, R., Biochem. Zschr. 171:403, 1926. [23] Borrow, A., and Penney, J. R., Exp. Cell. Res. 2:188, 1951. [24] Weiss, A. K., Am. J. Physiol. 177:201, 1954. [25] Barker, S. B., and Schwartz, H. S., Proc. Soc. Exp. Biol. 83:500, 1953. [26] Rosenthal, O., and Lasnitzki, A., Biochem. Zschr. 196:340, 1928. [27] Dlckens, F., and Weil-Malherbe, H., Biochem. J., Lond. 35:7, 1941. [28] Levey, H. A., and Szego, C. M., unpublished. [29] Bülbring, E., J. Physiol., Lond. 122:111, 1953.

Values for oxidation quotient (QO_2) are expressed in cu mm oxygen consumed per mg dry weight of tissue per hour, unless otherwise indicated.

Part VII: NEOPLASMS

Section 1: Malignant

	Tissue	Animal	Medium	Q _{O2}	Reference
	(A)	(B)	(C)	(D)	(E)
1	Adenocarcinoma	Mouse	Ringer glucose	6.1-26	1
2	Carcinoma, various	Man		2.0-7.9	2,3
3	Flexner-Jobling	Rat	Ringer's solution, Ringer glucose	6.0-8.6	1-6
4	Earlis strain L cells		Krebs-Ringer phosphate, glucose	9.4	7
	Leukocytes, lymphatic leukemia	Man	Heparinized plasma		
5	Mature cells			6.11	8
6	Mixed cells			2.61	8
7	Immature cells			3.21	8
	Leucocytes, myelogenic leukemia				
8	Mature cells			2.31	8
9	Mixed cells			2.21	8
10	Immature cells			3.21	8
11	Sarcoma, A-274	Mouse	Krebs-Ringer phosphate, glucose	4.58	9
12	Crocker		Ringer glucose	9.7-14.8	10,11
13	Various			8.5-15.3	2, 6, 10, 11
14	Jensen	Rat		9.2-14.4	10,12-15
15	Rous	Chick	Ringer glucose	4.6-12.1	12, 16, 17
16			Serum	6.0	18
17	Tumor, ascites cells	Mouse	Krebs-Ringer phosphate	3242	19
18	Ehrlich ascites cells ³			8.1	20
19	Spontaneous	Chick	Ringer glucose	7.3-8.8	1

/1/ μ l oxygen consumed per mg wet weight. /2/ μ l oxygen consumed per ml per hr. /3/ 5 x 107 cells per ml.

Contributors: (a) Vernberg, F. J., (b) Fitzgerald, L. R., (c) Barker, S. B., (d) Quastel, J. H., and Scholefield, P. G.

References: [1] Murphy, J. B., and Hawkins, J. A., J. Gen. Physiol. 8:115, 1925. [2] Rosenthal, O., and Lasnitzki, A., Biochem. Zschr. 196:340, 1928. [3] Warburg, O., Posener, K., and Negelein, E., ibid 189:242, 1927. [4] Loebell, R. O., Biochem. Zschr. 161:219, 1925. [5] Minami, S., ibid 142:334, 1923. [6] Warburg, O., ibid 152:309, 1924. [7] Woodward, G. E., and Hudson, M. T., Cancer Res. 14:599, 1954. [8] Glover, E. C., Daland, G. A., and Schmitz, H. L., Arch. Int. M. 46:46, 1930. [9] Bird, R. M., Clements, J. A., and Becker, L. M., Cancer 4:1009, 1951. [10] Crabtree, H. G., Biochem. J., Lond. 23:536, 1928. [11] Laser, H., Biochem. J., Lond. 31:1671, 1937. [12] Dickens, F., and Simer, F., ibid 24:1301, 1920. [13] Dickens, F., and Greville, G. D., ibid 27: 832, 1933. [14] Okamota, Y., Biochem. Zschr. 160:52, 1925. [15] Weil-Malherbe, H., Biochem. J., Lond. 32:2257, 1938. [16] Crabtree, H. G., ibid 22:1289, 1928. [17] Warburg, O., Biochem. Zschr. 160:307, 1925. [18] Krebs, H. A., and Kubowitz, F., ibid 189:194, 1927. [19] South, F. E., Jr., and Cook, S. F., J. Gen. Physiol. 37:335, 1954. [20] Kalman, S. M., and Clewe, E. R., Stanford M. Bull. 11:216, 1953.

Section 2: Benign, and llyperplastic Tissues

Tissue	Animal	Medium	Q_{O_2}	Reference
(A)	(B)	(C)	(D)	(E)
1 Goiter, colloid, resting	Man	Ringer glucose	2,5-5.2	1,2
2 Hyperactive			12.3	2
3 Heart, fibroblasts ¹ , 1 transfer	Chicken, young	Serum glucose	22.5	3
4 3-8 transfers			12.8	3
5 3000 transfers			12.0	3
6 Papilloma, bladder	Man	Ringer glucose	8.5-13.0	4
7 Polyp, nasal			4.2-5.9	4
8 Tonsil, hyperplastic			6.6-14.7	4
9 Wart, skin			1.5	5

/1/ In tissue culture.

Contributors: (a) Vernberg, F. J., (b) Fitzgerald, L. R., (c) Barker, S. B., (d) Quastel, J. H., and Scholefield, P. G.

References: [1] Rosenthal, O., and Lasnitzki, A., Biochem. Zschr. 196:340, 1928. [2] Walthard, B., Zschr. ges. exp. Med. 79:451, 1931. [3] Warburg, O., and Kubowitz, F., Biochem. Zschr. 189:242, 1927. [4] Warburg, O., Posener, K., and Negelein, E., ibid 152:309, 1924. [5] Crabtree, H. G., Biochem. J., Lond. 22:1289, 1928.

Values for oxidation quotient ($^{Q}O_{2}$) are expressed in cu mm oxygen consumed per mg dry weight of tissue per hour, unless otherwise indicated.

Part VIII: NERVE TISSUES

Section 1: Central and Retinal

Tissue	Animal	Medium	QOZ	Reference
(A)	(B)	(C)	(D)	(E)
Brain	Man		3.31	1
	Rat	Ringer phosphate	5.4	2
			3.3	3
		Krebs-Ringer phosphate	1.302	4
		Krebs-Ringer phosphate, glucose (37°C)	25,031	5
		(42°C)	32,441	5
	Castrate, 30 da	Ringer phosphate	7.3	2
	Chick embryo	Serum	25	6
	Fish, Arctic cod	Ringer phosphate (25°C), mince	1.652	7
	Flounder	Phosphate buffer (30°C)	6.963	8
	Golden orfe	Ringer phosphate (25°C), mince	1.372	7
	Goldfish	Phosphate (27°C), brei	11.92	9
	Menhaden	Phosphate buffer (30°C)	13.043	10
	Mullet	Phosphate builer (50°C)	13.523	8
	Pinfish		9.303	8
			10.513	10
	Scup		7.783	8
	Spot			
	Toadfish		6.783	10
Cerebral	Man	Ringer glucose	6.0-10.3	11
cortex		Ringer's solution	1.092	12
	Cat	Ringer glucose	8.5-12.2	11,13
	Dog		6.7	14
	l wk	Phosphate saline, glucose	2.444	14, 15
	3 wk		2.724	14,15
	5-7 wk		4.844	14,15
	Guinea pig	Saline	6.9	16
		Saline glucose	11.7	17
		Saline phosphate, glucose	5305	18
		Phosphate buffer	536	19
		Saline, glucose, phosphate	6205	18
	Monkey	Ringer glucose	7.4-11.8	11
	Mouse	Ringer's solution	11.0	20
	Pig, fetus 29-60 da	The state of the s	5.5	21
	99 da		6.5	21
	Birth to adult		8.5	21
	Rabbit	Ringer glucose	7,3-10,4	22-24
	Tabbit	Phosphate buffer	24.06	19
	Rat, 5 da	Ringer glucose	6.2	25
	50 da	ittilger grucose	14.7	25
	Adult		8.5-17.1	11,25-31
	Adult	Vacha Bingan shasphata	10.40	32
		Krebs-Ringer phosphate	8.57	33
		Krebs-Ringer phosphate, glucose	5705	18
	Di	Saline, glucose, phosphate		
0 1 11	Pigeon	Saline glucose	14.6	17
Cerebellum	Dog, 1 wk	Phosphate saline, glucose	3.164	14, 15
	3 wk		3.484	14, 15
	5-7 wk		3.804	14,15
	Adult		4.284	14, 15
Hippocampus	Frog	Ringer's solution	2.4	34

/1/ ml oxygen consumed per 100 g brain per min. /2/ μ l oxygen consumed per mg wet weight per hr. /3/ μ l oxygen consumed per g wet weight per min. /4/ Converted to dry weight basis from author's data for fresh tissue. Since nerve tissue contains approximately 75% water, a per mg dry weight value was obtained by multiplying by 4. /5/ μ l mol. oxygen consumed per g dry weight per hr. /6/ μ M oxygen consumed per g wet weight per hr.

Values for oxidation quotient (QO₂) are expressed in cu mm oxygen consumed per mg dry weight of tissue per hour, unless otherwise indicated.

Part VIII: NERVE TISSUES (Continued)

Section 1: Central and Retinal (Continued)

Tissue	Animal	Medium	Q _{O2}	Reference
(A)	(B)	(C)	(D)	(E)
50 Medulla	Cat	Ringer glucose	3.5	13
51	Dog, l wk	Phosphate saline, glucose	3.844	14,15
52	3 wk		4.124	14,15
53	5-7 wk		3.404	14,15
54	Adult		2.764	14,15
55	Rat, 5 da	Ringer glucose	3.4	25
66	50 da		9.0	25
57	Adult		2.5-4.9	25,35
7 Thalamus	Dog, I wk	Phosphate saline, glucose	3.044	14,15
59	3 wk		3.884	14,15
50	5-7 wk		4.944	14,15
61	Adult		4.044	14,15
2 Hypothalamus	Rat	Ringer glucose	10.4	35
Anterior		Krebs-Ringer phosphate	7.53	36
64 Posterior			7.92	36
55 Spinal cord		Ringer glucose	1.3	13
66	l wk	Phosphate saline, glucose	3.244	14,15
57.	3 wk		3.724	14,15
68	Adult		2.004	14,15
69	Frog	Ringer glucose	2.3	29
0 Retina	Dog		20.8	37
71	Frog		3.5	38
2	Ox		10.7	39
73	Pig		17.7	40
74	Sheep	Krebs-Ringer solution, glucose pH 5	0.74	41
75	-	pH 6	3.67	41
76		pH 7	7.47	41
77	1	pH 7.4	8.90	41
78	Rabbit	Ringer phosphate, glucose	10.9	42
79	Alloxan diabetes		8.7	42
80	Rat	Ringer glucose	22,0-32	22,31,38,40,43,44

/4/ Converted to dry weight basis from author's data for fresh tissue. Since fresh nerve tissue contains approximately 75% water, a per mg dry weight value was obtained by multiplying by 4.

Contributors: (a) Vernberg, F. J., (b) Fitzgerald, L. R., (c) Barker, S. B., (d) Elliott, K. A., (e) Quastel, J. H., and Scholefield, P. G., (f) Himwich, H. E.

References: [1] Wechsler, R. L., Dripps, R. R., and Kety, S. S., Anesthesiology 12:308, 1951. [2] Gordan, G. S., Bentinck, R. C., and Eisenberg, E., Ann. N. York Acad. Sc. 54:575, 1951. [3] Paul, H. E., Paul, M. F., and Kopko, F., Proc. Soc. Exp. Biol. 79:555, 1952. [4] Barker, S. B., and Schwartz, H. S., ibid 83:500, 1953. [5] Jasper, R. L., and Archdeacon, J. W., Physiol. Zool. 24:163, 1951. [6] Warburg, O., and Kubowitz, F., Biochem. Zschr. 189:242, 1927. [7] Peiss, C. N., and Field, J., Biol. Bull. 99:213, 1950. [8] Vernberg, F. J., and Gray, I. E., ibid 104:445, 1953. [9] Freeman, J. A., ibid 99:416, 1950. [10] Vernberg, F. J., ibid 106:360, 1954. [11] Elliott, K. A., J. Neurophysiol. 11:473, 1948. [12] Elliott, H. W., and Sutherland, V. C., J. Cellul. Physiol. 40:221, 1952. [13] Craig, F. N., and Beecher, H. K., J. Neurophysiol. 6:135, 1943. [14] Himwich, H. E., and Fazekas, J. F., Am. J. Physiol. 132:454, 1941. [15] Himwich, H. E., "Brain Metabolism and Cerebral Disorders," Baltimore: Williams and Wilkins Co., 1951. [16] Weil-Malherbe, H., Biochem. J., Lond. 32:2257, 1938. [17] Edson, N. L., and Leloir, L. F., ibid 30:2319, 1936. [18] Mcllwain, H., ibid 50:132, 1951. [19] Webb, J. L., and Elliott, K. A., J. Pharm. Exp. Ther. 103:24, 1951. [20] Ogata, Y., Jap. J. M. Sc., Ill Biophysics 2:131, 1932. [21] Flexner, J. B., Flexner, L. B., and Strauss, W. L., Jr., J. Cellul. Physiol. 18:355, 1941. [22] Dickens, F., and Greville, G. D., Biochem. J., Lond. 27:832, 1933. [23] Ebina, T., Tohoku J. Exp. M. 13:424, 1929. [24] Krebs, H. A., and Rosenhagen, H., Zschr. ges. Neur. Psychiat. 134:643, 1931. [25] Chester, A., and Himwich, H. E., Am. J. Physiol. 141:513, 1944. [26] Dickens, F., and Greville, G. D., Biochem. J., Lond. 27:832, 1933. [27] Dickens, F., and Simer, F., ibid 24:1301, 1920. [28] Elliott, K. A., Greig, M. E., and Benoy, M. P., ibid 31:1003, 1937. [29] Loebell, R. O., Biochem. Zschr. 161:219, 1925. [30] Meyerhof, O., and Lohmann,

Part VIII: NERVE TISSUES (Concluded)

Section 1: Central and Retinal (Concluded)

K., ibid 171:381, 421, 1926. [31] Warburg, O., Posener, K., and Negelein, E., ibid 152:309, 1924. [32] Peiss, C. N., and Field, J., Arch. Biochem. and Biophys. 36:276, 1952. [33] Hoexter, F. M., Endocrinology 54:1, 1954. [34] Pearce, J., and Gerard, R. W., Am. J. Physiol. 136:49, 1942. [35] Roberts, S., and Rock, M., unpublished. [36] Roberts, S., and Keller, M. R., Arch. Biochem. and Biophys. 44:9, 1953. [37] Sellei, C., Weinstein, P., and Jany, J., Biochem. Zschr. 247:146, 1932. [38] Negelein, E., ibid 165:122, 1925. [39] Greig, M. E., Munro, M. P., and Elliot, K. A., Biochem. J., Lond. 33:443, 1939. [40] Laser, H., ibid 31:1671, 1937. [41] Rõe, O., Acta Ophth., 32:181, 1954. [42] Illing, E. K., and Gray, C. H., Endocrinology 7:242, 1951. [43] Robbie, W. A., and Leinfelder, P. J., Am. J. Ophth. 32:208, 1949. [44] Elliott, K. A., and Baker, Z., Biochem. J., Lond. 29:2433, 1935.

Section 2: Peripheral

Values for oxidation quotient (QO_2) are expressed in cu mm oxygen consumed per g fresh weight of tissue per hour. Values in parentheses are ranges, estimate "c" of the 95% range (cf Introduction).

	Tissue	Animal	Temp, °C	Q _{O2}	Reference
	(A)	(B)	(C)	(D)	(E)
1	Axon, isolated giant	Cuttlefish (Sepia officinalis)	21	160	1
2	Single giant	Squid (Loligo pealii)	16	681 (47-86)	2
3	Cardiac, inferior	Cat	36	136 (96-182)	3
4	Cervical sympathetic	Rabbit	36	154 (114-265)	3
5	Intercostal	Cow	37	208 ² (154-240)	4
6	Lateral line	Dogfish (Mustelus canis)	22	753 (45-124)	5
7	Phrenic	Dog	38	140	6
8		Rat	36	151 (135-167)	3
9	Sciatic	Frog (Rana esculenta)	14.6	164 (11-21)	7
10		(R. pipiens)	21.5	425 (20-80)	8
11			22.0	376 (19-62)	9
12		(R. temporaria)	14.6	237 (17-27)	7
13			15.2	14.58 (12-19)	10
14		Dog	38	120.09	8
15		Rabbit	37	288.010 (200-350)	11
16	Splanchnic	Cow	37	54211 (369-669)	4
17	Stellar nerve trunk	Cuttlefish (Sepia officinalis)	21	7412 (62-95)	1
18		Squid (Loligo pealii)	16	741	2
19	Vagus	Dog	38	180 (135-195)	12
20	Ventral cord	Lobster (Homarus americanus)	24	12313 (107-139)	13

/1/ Using oxygen electrode. /2/ In blood; reduced to 41 at 17°C. /3/ Corrected for temperature; mean R. Q., 0.83 (0.77-0.88). /4/ In winter; increased to 21 in spring; steady for 20 hr. /5/ Mostly in winter frogs; increased by half in summer; Q_{10} was 2.2. /6/ Figures calculated from Fenn's data by Gerard (1932); increased to 56 in summer. /7/ In winter; increased to 28 in spring; Q_{10} , 2.2. /8/ In winter. /9/ Reduced to 30 at 22°C; not altered if degenerated for a week. /10/ 235 in 2nd hr. /11/ In blood; not significantly different in Tyrode; slightly higher in calves; reduced to 68 at 17°C. /12/ In sea water. /13/ In sea water, decreases by 1.5% per hr.

Contributors: (a) Vernberg, F. J., (b) Fitzgerald, L. R., (c) Keynes, R. D.

References: [1] Cardot, H., Faure, S., and Arvanitaki, A., J. physiol. path. gén. 42:849, 1950. [2] Connelly, C. M., Biol. Bull. 103:315, 1952. [3] Larrabee, M. G., and Bronk, D. W., Cold Spring Harbor Symposia Quant. Biol. 17:245, 1952. [4] Rosenbaum, H., Biochem. Zschr. 247:189, 1932. [5] Fenn, W. O., Am. J. Physiol. 80:327, 1927. [6] Chang, T. II., Gerard, R. W., and Shaffer, M., ibid 101:19, 1932. [7] Gerard, R. W., ibid 192:349, 1932. [8] Gerard, R. W., Proc. Soc. Exp. Biol. 27:1052, 1930. [9] Fenn, W. O., Am. J. Physiol. 92:349, 1930. [10] Meyerhof, O., and Schmitt, F. O., Biochem. Zschr. 208:445, 1929. [11] Sherif, M. A., J. Pharm. Exp. Ther. 38:231, 1930. [12] Gerard, R. W., and McIntyre, M. D. (quoted by Gerard, R. W.), Physiol. Rev. 12:469, 1932. [13] Chang, T. H., Proc. Soc. Exp. Biol. 28:954, 1931.

151. O₂ CONSUMPTION: ANIMAL TISSUES (Continued)

Values for oxidation quotient (QO_2) are expressed in cu mm oxygen consumed per mg dry weight of tissue per hour, unless otherwise indicated.

Part IX: REPRODUCTIVE TISSUES

Tissue	Animal	Medium	QOZ	Referenc
(A)	(B)	(C)	(D)	(E)
	Ma			
Mammary gland	Rat, 15-25 wk	Ringer phosphate	3.4	1
	>50 wk		1.9	1
Prostate		Ringer glucose	7.6	2
		Krebs-Ringer phosphate	1.521	3
Seminal vesicles	Gulnea pig	Ringer's solution	4.62	4
		Ringer glucose	6.1	5
Castrate			2.8	5
	Rat	Krebs-Ringer phosphate	0.771	3
			2.7	6
Spermatozoa	Bull	Ringer phosphate	6.6	7
		Horse serum	11.2	8
		Horse serum, glucose	12.8	8
		Whole serum ³	90	9
		Whole serum ⁴	180	9
Epididymal		Ringer phosphate	2.6	10
	Guinea pig		8.0	8
		Serum	18.4	8
Ejaculated	Rabbit	Ringer phosphate	4.4	11
	Ram		9.0	11
	Rat	Serum	7.7	12
	Fowl		2.8	11
Testis	Rabbit	Ringer glucose	7.7	13
	Rat		7.5-14.3	14-20
		Serum	11.0	12
		Ringer phosphate	2.5	21
	Fem	ale		
Mammary gland	Rat, virgin	Ringer, bicarbonate, glucose	20.02	22
	15-25 wk	Ringer phosphate	2.9	1
	>50 wk		2.2	1
	Normal	Ringer phosphate, glucose	3.7	23
	Breeder	Ringer phosphate	4.0	1
	Castrate	Ringer phosphate, glucose	3.9	23
	Pregnant		10.2	23
	Termination of pregnancy	Ringer glucose	1.3	24
	Parturition	Ringer, bicarbonate, glucose	522	22
	Lactating	Ringer phosphate, glucose	10.1	23
	4th da	Ringer, bicarbonate, glucose	100.02	22
	12th da		105.02	22
	15-22 da	Ringer glucose	10.0	24
	24 da	Ringer, bicarbonate, glucose	70.02	22
	Weaning, 2 da after	Ringer glucose	5.5	24
	7 da after	Ringer phosphate, glucose	5.1	23
Ovary	Mouse	Serum	9.0	12
Ovary	Rat	Ringer glucose	5.7	2
	2 SCAL	Krebs-Ringer phosphate	1.141	3
Uterus	+	trebs tinger phosphate	0.731	3
Otel us			5.1	25
	Contrata	Pinger glucoss	5.3	25
	Castrate	Ringer glucose	3.7	2
	Castrate	Ringer's solution	5.2	25
	Castrate			
	Castrate, plus estrogen	D	7.9	25
Uterus, endometrium	m Man, 1-5 da	Potassium pyruvate, glucose	1.97	26
	6-10 da		3.49	26
	18 da		2,68	26

/1/ cu mm oxygen consumed per mg wet weight per hr. /2/ μ l oxygen consumed per mg nitrogen per hr. /3/ 109 sperm/ml. /4/ 2 x 109 sperm/ml. /5/ Micromoles oxygen per g wet weight per hr.

Values for oxidation quotient (QO₂) are expressed in cu mm oxygen consumed per mg dry weight of tissue per hour, unless otherwise indicated.

Part IX: REPRODUCTIVE TISSUES (Concluded)

	Tissue	Animal	Medium	Q _{O2}	Reference
	(A)	(B)	(C)	(D)	(E)
		F	Female (concluded)		
4	Uterus, endometrium (concluded)	Man, menopausal	Potassium pyruvate, glucose	1.28	26
5	(00111111111111111111111111111111111111		Saline solution, glucose	2.35	27
6	Proliferation, early		Krebs-Ringer glucose	3.24	28
7	Late			4.40	28
8	Secretory, early			3.87	28
9	Late			4.88	28

/5/ Micromoles oxygen per g wet weight per hr.

Contributors: (a) Vernberg, F. J., (b) Fitzgerald, L. R., (c) Barker, S. B., (d) Elliott, K. A., (e) Jandorf, B. J., (f) Quastel, J. H., and Scholefield, P. G.

References: [1] Tuba, J., and Fraser, M. S., Canad. J. M. Sc. 30:14, 1952. [2] Barker, S. B., and Schwartz, H. S., unpublished. [3] Barker, S. B., and Schwartz, H. S., Proc. Soc. Exp. Biol. 83:500, 1953. [4] Humphrey, G. F., and Robertson, M., Austral. J. Exp. Biol. 31:131, 1953. [5] Levey, H. A., and Szego, C. M., unpublished. [6] Porter, J. C., and Melampy, R. M., Endocrinology 51:412, 1952. [7] Lardy, H. A., and Phillips, P. H., J. Biol. Chem. 148:333, 1943. [8] Redenz, E., Biochem. Zschr. 257:234, 1933. [9] Bishop, M. W., and Salisbury, G. W., Am. J. Physiol. 180:107, 1955. [10] Lardy, H. A., Hansen, R. G., and Phillips, P. H., Arch. Biochem., N. Y. 6:41, 1945. [11] Lardy, H. A., and Phillips, P. H., Am. J. Physiol. 138:741, 1943. [12] Fujita, A., Biochem. Zschr. 197:175, 1928. [13] Ebina, T., Tohoku J. Exp. M. 13:424, 1929. [14] Barker, S. B., and Klitgaard, H. M., Am. J. Physiol. 170:81, 1952. [15] Dickens, F., and Greville, G. D., Biochem. J., Lond. 27:832, 1933. [16] Dickens, F., and Simer, F., ibid 35:7, 1941. [17] Edson, N. L., and Leloir, L. F., ibid 30:2319, 1936. [18] Elliott, K. A., Greig, M. E., and Benoy, M. P., ibid 31:1003, 1937. [19] Warburg, O., Posener, K., and Negelein, E., Biochem. Zschr. 152:309, 1924. [20] Weil-Malherbe, H., Biochem. J., Lond. 32:2257, 1938. [21] Paul. H. E., Paul, M. F., and Kopko, F., Proc. Soc. Exp. Biol. 79:555, 1952. [22] Hoover, C. R., and Turner, C. W., Endocrinology 54:666, 1954. [23] Tuba, J., Rawlinson, H. E., and Shaw, L. G., Canad. J. Res. 28:217, 1950. [24] Folley, S. J., and French, T. H., Biochem. J., Lond. 45:270, 1949. [25] Roberts, S., and Szego, C. M., J. Biol. Chem. 201:21, 1953. [26] Hagerman, D. D., and Villee, C. A., Endocrinology 53:667, 1953. [27] Hagerman, D. D., and Villee, C. A., J. Biol. Chem. 203:425, 1953. [28] Stuermer, V. M., and Stein, R. J., Am. J. Obst. 63:359, 1952.

Part X: PLACENTAL TISSUES

	Tissue	Animal	Medium	Q _{O2}	Reference
	(A)	(B)	(C)	(D)	(E)
1	Allantois	Chick	Ringer glucose	22.3	1
2	Chorio-allantois			10.4	2
3	Chorio-allantois and yolk sac		Krebs saline phosphate	5.6	3
4	Chorion	Rat	Ringer glucose	13.5	1
5	Decidua	Man	Serum	2.5	4
6	Placenta, 7 wk	Man	Man Salt solution, pyruvate, glucose		5
7	15 wk			2.8	5
8	30 wk			2.2	5
9	0.4 mg	Mouse	Serum	7.5	ь
0	10.9-13.7 mg			6.4	6
1	Fetal side	Rabbit		5.3	4
2	Uterine side			3.4	4
3		Rat	Horse serum	3.9	4
4	20 da		Ringer's solution	7.3	7

Contributors: (a) Vernberg, F. J., (b) Fitzgerald, L. R., (c) Barker, S. B., (d) Elliott, K. A., (e) Quastel, J. H., and Scholefield, P. G.

References: [1] Laser, H., Biochem, J., Lond, 31:1671, 1937. [2] Brown, B., and Odenheimer, K., Stanford M. Bull, 11:218, 1953. [3] Moulder, J. M., and Weiss, E., J. Infect. Dis. 88:68, 1951. [4] Bell, W. B., Brooks, J., and Jowett, M., Cancer Res. 12:369, 1928. [5] Villee, C. A., J. Biol. Chem. 205:113, 1953. [6] Fujita, A., Biochem, Zschr. 197:175, 1928. [7] Murphy, J. B., and Hawkins, J. A., J. Gen. Physiol. 8:115, 1925.

152. O2 CONSUMPTION: FETAL TISSUES

Values presented in these tables should be considered representative, but not exact, as rarely are enough data presented to justify statistical treatment, and rarely is independent confirmatory information available. Unless otherwise specified, values are for a single, intact embryo.

Part I: SHEEP
Based on blood-flow and blood-gas analysis.

	Age, da	Wet Weight, g	μl O ₂ /hr	μl O ₂ /g/hr		Age, da	Wet Weight, g	μl O ₂ /hr	μl O ₂ /g/hr
	(A)	(B)	(C)	(D)		(A)	(B)	(C)	(D)
1	78	250	120,000	474	10	127	2850	672,000	234
2	95	570	426,000	750	11	129	2750	1,512,000	4861
3	99	920	378,000	408	12	130	2850	726,000	252
4	106	960	552,000	576	13	136	2810	864,000	396
5	108	1050	498,000	474	14	137	3850	1,200,000	312
6	111	1200	276,000	228	15	138	3650	930,000	252
7	112	1000	252,000	252	16	141	4100	1,320,000	324
8	123	2040	558,000	234	17	144	3500	840,000	240
9	126	3000	738,000	246	18	152	2800	984,000	258

/1/ The author believes this value too high, but cannot define the source of error.

Contributor: Fitzgerald, L. R.

Reference: Barcroft, J., "Researches on Prenatal Life," Springfield, Ill.: Charles C. Thomas, 1947.

Part II: RAT

In Lines 1-10, values are based on Cartesian Diver technique; with the exception of Lines 37 and 39, values in Lines 11-44 are based on Warburg manometric technique. Medium: A = 0.8% NaCl, phosphate buffer, pH 7.4; B = serum + 0.025 M bicarbonate buffer + 0.2% glucose; C = serum + 0.025 M bicarbonate buffer + 0.011 M glucose; D = Krebs solution; E = Ringer-phosphate, pH 7.4.

	Age da	Stage	Medium	Dry Weight mg	μ1 O2/hr	Q _{O2} 1	Q _M ^{O₂²}	$Q_{M}^{N_2^3}$	QS ⁴	R.Q.	Reference
	(A)	(B)	(C)	(D)	(E)	(F)	(G)	(H)	(I)	(J)	(K)
1		Follicular ovum	A		0.00111	29					1
2		l cell	A		0.00072	29					11
3		2 cells	A		0.00072	29	1				1
4		2-4 cells	A		0.00073	29					1
5		3-4 cells	A		0.00080	32					1
6		8 cells	A		0.00106	42.5					1
7		8-16 cells	A		0.00094	38					1
8 [1-16 cells	A	0.0002	0.00073						2
	8		A		0.01	19.5					2
<u> </u>	10		A		0.2	13.5					2
11			В	0.11			12.8				3
12			В	0.36				18.0			3
13			В	0.39				26.3			3
14			В	0.46			15.9				3
15			В	0.47				32.0			3
16			В	0.57				27.3			3
17			В	0.67			8.2				3
18			В	0.905	12	13.3			13.2		3
19			В	0.906	10.5	11.8			15.0		3
20			В	1.005	14.6	14.6			15.8		3
21			В	1.006	13.6	13.6			17.8		3
22			В	1.105	11.7	10.6			9.2		3
23			В	1.106	11.6	10.6			11.0		3
24			C	1.34				26			4
25			С	1.68				20			4
26			В	1.87				14.5			3
27			В	1.88		L.		16.8			3
28			В	2.40	36.7	14.3	6.7				3
29			В	2.48				15.1			3
30			В	2.50			0				3
31			В	2.55			0				2
32			В	2.62				10.0			3

/1/ $^{Q}O_{2}$ = cu mm O_{2} consumed per mg dry weight tissue per hr. /2/ $Q_{M}^{O_{2}}$ = cu mm lactic acid formed in O_{2} per mg dry weight tissue per hr. /3/ $Q_{M}^{N_{2}}$ = cu mm lactic acid formed in N_{2} per mg dry weight tissue per hr. /4/ Q_{S} = cu mm acid (carbonic + lactic) formed per mg dry weight tissue per hr. /5/ Membranes intact. /6/ Membranes destroyed.

Part II: RAT (Concluded)

With the exception of Lines 37 and 39, values in Lines 11-44 are based on Warburg manometric technique. Medium: A = 0.8% NaCl, phosphate buffer, pH 7.4; B = serum + 0.025 M bicarbonate buffer + 0.2% glucose; C = serum + 0.025 M bicarbonate buffer + 0.011 M glucose; D = Krebs solution; E = Ringer-phosphate, pH 7.4.

	Age da	Stage	Medium	Dry Weight mg	μl O _Z /hr	QO21	Q _M ^{O₂²}	Q _M ^{N2} ³	QS4	R.Q.	Reference
	(A)	(B)	(C)	(D)	(E)	(F)	(G)	(H)	(I)	(J)	(K)
33			В	3.105	38.7	12.5			12.2		3
34			В	3.106	41.2	13.3			14.4		3
35			В	4.75				9.5			3
36			В	4.89				10.7			3
37	12		D		47						5
38	13		E	8.0	55	7.2					6
39	13		D		65						5
40			E	10.0						1.04	7
41			В	10.6				7.5			3
42			E	30						1.04	7
43	13-14		E			9	0.5	2		0.7-1.0	8
44	13-14		E7			11		12		1.00	8
45	14		D		145						5
46	15		D		113						5
47	16		D		154						5

/1/ $^{Q}O_{2}$ = cu mm O_{2} consumed per mg dry weight tissue per hr. /2/ $Q_{M}^{O_{2}}$ = cu mm lactic acid formed in O_{2} per mg dry weight tissue per hr. /3/ $Q_{M}^{N_{2}}$ = cu mm lactic acid formed in N_{2} per mg dry weight tissue per hr. /4/ QS = cu mm acid (carbonic + lactic) formed per mg dry weight tissue per hr. /5/ Membranes intact. /6/ Membranes destroyed. /7/ Medium contained added glucose.

Contributor: Fitzgerald, L. R.

References: [1] Boell, E. J., and Nicholas, J. S., J. Exp. Zool. 109:267, 1948. [2] Boell, E. J., and Nicholas J. S., Science 90:411, 1939. [3] Negelein, E., "The Metabolism of Tumors," (ed. Warburg, O.,), London: Constable, 1930. [4] Kuomanomido, S., Biochem. Zschr. 193:315, 1928. [5] Mislivechkova, A., Cesk. Morfol. 2:118, 1954. [6] Kleiber, M., Cole, H. H., and Smith, A. H., J. Cellul. Physiol. 22:167, 1943. [7] Dickens, F., and Simer, F., Biochem. J., Lond. 24:1301, 1930. [8] Dickens, F., and Greville, G. D., ibid 27:832, 1933.

Part III: GUINEA PIG

Values derived from blood-flow and blood-gas measurements.

	Wet Weight, g	μl O ₂ /hr	μl O ₂ /g/hr	μl CO ₂ /hr	μl CO ₂ /g/hr	R.Q.
	(A)	(B)	(C)	(D)	(E)	(F)
1	5.5	4,500	810	7,500	1,350	1.67
2	16	12,000	756	12,000	756	1.00
3	23.8	6,000	252	6,000	252	1.00
4	35.8	23,000	643	21,000	586	0.91
5	39	15,000	385	18,000	462	1.20
6	61.5	27,000	440	30,000	488	1.11

Contributor: Filzgerald, L. R.

Reference: Bohr, C., Skand. Arch. Physiol., Berl. 10:413, 1900.

Part IV: CHICK

Section 1

Warburg manometric procedures on isolated embryos. Manometric determinations on intact embryos followed by extensive calculations based on separate studies of membrane growth and respiration [1]. Medium: A = intact egg in air; B = intact egg in air and isolated tissues in Ringer-phosphate, pH 7.4; C = isolated embryo in Ringer-phosphate, pH 7.2; D = isolated embryo in Krebs solution+0.24% glucose; E= isolated embryo in Ringer-phosphate, pH 7.4; F = isolated embryo in Ringer-phosphate or Ringer-bicarbonate, pH 7.4. Where values are enclosed in parentheses, glucose was added to the medium.

	Age	Medium	Wet Weight mg	μl O _Z /hr	μl O ₂ /g/hr	Q _{O2}	μl CO ₂ /hr	μl CO2/g/hr	R.Q.	Reference
-	(A)	(B)	(C)	(D)	(E)	(F)	(G)	(H)	(1)	(J)
1	15 hr	С				14.0				2
2	16 hr	С		4.75(7.12)						2
3	16 1/4 hr	C		4.73(5.57)	'					2
4	24 hr	C				12.9				2
5	25 1/4 hr	C		6.91(8.32)						2
6	48 hr	С		14.5(19.0)		10.7				2

Part IV: CHICK (Continued)

Section 1 (Concluded)

Warburg manometric procedures on isolated embryos. Manometric determinations on intact embryos followed by extensive calculations based on separate studies of membrane growth and respiration [1]. Medium: A = intact egg in air; B = intact egg in air and isolated tissues in Ringer-phosphate, pH 7.4; C = isolated embryo in Ringer-phosphate, pH 7.2; D = isolated embryo in Krebs solution + 0.24% glucose; E = isolated embryo in Ringer-phosphate, pH 7.4; F = isolated embryo in Ringer-phosphate or Ringer-bicarbonate, pH 7.4. Where values are enclosed in parentheses, glucose was added to the medium.

_	Age	Medium	Wet Weight mg	μl O2/hr	μl O ₂ /g/hr	Q _{O2}	μl CO ₂ /hr	μl COz/g/hr	R.Q.	Reference
_	(A)	(B)	(C)	(D)	(E)	(F)	(G)	(H)	(I)	(J)
7	72 1/2 hr	C		24.1(27.4)		10.7	, , , ,			2
8	4 da					16.5				3
9		A				10.0				4
10		D				13.3			0.99-1.05	5
11	5 da	A				10.51				4
12		E							1.00	6
13		F				8.3(10.0)			0.89(1.00)	7
14						10.9				3
15	6 hr-5 da	В							0.95-1.00	8
16	6 da	В	562	595	1226					1
17		A	428				528	1200		9,10
18		A	000			10.2				4
19	7 da	A	832	0.40			1000	1250		9,10
20		В	901	869	1076					1
21		-	1.400	1257		9.4				3
22	8 da	В	1488	1357	1021			1100		1
24		A	1015			7.5	1180	1190		9,10
25	9 da	В	2068	2090	1050	7.5				3
26	7 Ua	В	1633	2090	1050		2025	1240		8
27	10 da	В	3168	2719	949		2023	1240		1
28	10 da	A	2534	2117	737		2920	1160		9,10
29	ll da	В	4304	4050	1015		2720	1100		1
30		Ā	3577	-030	,,,,		4080	1135		9,10
31	12 da	В	6100	5460	992					1
32		A	4612		,,,,		5375	1155		9,10
33	13 da	В	8555	8262	1055					1
34		A	8629				8900	1030		9,10
35	14 da	В	11,838	10,783	1023					1
36		A	11,431				10,500	920		9,10
37	15 da	В	14,320	13,293	1030					1
38		A	14,862				13,400	900		9,10
39	16 da	В	17,570	15,600	990					1
40		A	16,387				14,000	900		9,10
41	17 da	В	21,870	18,450	920					1
42		A	20,312				15,300	755		9,10
43	18 da	В	24,210	19,100	850		15.100	(10		1
44	10.3-	A	24,044	30,000	24.5		15,100	660		9,10
46	19 da	B	28,270	20,900	765		15 300	610		1
40		A	25,218				15,300	610		9,10

/1/ When serum instead of Ringer's solution was used in medium, $QO_2 = 12.9$.

Contributors: (a) Fitzgerald, L. R., (b) Moog, F.

References: [1] Needham, J., Proc. Roy. Soc., Lond., B 110:46, 1932. [2] Philips, F. S., J. Exp. Zool. 86:257, 1941. [3] Kayser, C., Le Breton, E., and Schaffer, G., C. rend. Acad. sc. 181:255, 1925. [4] Romanoff, A. L., J. Cellul. Physiol. 18:199, 1941. [5] Elliott, K. A., and Baker, Z., Biochem. J., Lond. 29:2433, 1935. [6] Dickens, F., and Simer, F., ibid 24:1301, 1930. [7] Dickens, F., and Greville, G. D., ibid 27:832, 1933. [8] Needham, J., Proc. Roy. Soc., Lond., B 112:98, 1932. [9] Murray, H. A., Jr., J. Gen. Physiol. 9:1, 1925-26. [10] Murray, H. A., Jr., ibid 10:337, 1926-27.

Part IV: CHICK (Concluded)

Section 2

Method based on Warburg manometric technique. Medium was serum; where values are enclosed in parentheses, however, the medium used was Ringer's solution.

_	Dry Weight mg	Q _{O2} 1	$Q_{M}^{O_2^2}$	Q _M ^{N23}		Dry Weight mg	Q _{O2} 1	$Q_{M}^{O_2^2}$	$Q_{M}^{N_{2}^{3}}$
	(A)	(B)	(C)	(D)		(A)	(B)	(C)	(D)
1	0.085	16.4	5.9	25.8	29	2.13			13.7
2	0.086	18.1	9.2	29.4	30	2.15			9.1
3	0.093	20.2	7.5	23.6	31	2,21			8.8
4	0.10	16.4	7.9	25.5	32	2.40	11.6	0.85	13.3
5	0.27	22.4	5.5	18.5	33	2.44			19.3
6	0.54	15.2	4.5	16.0	34	2.64			(15.4)
7	0.58			12.9	35	2.67	12.9	0	10.5
8	0.70			(22.8)	36	2.86			(17.0)
9	0.79			(22.8)	37	2.89			9.4
10	0.81			(22.9)	38	2.91			14.7
11	0.83			12.9	39	2.98			11.4
12	0.86			14.8	40	3.02	_		(17.4)
13	0.905	14.3	0.6	11.4	41	3.084	11.65	3.2	
14	0.92			(15.4)	42	3.19			(17.9)
15	0.95	15.9	6.9	21.0	43	3.24			9.5
16	0.97			(25.9)	44	3.27			(14.5)
17	1.01	18.9	1.7	11.5	45	3.49			8.8
18	1.02			(18.8)	46	3.52			(18.8)
19	1.16	20.2	3.8	13.1	47	3.57			12.4
20	1.17			15.1	48	3.87	10.5	0.95	9.7
21	1.20	21.4	5.1	16.3	49	3.97			(13.8)
22	1.23			(20.8)	50	4.01			(13.3)
23	1.29			12.5	51	4.104	11.36	1.3	
24	1.32			15.6	52	4.21			(15.2)
25				(21.4)	53	4.27			(18.5)
26	1.86	16.4	0.9	9.7	54	4.35			9.7
27	1.90			(24.0)	55	4.73	8.1	1.2	7.5
	1.92			15.4	56	5.03		1	5.0

/1/ $^{Q}O_{2}$ = cu mm O_{2} consumed per mg dry weight tissue per hr. /2/ Q_{M}^{O2} = cu mm lactic acid formed in O_{2} per mg dry weight tissue per hr. /3/ Q_{M}^{N2} = cu mm lactic acid formed in N_{2} per mg dry weight tissue per hr. /4/ Data are from Reference [2]. /5/ R.Q. = 0.99. /6/ R.Q. = 0.98.

Contributor: Fitzgerald, L. R.

References: [1] Kuomanomido, S., Biochem. Zschr. 193:315, 1928. [2] Dickens, F., and Simer, F., Biochem. J., Lond. 25:985, 1931.

Part V: BLACK SNAKE (Coluber constrictor)

	Method based on Warburg manometric technique at 23.9°C.												
	Age, da	μl O ₂ /g/hr	μl O2/hr	μl CO2/hr	R.Q.		Age, da	μl O2/g/hr	μl O2/hr	μl CO2/hr	R.Q.		
	(A)	(B)	(C)	(D)	(E)		(A)	(B)	(C)	(D)	(E)		
1	1	3500	210	159	0.76	24	30		337	173	0.51		
2	2		162			25	31	200	356	204	0.57		
3	3	1610	185	161	0.87	26	33		334	177	0.53		
4	4		120			27	34	192	350	183	0.52		
5	5		135			28	36		365	176	0.48		
6	6		225	181	0.81	29	38		378	229	0.61		
7	7		194	99	0.51	30	39		426	235	0.55		
8	8	635	198			31	41		478	279	0.58		
9	9		236			32	43	177	500	290	0.58		
10	10		223			33	44		552	313	0.57		
11	12	468	305			34	46		531	271	0.52		
12	13		282			35	48		575	326	0.57		
13	15		162			36	50		722	380	0.53		
14	17		234			37	51	175	656	357	0.54		
15	18	310	272			38	53		813	428	0.54		
16	20		253			39	55		873	490	0.56		
17	22		256			40	56		970	530	0.55		
18	23		252	126	0.50	41	58	175	962	560	0.58		
19	24	233	277			42	59		1021	476	0.47		
20	25		300	154	0.51	43	61		1021	561	0.55		
21	26		282	123	0.44	44	62	175	1227	550	0.45		
22	27	226	334			45	64		1080	583	0.54		
23	28		318	166	0.52	46	67	125	1026	565	0.55		

Contributor: Clark, Il.

Reference: Clark, H., J. Exp. Biol., Lond. 30:502, 1953.

152. O2 CONSUMPTION: FETAL TISSUES (Continued)

Part VI: FROG (Rana fusca)

Medium: aquarium water.

A b	Sta	10/2-	P 0	mg Lactic A	mg Lactic Acid/100 ova/hr		
Age, hr	Stage	μl O ₂ /hr	R. Q.	Aerobic	Anaerobic	Reference	
(A)	(B)	(C)	(D)	(E)	(F)	(G)	
1.	Unfertilized ova			0	0.04	1	
2 1		0.093				2	
3	Fertilized oval			0	0.05	1	
1 2		0.126				2	
3-4		0.164				2	
6	2 blastomeres		0.72			1	
	Morula	0.098-0.120	0.65			1	
16-20	Blastula	0.151				2	
)	Blastula	0.146	0.70			1	
	Gastrula	0.184-0.213	1.03	0.045	0.079	1	
	Neurula	0.334	0.98	0.057	0.069	1	
	Tadpole	1.167	0.97			1	

/1/ Cleavage?

Contributor: Fitzgerald, L. R.

References: [1] Brachet, J., Arch. Biol., Par. 45:611, 1934. [2] Brachet, J., ibid 46:1, 1935.

Part VII: FROG (Rana temporaria)

Minced embryos in Ringer-bicarbonate.

	Tadpole	Q _M ^N 2
	(A)	(B)
1	8-10 mm	19.35
2	10-12 mm	12.7
3	12-14 mm	12.1
4	16-18 mm	10.72
5	18-20 mm	11.9
6	20-22 mm	14.6

Contributor: Fitzgerald, L. R.

Reference: Nowinski, W. W., Biochem. J., Lond. 33:978, 1939.

Part VIII: GRASS OR LEOPARD FROG (Rana pipiens)

Section 1: Fertilized Oval

Medium: spring water or 10% Ringer's solution.

After Fertilization, hr	μl O ₂ /hr
(A)	(B)
1 2 1/2-3 1/2	0.050
2 2 3/4-3 3/4	0.054
3 3-4	0.054
4 3 1/4-4 1/4	0.055
5 3 1/2-4 1/2	0.059
6 4-5	0.052
7 5-6	0.061
8 6-7	0.057
9 6 1/2-7 1/2	0.058

/1/ Extensive data for later stages given in graphic form in the reference.

Contributors: (a) Fitzgerald, L. R., (b) Moog, F.

Reference: Atlas, M., Physiol. Zool. 11:278, 1938.

152. O2 CONSUMPTION: FETAL TISSUES (Continued)

Part VIII: GRASS OR LEOPARD FROG (Rana pipiens) (Concluded)

Section 2: Shumway Development Stages

Medium: aquarium water.

Stage	Description	μl O ₂ /hr	R.Q.
(A)	(B)	(Č)	(D)
1 3	Cleavage, early	0.052	
2 3	2 cells	0.049-0.056	0.73-1.05
3 6+	16-32 cells	0.080	0.88
4 7+	Cleavage	0.105	0.84-0.88
5 10	Gastrula, beginning	0.173	0.90-0.93
6 10+		0.136	0.90
7 11+	Middle	0.147	0.87
8 12	Late	0.195-0.250	0.82-0.87
9 13	Neural plate	0.220-0.320	0.82-0.87
0 14	Neural fold	0.240-0.270	0.83-0.84
1 15	Neurula	0.280-0.290	0.81-0.86
2 16+	Gill-plate	0.330-0.490	0.81-0.88

Contributor: Fitzgerald, L. R.

Reference: Barth, L. G., J. Exp. Zool. 103:463, 1946.

Section 3: Harrison Development Stages

Method based on Warburg manometric techniques. Medium: aquarium water.

Age, da	Stage	μl O ₂ /hr		Age, da	Stage	μl Oz/hr
(A)	(B)	(C)		(A)	(B)	(C)
1 0	0	0.06	41	29		23.49
2 1	1	0.08	42	30		18.40
3 1	1	0.10	43	31		19.94
4 1	2-3	0.07	44	32		21.75
5 1	3	0.12	45	33		18.09
6 1	4-5	0.06	46	34		17.34
7 1	5-6	0.10	47	35		17.22
8 1	7	0.08	48	36		19.99
9 1	7-8	0.09	49	37		19.81
0 1	8	0.23	50	38		19.12
1 1	10	0.39	51	39		18.85
2 2	11	0.56	52	40		18.18
3 2	12-13	0.70	53	41		22.49
4 2	18-19	0.88	54	42		20.72
5 3	25-28	0.98	55	43		18.58
6 3	29-33 (Hatching)	1.22	56	44		25.00
7 3	35	1.61	57	45		18.13
8 4	37	1.93	58	47		22.99
9 5	Feeding begins	3.26	59	48		27,13
0 6	- county organis	4.49	60	49		25.09
1 7		7.27	61	50		35.46
2 8		6.95	62	51		27.29
3 9		5.83	63	52		32.57
4 10		4.59	64	53		31,10
5 11		4.64	65	54		41.15
6 12		5.03	66	55		34.25
7 13		4.33	67	60		43,8
8 14		6.27	68	67		52.2
9 15		5.92	69	72		63.1
0 17		6.34	70	73		38.1
1 18		7.52	71	74		115.6
2 19		7.85	72	78		85,4
3 20		12.04	73	81		192.8
4 21		12.23	74	83		79.0
5 22		12.02	75	85		69.6
6 23		14.21	76	86		85.3
7 24		13.96	77	90	Metamorphosis	95.2
8 26		14.73	78	100	Metamorphosis	127.4
9 27		18.31		110	metamor phosis	176,1
0 28		16.98	(7)	110		110,1

Contributor: Fitzgerald, L. R. Reference: Wills, I. A., J. Exp. Zool. 73:481, 1936.

152. Oz CONSUMPTION: FETAL TISSUES (Continued)
Part IX: PACIFIC COAST NEWT, OR "WATER DOG" (<u>Triturus torosus</u>)

Medium: aquarium water. Stages refer to the Harrison stage of comparable development.

_	Age, da	Stage	μl Oz/hr		Age, da	Stage	μl Oz/hr
	(A)	(B)	(C)		(A)	(B)	(C)
1	1	1-3	0.49	18	20	39 (Hatching)	2.40
2	1	3-6	0.25	19	21	40	2.39
3	2	7-8	0.20	20	24	43	2.90
4	3	9	0.39	21	25	44 (Feeding begins)	3.40
5	3	10	0.31	22	30		3,23
6	3	11	0.46	23	55		43.79
7	3	12	0.39	24	65		21.38
8	5	15	0.43	25	75		53.27
9	5	17	0.60	26	90		56.31
10	5	19	0.54	27	95	Metamorphosis	52.30
11	5	20	0.67	28	100	Metamorphosis	72.24
12	6	22	0.57	29	105	Metamorphosis	68.52
13	7	23	0.68	30	110	Metamorphosis	91.65
14	9	29	0.44	31	115		57.62
15	14	35	1.04	32	120		60.90
16	18	37	1.20	33	135		60.30
17	19	38	1.49				

Contributor: Fitzgerald, L. R. Reference: Wills, I. A., J. Exp. Zool. 73:481, 1936.

Part X: SPOTTED AND TIGER SALAMANDERS (Amblystoma punctatum, A. tigrinum)

Method based on modified Thunberg differential respirometer. Medium: either tap water or spring water. Stages

refer to the Harrison stage of comparable development.

C4		A. punctatum			A. tigrinum			
	Stage	Dry Weight, mg	μl O2/hr	QOZ	Dry Weight, mg	μl O2/hr	QOZ	
	(A)	(B)	(C)	(D)	(E)	(F)	(G)	
1	7, 8, 9	2.67	0.180	0.0677				
2	10	3.181	0.2651	0.08381	2.48	0.393	0.1586	
3	11	2.18,	0.205*	0.0636-	2.93	0.491	0.1676	
4	12	2.86	0.202	0.0990	2.93	0.516	0.1762	
5	13	2.86	0.283	0.0990	2.25	0.464	0.2062	
6	14	2.97	0.343	0.1156	2.90	0.661	0.2280	
7	15	2.81	0,342	0.1219	2.90	0.001	0.2280	
8	16	3.08	0.392	0.1275	2.60	0.591	0.2274	
9	17	2.63	0.362	0.1378	2.00	0.371	0.2214	
10	18	3.28	0.430	0.1313	3.28	0,692	0.2264	
11	19	3.26	0.490	0.1505	3.20	0.072	0.2204	
12	20	2.13	0.343	0.1611	1.97	0.471	0.2395	
13	21	3,08	0.482	0.1565	1.71	0.471	0.2373	
14	22	3,08	0.402	0.1505	2.23	0.627	0.2815	
15	23	3.01	0.482	0.1602	2.23	0.021	0.2015	
16	24	2.93	0.472	0,1611	2.03	0,685	0.3377	
17	25	3.28	0.553	0.1689	2.03	0,005	0.5577	
18	26	3.26	0.555	0.1007	2.72	0.907	0.3334	
19	27	2.99	0.622	0.2080	2.12	0.701	0.5551	
20	28	2,18	0.491	0.2257	2,83	0.964	0.3406	
21	29	2.16			2.03	0.704	0.5400	
22	30	3.30	0.885	0.2681	2.56	0.961	0.3754	
23	31	3,02	0.911	0.3023	2.50	0.701	0.5751	
24	32				2,85	1.285	0.4510	
25	33	3.31	0.947	0.3126	2.03	1.205	0.1310	
26	34	3.31	0.741	0.3120	2.82	1.316	0.4668	
27	35	2.99	1.070	0.3579				
	36	2.//	1.010	0.3317	2.62	1.366	0.5218_	
29	37	3.19	1.553	0.4868	2.19	1,313	0.5999	
30	38	3.17			2,82	2.605	0.9240	
31	39	2,30	1.883	0.8186	2.31	2,319	1.004	
32	40	2.47	2,458	0.9950	2.49	2.585	1.038	
33	41	2.31	3.710	1.616				
34	42	0.71	3,1.0	-1	1.78	2.389	1.335	
35	43	2,27	3.705	1.632	1.78	3.262	1.833	
36		5.51	3.105		1.43	4.058	2.838	
37	45	1.80	2.742	1.524	2.74	9.113	3.326	
38					1.43	3.167	2.215	
39	14-16 mm larva	2.24	3.516	1.556				
40	14-21 mm larva				2.20	4.974	2.231	

/1/ Average for more than one weight of embryo.

152. O2 CONSUMPTION: FETAL TISSUES (Continued)

Part X: SPOTTED AND TIGER SALAMANDERS (Amblystoma punctatum, A. tigrinum) (Concluded) Method based on modified Thunberg differential respirometer. Medium: either tap water or spring water. Stages refer to the Harrison stage of comparable development.

Store	А. р	unctatum		A. tigrinum			
Stage	Dry Weight, mg	µl Oz/hr	QOZ	Dry Weight, mg	μl O2/hr	QO ₂	
(A)	(B)	(C)	(D)	(E)	(F)	(G)	
11 17-21 mm larva	4.38	6.597	1.542				
2 22-27 mm larva	7.80	9.422	1.225				
3 22-37 mm larva				15.81	28.86	1.919	
4 28-36 mm larva	26.01	26.33	1.067				
5 37-48 mm larva	70.29	59.62	0.885				
6 38-54 mm larva				53.40	67.37	1.258	
7 55-72 mm larva				148.3	136.4	0.936	
18 73-93 mm larva				317.6	213.8	0.6784	
19 82-85 mm larva				346.6	298.3	0.862	

Contributor: Fitzgerald, L. R.

Reference: Hopkins, H. S., and Handford, S. W., J. Exp. Zool. 93:403, 1943.

Part XI: SPOTTED SALAMANDER (Amblystoma maculatum) Method based on Warburg manometric technique. Medium: aquarium water. Stages refer to the Harrison stage of

Age, da	Stage	μl Oz/hr	Age, da	Stage	μ1 O ₂ /h1
(A)	(B)	(C)	(A)	(B)	(C)
1 1	7-8	0.54	29 29		8.27
2 1	8-9	0.34	30 30		9.41
3 2	15-16	0.43	31 31		10.48
4 3	18-19	0.55	32 32		11.42
5 3-4	29-31	0.65	33 33		11.15
6 4	32	0.73	34 34		12.52
7 5	33-34	1.28	35 35		13.46
8 6	37-38	1.70	36 36		12,88
9 7	39-40	2.11	37 37		13.40
0 8	41	2.36	38 38		13.20
1 9	42 (Hatching)	2.69	39 39		15.36
2 10	43	3.64	40 40		17.19
3 11	44	4.53	41 41		18.22
4 12	45	5.46	42 42		18.98
5 14	46 (Feeding begins)	6.03	43 43		19.18
6 15	46	6.10	44 44		18.20
7 17		5.47	45 45		20.82
8 18		5.80	46 53		38,30
9 19		6.10	47 58		41.50
0 20		6.48	48 60		64.00
1 21		5.65	49 66		45.20
2 22		5.97	50 68		28.00
3 23		5.88	51 73		63.10
4 24		6.21	52 80		107.40
5 25		6.48	53 85	Metamorphosis	118.70
6 26		6.57	54 105		107.30
7 27		7.08	55 115		118.20
8 28		7.55			

Contributor: Fitzgerald, L. R. Reference: Wills, J. A., J. Exp. Zool. 73:481, 1936.

Part XII: MEXICAN SALAMANDER (Amblystoma mexicanum)

Age, hr	Stage	μl O2/hr		Age, hr	Stage	μl O2/hr
(A)	(B)	(C)		(A)	(B)	(C)
1 8	Blastula	0.168	9	75		0.550
2 16	Gastrula, early	0.193	10	90		0.818
3 24	Gastrula, late	0.248	11	100		0.970
4 32	Neurula, early	0.286	12	115		1.365
5 40	Neurula, late	0.305	13	140		2.10
6 48	Tail-bud, early	0.325	14	165		2.71
7 56	Tail-bud, late	0.363	1.5	190		3.30
8 65		0.425	16	220		3.95

Contributor: Fitzgerald, L. R.

Reference: Fisher, F. G., and Hartwig, H., Biol. Zbl. 58:567, 1938.

152. O2 CONSUMPTION: FETAL TISSUES (Concluded)

Part XIII: ATLANTIC SALMON (Salmo salar) Values are expressed in μl O2/g wet wt/hr. Medium: 10% sea-water.

	Age, da	Q_{O_2}
	(A)	(B)
1	19	136.5
2	21	137.5
3	24	131.5
4	26	136.5
5	30	151.0
6	32	146.0
7	35	156.0
8	37	137.0
9	39	149.0
10	45	145.0
11	50	152.0

Contributor: Fitzgerald, L. R.

Reference: Hayes, F. A., Wilmot, l. R., and Livingstone, D. A., J. Exp. Zool. 116:377, 1951.

Part XIV: COMMON KILLIFISH (Fundulus heteroclitus)
Medium: S-W = sea water; A = water-saturated air.

Age	Stage	Medium	μl O2/hr	μl CO2/hr	R.Q.	Reference
(A)	(B)	(C)	(D)	(E)	(F)	(G)
$1 - 1\frac{1}{2} hr$		S-W	0.029-0.036			1
$2 1\frac{1}{2} - 2 \text{ hr}$		S-W	0.026-0.033			1
$3 2 - 2\frac{1}{2} hr$		S-W	0.023-0.037			1
$4 2\frac{1}{2} - 3 \text{ hr}$		S-W	0.022-0.035			1
5 2-5 hr	Up to 8 cells	S-W	0.01			2
6 $3-3\frac{1}{2}$ hr	·	S-W	0.028-0.038			1
$7 3\frac{1}{2} - 4 \text{ hr}$		S-W	0.025-0.037			1
$8 4-4\frac{1}{2} \text{ hr}$		S-W	0.022-0.044			1
$9 \frac{1}{2} - 5 \text{ hr}$		S-W	0.027-0.054			1
$0 5-5\frac{1}{2} hr$		S-W	0.026-0.040			1
1 4-6 hr	2-4 cells	S-W	0.04			2
2 6-8 hr	32 cells	S-W	0.03			2
3 9-11 hr	Small disc	S-W	0.02			2
4 9-11 hr	Many cells	S-W	0.04			2
5 22-24 hr		S-W	0.05			2
6 1 da		A	0.03	0.03	0.85	3
7 26-29 hr		S-W	0.06			2
8 30-32 hr		S-W	0.07			2 2
9 34-37 hr		S-W	0.07			
0 2 da		S-W	0.07			2
1 2 da		A	0.09	0.07	0.77	3
$2 \ 2\frac{1}{2} da$		S-W	0.07			2
3 3 da		S-W	0.05			2
4 3 da		A	0.16	0.12	0.75	3
$3\frac{1}{2}$ da	Circulation established	S-W	0.12			2
6 4 da		A	0.21	0.16	0.75	3
7 4 da		S-W	0.09			2
$4\frac{1}{2}$ da		S-W	0.09			2
9 5 da		A	0.20	0.15	0.74	3
$50 = 5\frac{1}{2} da$		S-W	0.08			2
6 da		A	0.26	0.19	0.74	3
32 6 da		S-W	0.07			2
33 7 da		A	0.35	0.25	0.70	3
84 8 da		A	0.40	0.28	0.70	3
35 9 da		A	0.48	0.35	0.74	3
36 10 da		A	0.43	0.32	0.76	3
37 11 da		A	0.41	0.30	0.73	3
8 12 da	Hatching begins	A	0.44	0.33	0.76	3

Contributor: Fitzgerald, L. R.

References: [1] Philips, F. S., Biol. Bull. 78:256, 1940. [2] Hyman, L. H., ibid 40:32, 1921. [3] Amberson, W. R., and Armstrong, P. B., J. Cellul. Physiol. 2:381, 1933.

153. EFFECT OF POTASSIUM ION CONCENTRATION ON O2 CONSUMPTION: ANIMAL TISSUES

Values for oxidation quotient $(^{Q}O_{2})$ are expressed in cu mm oxygen per mg final dry weight of tissue per hour, unless otherwise indicated. Media are described in the appropriate footnotes in terms of quantity of ion per liter of solution.

Part I: GUINEA PIG LIVER AND RABBIT KIDNEY CORTEX

Values in parentheses are ranges, estimate "c" of the 95% range (cf Introduction).

K ⁺ Concentration in Suspending Medium mEq/L		Water Content ³ g/100 g wet wt	Tissue Volume ^{4, 5} wet wt dry wt	Reference
(A)	(B)	(C)	(D)	(E)
	L	iver, Guinea Pig		
1 0	3.8(2.9-4.8)	79.0(77.6-79.8)	1.28(1.19-1.36)	1,2
2 5	4.5(3.5-5.7)	76.0(72.8-78.7)	1.09(1.00-1.23)	1,2
3 10	5.0(4.0-6.1)	75.7(73.0-78.6)	1.08(0.97-1.16)	1,2
4 20	5.2(4.1-6.1)	75.5(73.2-77.9)	1.08(0.97-1.17)	1,2
5 40	5.1(4.1-6.2)	76.9(74.6-80.2)	1.11(0.99-1.32)	1,2
6 70	5.0(3.8-5.5)	78.0(75.3-81.4)	1.19(1.03-1.32)	1,2
	Kidr	ney Cortex, Rabbit		
7 0	14.7(12.5-18.0)	76.0(73.0-79.7)	0.96(0.86-1.13)	3
8 5	15.8(14.5-17.5)	74.4(73.4-76.7)	0.90(0.87-0.99)	3
9 10	14.8(13.6-15.7)	75.0(73.2-78.2)	0.92(0.86-1.04)	3
10 20	15.3(14.1-16.9)	77.5(75.2-80.0)	1.02(0.93-1.15)	3
11 40	17.6(15.4-21.5)	81.4(79.6-83.3)	1.24(1.13-1.38)	3
12 55	19.4(18.0-20.6)	83.0(81.4-83.7)	1.36(1.24-1.42)	3
13 70	20.8(18.8-22.5)	85.2(84.2-86.5)	1.56(1.46-1.71)	3

/1/ Medium containing (155-X) mEq Na⁺, XmEq K⁺, 4.6 mEq Ca⁺⁺ and 3.0 mEq Mg⁺⁺, buffered by 20 mM phosphate; pH = 7.15; addition of glucose, pyruvate, glutamate and fumarate as substrates (5 mM each). /2/ Estimated by Warburg's direct method at 37.5°C. /3/ Calculated from final wet weight and final dry weight of slices (dried in oven at 105°C until constant weight reached.) /4/ Calculated from change in wet weight per unit of tissue solids (dry weight), the wet weight/dry weight ratio of liver tissue or kidney cortex, removed immediately after death, being the reference base of the data. Per cent water content: fresh guinea pig liver, 73.65(71.1-76.6); rabbit kidney cortex, 76.8(73.6-78.6). /5/ Relative tissue volume in vivo = 1.0.

Contributor: Aebi, H.

References: [1] Aebi, H., Helvet. physiol. pharm. acta 10:184, 1952. [2] Aebi, H., unpublished. [3] Aebi, H., Helvet. physiol. pharm. acta 11:96, 1953.

Part II: RABBIT KIDNEY CORTEX, VARIOUS TEMPERATURES

K ⁺ Concentration in Suspending Medium ¹		Incubation Immediately after Death, 4°C	Incubation Immediately after Death, 22°C		Incubation after "Leaching," 25°C		Reference
	mEq/L	Water Content ²	QO23	Water Content ²	QO24	Water Content5	11010101100
	mEq/L	g/100 g wet wt	-02	g/100 g wet wt	-02	g/100 g wet wt	
	(A)	(B)	(C)	(D)	(E)	(F)	(G)
1	0	79.9	4.4	74.0	2.9	79.2	B-D,1;E,F,2
2	10	80.1	4.7	74.8	3.5	79.2	B-D,1;E,F,2
3	20	80.4	4.2	76.2	3.4	79.5	B-D,1;E,F,2
4	40	81.6	4.8	80.3	2.9	79.0	B-D,1;E,F,2
5	55	81.5	4.7	82.1			B-D,1;E,F,2
6	70	81.8	4.6	83.9	2.5	81.0	B-D,1;E,F,2

/1/ Medium for Columns B, C and D containing (155-X) mEq.Na⁺, X mEq K⁺, 4.6 mEq Ca⁺⁺ and 3.0 mEq Mg⁺⁺, buffered by 20 mM phosphate; pH = 7.15; addition of glucose, pyruvate, glutamate and fumarate as substrates (5 mM each). Medium for E and F containing (150-X) mEq Na⁺, X mEq K⁺ and 1.4 mEq Ca⁺⁺, buffered by 3.7 mM phosphate; pH = 7.4; addition of 0.01 M Na-acetate as substrate. /2/ Calculated from final wet weight and final dry weight of slices (dried in oven at 105°C until constant weight reached). /3/ Estimated by Warburg's direct method. /4/ Original data were given on an initial wet weight basis and have been converted to a dry weight basis. /5/ Calculated as described in Footnote 2, but using different drying technique (dried in a vacuum oven over phosphorus pentoxide at 80°C).

Contributor: Aebi, H.

Reference: [1] Aebi, H., Helvet. physiol. pharm. acta 11:96, 1953. [2] Mudge, G. H., Am. J. Physiol. 165:113, 1951.

153. EFFECT OF POTASSIUM ION CONCENTRATION ON O2 CONSUMPTION: ANIMAL TISSUES (Continued)

Values for oxidation quotient (QO₂) are expressed in cu mm oxygen per mg final dry weight of tissue per hour, unless otherwise indicated. Media are described in the appropriate footnotes in terms of quantity of ion per liter of solution.

Part III: RAT DIAPHRAGM, VARIOUS pH LEVELS

	рН	K ⁺ Concentration in Suspending Medium ¹ mM/L	QOZ
	(A)	(B)	(C)
1	7.3	12	13.7
2		15	12.6
3		18	11.3
4		24	10.5
5		30	9.4
6	6.5	12	9.3
7		18	8.9
8		24	9.3
9		30	7.9
10	6.0	12	7.0
11		18	7.2
12		24	7.0
13		30	6.7
14	7.0	12	13.0
15		122	14.6
16		123	11.8

/1/ Medium containing (0.120-X) M NaCl, X M KCl, 0.0006 M CaCl2, 0.0005 M MgCl2, 0.03 M phosphate buffer, and 0.01 M pyruvate, except in Lines 15 and 16. /2/ Plus 0.01 M pyruvate. /3/ Plus 0.01 M glucose.

Contributor: Fitzgerald, L. R.

Reference: Frunder, H., Zschr. physiol. Chem. 291:217, 1953.

Part IV: RAT BRAIN, VARIOUS SUBSTRATES

Tarter than 1 the control of the con							
	Final Concentration of Added				Q _{O2} 2		
	KCl in Suspending Medium ¹	Glucos	e Substrate	Fructo	se Substrate	Lactat	e Substrate
	mEq/L	Before	30 min after	Before	30 min after	Before	30 min after
	(A)	(B)	(C)	(D)	(E)	(F)	(G)
1	2.4	10.2	10.5	10.0	10.1	15.0	14.5
2	52	10.4	20.6	12.2	24.7		
3	102	10,2	19.3	10.8	21.6	15.2	22.9

/1/ Initial ionic composition of medium: 120 mEq Na $^+$, 2.4 mEq K $^+$, 3.4 mEq Ca $^{++}$, 1.6 mEq Mg $^{++}$; buffered by 18 mM/L phosphate, pH = 7.4; concentration of added substrates, 11 mM/L. Additional amounts of potassium (as solid KCl) were added only after first incubation period (30 min). Values in Columns C, E and G are corresponding mean values for the 30-min period following addition of KCl. /2/ Estimated by Warburg's direct method at 37.5 $^{\circ}$ C.

Contributor: Aebi, H.

Reference: Dickens, F., and Greville, G. D., Biochem. J., Lond. 29:1468, 1935.

Part V: RAT CEREBRAL CORTEX, VARIOUS SUBSTRATES

Medium: Krebs-Ringer solution with Ca⁺⁺ reduced to 4.5 x 10⁻⁴ M, pH = 7.4.

	Substratel	Q	Oz
	Substrate:	Control	+0.1 M KCl
	(A)	(B)	(C)
1	Glucose	10.0	17.5
2	L-Glutamate	6.0	4.7
3	Glucose + L-glutamate	12.0	12.2
4	Glucose + citrate	18.5	19.4
5	a-Ketoglutarate	4.5	4.0
6	Glucose + a-ketoglutarate	14.2	15.2
7	Succinate	9.2	5.9
8	Glucose + succinate	17.0	16.9
9	Glucose + succinate + 0.25M malonate	10.8	14.8
0	Glucose + L-asparate	10.3	15.7
1	Glucose + pr-methionine	9.3	20.3
2	Glucose + L-glutamine	14.5	21.1

/1/ All substrates present in 0.01 M quantities.

Contributor: Fitzgerald, L. R.

Reference: Lipsett, M. N., and Crescitelli, F., Arch. Biochem. and Biophys. 28:329, 1950.

153. EFFECT OF POTASSIUM ION CONCENTRATION ON O2 CONSUMPTION: ANIMAL TISSUES (Concluded)

Values for oxidation quotient $(^{Q}O_{2})$ are expressed in cu mm oxygen per mg final dry weight of tissue per hour, unless otherwise indicated. Media are described in the appropriate footnotes in terms of quantity of ion per liter of solution.

Part VI: GUINEA PIG CEREBRAL CORTEX, VARIOUS RELATIVE

K ⁺ Concentration in		QO_2	
Suspending Medium ¹ mEq/L	Isotonic Medium (Na + K = 0.162 M)	Hypertonic Medium ² (0.162 M Na + XK)	Hypertonic Medium (Na + K = 0.303 M)
(A)	(B)	(C)	(D)
1 0	9.4	9.7	2.8
2 0.001	10.1		
3 0.005	13.9		
4 0.010	14.8	15.4	
5 0.020	18.4		
6 0.040	21.1	21.2	12.0
7 0.080			15.7
8 0.143	6.5	15.2	
9 0.152			17.1
0 0.220			12.3
11 0.285			6.9

/1/ Besides the above indicated Na- and K-ion concentration, all media contain 0.01 M phosphate as a buffer, and 0.1% glucose as substrate; pH = 7.5. /2/X = concentration of K⁺ shown in Column A.

Contributor: Aebi, H.

Reference: Canzanelli, A., Rogers, G., and Rapport, D., Am. J. Physiol. 135:309, 1941-42.

Part VII: RAT AND RABBIT, VARIOUS TISSUES

Medium: Ringer's solution.

73.		70. 5	
Tissue	Control	+2.9 x 10-3 M KC1 ¹	Reference
(A)	(B)	(C)	(D)
	J	Rat	
l Liver	9.7	5.6	1
2 Kidney	18.4	17.4	1
3 Spleen	12.9	12.2	1
4 Cerebral cortex	3.6	1.9	1
5 Liver (embryo)	10.8	10.7	1
6 Kidney (embryo)	12,6	13.4	1
	Ra	ibbit	
7 Brain	7.1	14.1	2

/1/ Except for rabbit brain where KCl added was 0.1 M.

Contributor: Fitzgerald, L. R.

References: [1] Lasnitsky, A., C. rend. Soc. biol. 143:967, 1949. [2] Ashford, C. A., and Dixon, K. C., Biochem. J., Lond. 29:157, 1935.

Part VIII: FROG SCIATIC NERVE

Medium: Ringer's solution or isotonic NaCl (no significant difference).

	KCI	QO _Z Decrease
	%	%
	(A)	(B)
1	10	0
2	20	17
3	30	26
4	40	34
5	50	43
6	70	44
7	80	50
8	100	50

Contributor: Fitzgerald, L. R.

Reference: Chang, T. H., Schaffer, M., and Gerard, R. W., Am. J. Physiol. 111:681, 1935.

Part IX: CRAB LIMB NERVE

Values are expressed in $\mu 1$ per gram wet weight of tissue per hour. Species of crab used were mainly Libinia emarginata and Grapsus grapsus.

	K [†] Concentration in Suspending Medium ¹ mM/L	Q _{O2}
	(A)	(B)
1	0	90.6
2	5	90.1
3	10	86.5
4	15	131.1
5	20	146.3
6	30	162.0
7	40	144.0
8	50	100.8
9	70	69.7
10	100	47.9
11	Sea water	115.7

/1/ Artificial sea water.

Contributor: Fitzgerald, L. R.

Reference: Shanes, A. M., and Hopkins, H. S., J. Neurophysiol. 11:331, 1948.

154. SURVIVAL AND REVIVAL UNDER CONDITIONS OF ANOXIA OR ARRESTED CIRCULATION: ANIMAL TISSUES

Adult tissue, in situ, at room temperature, normal body temperature, unless otherwise indicated. N = anoxia produced by cessation of respiration or by administration of nitrogen to animal or to isolated tissue; C = circulation

arrested by obstructing or bypassing total afferent blood supply to organ.

Machine Mach	ar.	rested by obstructing or bypassing of			al Time1	Revival Time2		5.4
Brain, cerebral cortex		Tissue	Animal	min	Condition	min	Condition	References
Cat		(A)	(B)	(C)	(D)	(E)	(F)	(G)
Dog Dog	1	Brain, cerebral cortex	Cat	1/6-1/4	С	<3	С	C,D,1,2;E,F,3
Telencephalon and mesencephalon Pupillary centers Pupillary centers Dog 3-4 C4 9 9 9 9 9 9 9 9 9	2		Cat			>5-10	С	4
Rabbit R	3		Dog			1-8	C	5,6
Rat	4		Dog3			12-20	С	5,6
Brain stem	5		Rabbit	1/3-2	N			7
Telencephalon and mesencephalon Pupillary centers Dog 3-4 C4 9 9 Medulla Rabbit 1/2-8 N 7 1/2 1/	6		Rat	1-1 1/2	N			8
Republication Pupilitary centers Pupilitary center P		Brain stem						
Medulla	7	Telencephalon and mesencephalon	Rabbit					
Cardioregulatory, vasomotor, and adrenosecretory centers	8	Pupillary centers	Dog	3-4	C ⁴			*
and adrenosecretory centers 11	9	Medulla	Rabbit	1/2-8				7
11 Respiratory center	10	Cardioregulatory, vasomotor,	Dog	4-5	C ⁴	15-30	C ⁴	9
Respiratory center		and adrenosecretory centers						
Dog, rat 1/3-1/2 C 6,11 11	1.1							
Rat 3	12	Respiratory center	Dog, rat			15-30	C	/
Spinal cord Cat 2/3-1 C 35-45 C C,D,12;E,F,	13							6,11
Cat	14		Rat ³		_			11
Rabbit 2/3-2 C 15	15	Spinal cord		2/3-1	C			C,D,12;E,F,13
18 Autonomic synapses Cat 30-40 N, C6 120-360+ N7 16 19 Peripheral nerve Cat, dog, rabbit 15-45 N8 17,18 20 Frog 70-360 N8 18 21 Lobster 40-120 N8 18 22 Heart Dog, rabbit, rat 5-20 C 19 23 Dog, rabbit, rat 4-6 N 8-11 N 20 24 Dog, rabbit, rat 47-111 N 21 22 25 Lung Dog 30-45 C9 22 26 Kidney Dog 30-60 C9 23,24 27 Dog >120 C9 25,26 Rabbit 60-90 C9 27 28 Rabbit 60-90 C9 27 29 Rat <120						90-120	С	
Peripheral nerve Cat, dog, rabbit 15-45 N8 17,18	17		Rabbit					
Frog	18	Autonomic synapses	Cat			120-360+	N ⁷	
Lobster		Peripheral nerve						
Heart Dog, rabbit, rat 5-20 C 19	20		U					
Dog, rabbit, rat 4-6 N 8-11 N 20								
Dog		Heart						
25 Lung Dog 30-45 C9 22 26 Kidney Dog 30-60 C9 23,24 27 Dog >120 C9 25,26 28 Rabbit 60-90 C9 27 29 Rat <120 C9 26,28 30 Liver Dog 20-75 C9 29-32						8-11	N	
26 Kidney Dog 30-60 C9 23,24 27 Dog >120 C9 25,26 28 Rabbit 60-90 C9 27 29 Rat <120			Dog, rabbit, rat ³	47-111	N			
27 Dog S120 C9 25,26 Rabbit 60-90 C9 27 Rat S120 C9 26,28 30 Liver Dog 20-75 C9 29-32		Lung	Dog					
28 Rabbit 60-90 C9 27 29 Rat <120		Kidney	Dog					
29 Rat <120 C9 26,28 30 Liver Dog 20-75 C9 29-32			Dog					
30 Liver Dog 20-75 C9 29-32			Rabbit					
200			Rat				-	
31 26010 69 31		Liver	Dog					
	31		Dog				-	31
32 Skeletal muscle Dog, rabbit, rat 120-360 C 480 C 33,34	32							
33 Smooth muscle, jejunum Rabbit 1-15 N ⁸ >180 N 35				1-15	Na			
34 Small intestine Dog 120-240+ C ¹¹ 36							-	7 -
35 Testis Rat ¹² 10-30 C 37		L						

/1/ Period of anoxia or circulatory arrest during which function persists. /2/ Period of anoxia or circulatory arrest compatible with complete recovery of function, i.e., before irreversible changes occur. /3/ Newborn. /4/ Isolated, perfused head. /5/ Decapitated. /6/ Intact and isolated ganglia. /7/ 25% recovery at 6 hr. /8/ Isolated, in vitro. /9/ Criterion: death of animal. /10/ Value for liver at 240-27°C. /11/ Criteria: electrical reaction and death of animal. /12/ Histological study of spermatogenesis.

Contributors: (a) Sonnenschein, R. R., Lewis, R., and Darling, L., (b) Van Harreveld, A., (c) Wesolowski, S. A. References: [1] Sugar, O., and Gerard, R. W., J. Neurophysiol. 1:558, 1938. [2] Van Harreveld, A., ibid 5:361, 1947. [3] Gänshirt, H., and Zylka, W., Arch. Psychiat., Berl. 189:23, 1952. [4] Ten Cate, J., and Horsten, G. P., Arch. internat. physiol., Liége 62:6, 1954. [5] Kabat, H., and Dennis, C., Proc. Soc. Exp. Biol. 42:534, 1939. [6] Kabat, H., Am. J. Physiol. 130:588, 1940. [7] Albaum, H. G., et al, ibid 174:408, 1953. [8] Soulairac, A., C. rend. Acad. sc. 234:2565, 1952. [9] Heymans, C., et al, Arch. Neur. Psychiat., Chic. 38:304, 1937. [10] Malmejac, J., and Plane, P., Afrique fr. chir. 12:435, 1954. [11] Selle, W. A., and Witten, T. A., Proc. Soc. Exp. Biol. 47:495, 1941. [12] Van Harreveld, A., Am. J. Physiol. 141:97, 1944. [13] Van Harreveld, A., and Marmont, G., J. Neurophysiol. 2:101, 1939. [14] Van Harreveld, A., and Tyler, D. B., Am. J. Physiol. 142:32, 1944. [15] Blasius, W., Zschr. Biol. 104:121, 1951. [16] Bronk, D. W., et al, J. Cellul. Physiol. 31:193, 1948. [17] Lehmann, J. E., Am. J. Physiol. 119:11, 1937. [18] Wright, E. B., ibid 147:78, 1946. [19] Wesolowski, S. A., et al, in "Surgical Forum," p 270, Philadelphia: W. B. Saunders Co., 1952. [20] Binet, L., and Strumza, M., C. rend. Acad. sc. 226:1491, 1948. [21] Selle, W. A., Proc. Soc. Exp. Biol. 48:417, 1941. [22] Blades, B., Arch. Surg. 69:525, 1954. [23] Guthrie, C. C., Arch. Int. M. 5:232, 1910. [24] McEnery, E. J., et al, J. Laborat. Clin. M. 12:349, 1926. [25] Friedman, S. M., et al, Circulation Res. 2:231, 1954. [26] Scheibe, J. R., et al, Surgery 25:724, 1949. [27] Badenoch, A. W., and Darmedy, E. M., J. Path. Bact., Lond. 59:79, 1947. [28] Latorre, G., J. Urol., Balt. 72:639, 1954. [29] Raffucci, F. L., Surgery 33:342, 1953. [30] Drapanas, T., et al, Ann. Surg. 142:831, 1955. [31] Bernhard, W. F., et al, N. England J. M. 253:159, 1955. [32] Hines, J. R., and Roncoroni, M., Surg. Gyn. Obst. 102:689, 1956. [33] Harmon, J. W., Am. J. Path. 23:551, 1947. [34] Harmon, J. W., and Gwinn, R. P., ibid 25:741, 1949. [35] Furchgott, R. F., and Shorr, W., Am. J. Physiol. 162:88, 1950. [36] Enquist, I. F., and Kremen, A. J. in "Surgical Forum," p87, Philadelphia. W. B. Saunders Co., 1952. [37] Oettle, A. G., and Harrison, R. G., J. Path. Bact., Lond. 64:273, 1952.

Values determined in vivo for unanesthetized animal, unless otherwise indicated. Values in parentheses are ranges and, unless otherwise specified, conform to estimate "c" of the 95% range (cf Introduction). Note that $100 \times Column \to Col$

	Species	Condition	Blood Flow m1/100 g/min	O ₂ Consumption m1/100 g/min	Vascular Resistance mm Hg/m1/100 g/min	Reference
	(A)	(B)	(C)	(D)	(E)	(F)
1	Man ¹	Alert ² , 3	54	3.3	1.6	3,4
		_	(40-79)	(2.6-4.2)	(0.8-2.4)	
2		Inhalation 5-7% CO22	93	3.3	1.1	5
			(65-141)	(2.4-3.9)	(0.7-1.4)	
3		Inhalation 85-100% O2 ²	45	3.2	2.2	5
		-	(34-55)	(2.6-4.4)	(1.8-2.7)	
4		Inhalation 10% O ₂ ²	73	3.2	1.1	5
			(54-93)	(2.6-3.5)	(0.8-1.6)	
5		Cerebral arteriosclerosis	41	2.8	3.0	6
			(31-56)	(1.7-3.6)	(1.9-3.5)	
6		Thiopental anesthesia	60	2.1	1.3	7
		•	(33-82)	(1.2-3.5)	(0.6-2.1)	
7	Cat	Isolated perfused brain4		5.0		8
				(3.9-6.1)b		
8	Monkey, rhesus	Barbiturate anesthesia4,5	48	3.8		9
	•		(21-75)6, b	(2.4-5.2)b		

/1/ Nitrous oxide method. /2/ Normal young men. /3/ Approximately same values and ranges (except for narrower ranges of blood flow) found in persons with essential hypertension [1], and in schizophrenics [2]. /4/ Active reflexes, spontaneous movements. /5/ Light anesthesia. /6/ Measured by intercalated bubble flow meter.

Contributor: Kety, S. S.

References: [1] Kety, S. S., et al, J. Clin. Invest. 27:511, 1948. [2] Kety, S. S., et al, Am. J. Psychiat. 104:765, 1948. [3] Kety, S. S., and Schmidt, C. F., J. Clin. Invest. 27:476, 1948. [4] Sokaloff, L., and Mangold, R., unpublished. [5] Kety, S. S., and Schmidt, C. F., J. Clin. Invest. 27:484, 1948. [6] Freyhan, F. A., et al, J. Nerv. Ment. Dis. 113:449, 1951. [7] Wechsler, R. L., et al, Anesthesiology 12:308, 1951. [8] Geiger, A., and Magnes, J., Am. J. Physiol. 149:517, 1947. [9] Schmidt, C. F., et al, ibid 143:33, 1945.

156. CEREBRAL RESPIRATION: DOG

Dogs received basic dose of 20 mg/kg of morphine sulfate. (In using this table, it should be remembered that morphine sulfate has a significant effect on blood respiratory characteristics [Rakieten, N., Himwich, H. E., and DuBois, D., J. Pharm. Exp. Ther. 52:437, 1934]).

Part I: CEREBRAL VS BLOOD GLUCOSE

Values in parentheses are ranges, estimate "c" of the 95% range (cf Introduction).

	Arterial	Cerebral Tissue		
Condition	Blood Glucose	Glycogen	Glucose	
	mg/100 cc	mg/100 g	mg/100 g	
(A)	(B)	(C)	(D)	
Breathing air	210(180-240)	106(94-123)	102(88-115)	
Breathing air with 6-9% CO2	221(133-310)	117(116-118)	107(87-128)	
Breathing O2 with 5.5% CO2	315	106	149	
Breathing N2 with 4.5-10% O2	256(109-474)	97(57-140)	97(64-137)	
Breathing N2 with 3.5-6% O2 and 5-6% CO2	236(129-369)	127(109-144)	103(74-138)	
Erythroidinized; hyperventilation with air	212(130-280)	122(119-127)	72(51-94)	
Erythroidinized; hyperventilation with O2	152(107-210)	122	56(37-78)	

Contributors: (a) Gurdjian, E. S., (b) Smith, A. H.

tion with O_2^2

Reference: Gurdjian, E. S., Webster, J. E., and Stone, W. E., Proc. Ass. Rev. Nervous and Mental Dis. 26:184, 1946.

Part II: CEREBRAL CONSTITUENTS VS BLOOD GASES

Values in parentheses are ranges, estimate "c" of the 95% range (cf Introduction).

Arterial Blood Change in CO2 Lactic O₂ CO2 Condition Glucose Tensionl Acid Tension Tension mm Hg mm Hg mm/100 cc mg/100 cc mm Hg (E) (F) (A) (B) (C) (D) 50(44-58) 210(180-240) 59(53-63) 11.1 187(119-310) 71(65-76) 79(70-88) .7-31.9 19(9-28) 23.6(17 73 10.7 315 ≧150 17

-32(-26 to -38)

27.3(19.2-31.5)

1 Breathing air Breathing air with 5.5-9% CO2 2 Breathing Oz with 5.5% COz 60.9(30.9-143.0) 253(109-474) -17(-5 to -30) Breathing mixtures low in O2; 17(3-35) 33(18-47) acapnia 48,2(19,6-99,0) 236(129-369) 5 Breathing mixtures low in O2 16(10-23) 55(42-68) 0(-16 to +16) with 5-6% CO2 206(130-280) 37.0(22.2-55.0) Erythroidinized; hyperventila-55(41-70) 24(12-39) -27(-9 to -48) tion with air2 Erythroidinized; hyperventila-

17(16-18)

				Cereb	ral Tissue3		
	Condition	Venous Blood		Glucose	Glycogen	Inorganic	Phospho-
		O ₂ Tension	Acid	-		P	creatine P
		mm Hg	mg/100 g	mg/100 g	mg/100 g	mg/100 g	mg/100 g
	(A)	(G)	(H)	(1)	(J)	(K)	(L)
1	Breathing air	39(32-47)	12.2(9.1-13.8)	108(88-115)	106(94-123)	8.7	8.5(8.1-8.8)
2	Breathing air with 5.5-9% CO2	53(50-55)	7.9(7.5-8.5)	107(87-128)	117(116-118)	8.4(7.6-9.0)	9.2(8.8-10.0)
3	Breathing O2 with 5.5% CO2	61	6.8	149	106	6.1	9.8
4	Breathing mixtures low in O2;	8.8(0-17)	74(22.7-208)	97(64~137)	97(57-140)	12.4(8.1-	5.4(0.5-9.6)
	acapnia					19,9)	
5	Breathing mixtures low in O2	9.5(3-17)	35(16.4-76)	103(74-138)	127(109-144)	10.6(8.9-	6.7(2.6-8.6)
	with 5-6% CO2					16.1)	
6	Erythroidinized; hyperventila-	21(14-40)	21.7(9.8-37.8)	72(51-94)	122(119-127)	7.9(7.0-9.1)	9.8(9.0-10.9)
	tion with air2						
7	Erythroidinized; hyperventila-	15	35.5(17-66)	56(37 - 78)	122	8.3	9.3
	tion with O ₂ ²						

/1/ Increase or decrease from control level breathing air. /2/ Blood pressure decreased to a low level after blood specimens obtained. /3/ Determination of adenosine triphosphate (acid-labile and ribose monophosphate) reveals normal values in all classes of experiments except for low oxygen with acapnia, in which values about 25% lower than normal were obtained.

Contributors: (a) Gurdjian, E. S., (b) Smith, A. H.

Reference: Gurdjian, E. S., Webster, J. E., and Stone, W. E., Am. J. Physiol. 156:149, 1949.

129(87-150+)

152(107-210)

156. CEREBRAL RESPIRATION: DOG (Concluded)

Dogs received basic dose of 20 mg/kg of morphine sulfate. (In using this table, it should be remembered that morphine sulfate has a significant effect on blood respiratory characteristics [Rakieten, N., Himwich, H. E., and DuBois, D., J. Pharm. Exp. Ther. <u>52</u>:437, 1934]).

Part III: CEREBRAL METABOLISM IN ANOXIA

Values in parentheses are ranges, estimate "c" of the 95% range (cf Introduction).

_			varues in par		nges, estimate	0 01 1110 707					
0-	-N ₂			Femoral Ar				Sagitt	al Sinus		
	cture	Time	O ₂	O ₂	CO ₂	Plasma		O_2	A-V	Dif	ferences
IVII	tture		Capacity	Saluration	Content	Lactic Acid	S	aturation	O ₂		CO2
%	O ₂	min	vol %	%	vol %	mg/100 g		%	vol %		vol %
	(A)	(B)	(C)	(D)	(E)	(F)		(G)	(H)		(1)
1	4.2	15	23,3(22.5-24.2)	15.1(13.6-16.2)	23.9(16.9-35.4)	129(76-198)	5.9		1.9		6.7
2		20	19.7	11.2	12.8	152	4.3		1.4		4.0
3		24	20.5	13.1	15.4	243	8.3		1.0		7.0
4	5.0	15	18.0	22.8	28.5	76	13.9		1.6		4.1
5	5.8	15	25.0(23.1-26.6)	17.6(13.5-19.9)	41.4(34.9-49.2)	90(70-106)	11(8	.7-12.2)	1.6(1.3-	2.0)	0.8(0.3-1.3)
6	6.6	15	24.6	22.7	43,3	39	24		-0.3		0.3
7		_15	21.4(17.8-24.7)	47,7(38,8-54)	40(31.8-44.4)	43(39-46)	24(2	2-25.5)	5(3.9-5.	6)	6(4.2-7.1)
8		60_	19.5	26.1	27.8	86.5(66-107)					
9	8.8	15	24.7(24.5-25.0)	42.8(38.4-47.3)	42.8(41.3-44.4)	66	24.2		5.7		5.7
10	10.2	15	25(23.6-26.4)	38(34.7-40.2)	44.6(38.2-51.1)	42(41-43)	21.3		3.2		10.4
11	11.6	15	19.6	61.3	43.6	16.9	42.3		3.7		3.8
12		60	22.8	49.1	40.1	34	26.1		5.3		5.7
13	13.0	15	21.3(20.3-21.9)	64.4(56.9-70)	42.4(40.3-45.7)	38	31(2	8.7-33.6)	7.0(6.0-	7.1)	7.1(6.4-7.8)
14	21.0	5 I	23.4	85.5	21.6	99					
15		101	21.6(20-23.2)	79.5(75.5-83.6)	39.7(37.3-42.1)	34(27-42)	48.9	(43.5-54.3)	6.6(6.4-	6.8)	4.9(4.5-5.3)
16		131	19.7	92.0	20.6	117	67.6		4.8		0.8
17		461		93.7	43.1	47	51.7		8.6		12.4
18			23(20.3-23.2)	88.6(82.5-94.7)	41.0(33.4-48.6)	39.5(30-49)	55.2	(49.8-60.7)	7.2(6.9-	7.6)	6.6(5.9-7.4)
19			24.0(22.4-25.7)	91.7(86.2-97.2)	37.8(35.6-40.1)		73.0		3.9		-3.5
0-	- NI -				Cerebra	Cortex Tiss	ue				
	-N ₂	Time	Right	Left	Right	Left		Righ	t		Left
TATTY	cture		Lactic	Acid	Inorga	nic P		Ph	osphocre	alii	ne P
%	O ₂	min	mg/l	00 g	mg/1	100 g			mg/10	0 g	
	A)	(B)	(J)	(K)	(L)	(M)		(N)			(O)
1	4.2	15	121(93-157)	124(89-167)	11.9(10.1-13.9)	11.8(9.6-15	5.4)	4.4(3.0-5.	9)	4.2	2.5-5.5)
2		20									
3		24									
4	5.0	15	70	76	8.6	9.4		7.5		7.2	
5	5.8	15	86(72-95)	80(77-84)	10.5(9.7-11.4)	9.8(9.0-10.	3)	6.3(5.5-7.	-		5.9-7.3)
6	6.6	_15	55	51	9.4	8.3		7.5		7.9	
7		15	60(55-64)	60(53-67)	7.8(7.0-8.5)						7.3-8.1)
8		60	49(48-49)	47(45-48)	8.3(7.7-9.0)	8.1(7.9-8.4)	7.3(7.3-7.			7.1-7.6)
9	8.8	15	34	31(30-33)	7.5(7.2-7.8)	6.8		9.9(9.2-10			9.0-10.3)
10	10.2	15	37(33-40)	41(34-47)	8.1(7.7-8.6)	8.2(7.7-8.7)	8.1(7.9-8.			7.6-8.7)
11	11.6	15	_21	20	9.5	8.9		8.7		8.9	
12		60	19	16	9.1	7.9		8.6		9.0	
13	13.0	15	13(9.1-16.8)	12(10.2-14.0)		7.4(6.2-8.7)	9.6(7.4-11			7.8-9.7)
14	21.0	51	90	71	6.1	5.7		8.1		9.8	
15		101	17(13.5-19.9)	17(15.8-17.2)		7.7(7.5-8.0)}	11.0(10.9-			6(10.5-10.8)
16		131	90	66	7.6	8.0		8.0		8.5	
17		46 ¹	19	26	7.7	8.1		8.8		8.0	
18			13(9.5-17.2)		7.6(6.6-8.7)	7.1(6.9-7.4)	8.7(7.8-9.			8.7-8.9)
19			11(10.2	-11.6) ²	7.7(7.2	2-8.2) ²		1	0.6(10.2-	11.	0)2

/1/ After anoxia. /2/ Side not indicated.

Contributors: (a) Gurdjian, E. S., (b) Smith, A. H.

Reference: Gurdjian, E. S., Stone, W. E., and Webster, J. E., Arch. Neur. Psychiat. 51:472, 1944.

157. RESPIRATION RATES: BACTERIA

Rate and degree of respiration of bacteria may be affected by numerous factors, such as strain characteristics, composition of growth medium, age and number of cells in an inoculum, origin of inoculum, age of culture harvested for study, nature of solution used for washing, number of washings, and composition of the respiratory system. Values are μ l/mg dry weight/hour. Data are for bacterial suspensions in the presence of glucose.

Species	Temp	Culture Age hr	Q _{OZ} μl/mg/hr	Reference
(A)	(B)	(C)	(D)	(E)
1 Aerobacter aerogenes	36, 30	17, 48	47, 50	1, 2
2 Azotobacter chroococcum	22	36	2,000-10,000	3
3 Bacillus cereus (short)	30	18	42-86	4
4 B. cereus (filamentous)	30	18	3-49	4
5 B. subtilis	37	6-8	170	5
6 B. subtilis (spores)	32	98-147	10	6
7 Corynebacterium sp	30	48-96	67	7
8 Escherichia coli	40, 32	20	200, 272	1, 8
9 Lactobacillus brulgaricus	37, 45	8	34, 55	9
0 Leuconostoc citrovorum	38	16	8	10
1 Micrococcus auranticus	35	30-34	14	11
2 M. cinnebareus	35	30-34	32	11
3 M. flavus	35	30-34	8	111
4 M. freundenreichli	35	30-34	20	11
5 M. luteus	35	30-34	15	111
6 Mycobacterium sp (Karlinski)	38	84	22	12
7 M. butyricum	38	84	13	12
8 M. leprous kedrowsky	38	84	8	12
9 M. phlei	38	84	28	12
0 M. ranae	38	84	32	12
1 M. smegmatis	38	84	23	12
2 M. stercoris	38	84	15	12
3 M. tuberculosis avian	37	84	1 1	13
4 M. tuberculosis hominis	38	252	4	12
5 Pneumococcus, type 1	37	18	27	14
6 Pseudomonas fluorescens	26	20	58	15
7 Streptococcus faecalis, B 33 A	38	18	106	16
8 S. faecalis, 10 Cl	37	15	57-80	17
9 S. faecalis, Lancefield D	37	12-15	7	18
0 S. pyogenes, C 203 M	37.5	4	57-163	19
1 S. pyogenes, C 203 S	37.5	4	99-113	19
2 S. thermophilus, C 3	37. 50	8	4, 5	9
3 S. thermophilus, MC	37, 50	8		9
4 Streptomyces coelicolor	31, 30	72	9, 10	20
a pri epromyces coeffcotor.		16	35	20

Contributor: Silverman, M.

References: [1] Ajl, S. J., J. Bact., Balt. 59:499, 1950. [2] Ajl, S. J., and Wong, T. O., ibid 61:379, 1951. [3] Meyerhof, O., and Burk, D., Zschr. phys. Chem. A 139:117, 1928. [4] Nickerson, W. J., and Sherman, F. G., J. Bact., Balt. 64:667, 1952. [5] Gary, N. D., and Bard, R. C., ibid 64:501, 1952. [6] Crook, P. G., ibid 63:193, 1952. [7] Levine, S., and Krampitz, L. O., ibid 64:645, 1952. [8] Krebs, H. A., Biochem. J., Lond. 31:2095, 1937. [9] Stein, R. M., and Frazier, W. L., J. Bact., Balt. 42:501, 1941. [10] Chang, S. C., Silverman, M., and Keresztesy, J. C., ibid 62:753, 1951. [11] Nunheimer, T. D., and Fabian, F. W., ibid 44:215, 1942. [12] Edson, N. L., and Hunter, G. J., Biochem. J. 37:563, 1943. [13] Oginsky, E. L., Smith, P. H., and Solotorovsky, M., J. Bact., Balt. 59:29, 1950. [14] Bernheim, F., and Bernheim, M. L., ibid 46:225, 1943. [15] Sebek, O. K., and Randles, C. l., ibid 63:693, 1952. [16] Seeley, H. W., and Vandemark, P. J., ibid 61:27, 1951. [17] O'Kane, D. J., ibid 60:449, 1950. [18] Gunsalas, I. C., and Umbreit, W. W., ibid 49:347, 1945. [19] Sevag, M. G., and Shelburne, M., ibid 43:411, 1942. [20] Cochrane, V. W., and Gibbs, M., ibid 61:305, 1951.

158, RESPIRATION RATES: ALGAE

Reference Values for rates of gaseous exchange are µ1/100 mg dry weight/hour, unless otherwise specified. Underlined number = control or endogenous value. (H) 10 8 19 14 20 21 22 21 21 21 23 23 24 23 21 22 22 21 Period between cell division, endogenous Carbohydrate substrates; organic acids Period between cell division, glucose Experimental Carbohydrate substrates Carbohydrate substrates Carbohydrate substrates Carbohydrate substrates Carbohydrate substrates Carbohydrate substrates Carbohydrate substrates Variable Growth, development 9 Various substrates Inorganic nutrients Various substrates Various substrates Various substrates Various substrates Various substrates Metabolic poisons Metabolic poisons Starved, growing Starved, growing Starved, growing Starved, growing Starved, growing Mutants Light 0.93-1.10 0.38 - 1.48R.Q. CO2/O2 0.95-2.1 1.2-1.5 1.0-1.1 0.9-1.0 0.9-1.1 (F) 06.0 0.98 1.39 0.62 1.1 3.6 QC02 Respiration Rate (E) Blue Green µ1/100 mg/hr 1.53 27 99 Green 2500-40002 600-25002 190-7502 170-840² 110-4402 475-1924 167-3672 280-1270 89-15374 35-1502 430-890 120-820 220-500 150-200 200 52-232 $\frac{85}{57^2}$ 12-244 9 2000 1700 482 00 147 001 180 460 170 140 140 91 49 33 85 29 74 Methodl Chem Mano Chem Chem Mano Mano Mano Mano Mano Mano Mano Chem Chem Chem Mano Chem Mano Mano Mano Mano Mano Mano Mano Mano Chem Chem Chem (0) Mano Mano Mano Chem Mano Chem Mano Mano Mano Mano Mano Mano Mano Mano Mano Mano Mano Mano Temp (B) 3,5 25 25 25 39 19 18 27 27 28 28 33 33 20 20 20 20 18 25 20 20 23 23 115 20 20 20 20 12 20 20 2 2 19 20 20 20 20 Coelastrum proboscideum Enteromorpha compressa Species Haematococcus pluvialis (A) Anacystis nidulans Nostoc commune Chara vulgaris C. pyrenoidosa Cladophora sp pyrenoidea C. ellipsoidea N. muscorum Chlorella sp A. variabilis C. variegata C. rupestris Anabaena sp C. vulgarls C. sericea C. arcta E. linza 9 2 8 6 10 12 41 42

Preside crispa 18.5 Chem 1-126 Preside crispa 20 Mano 110 20 Mano 110 20 Mano 110 20 Mano 100-210 20 Mano 130-180 20 Mano 20			1					_
Senedesmus sp. D-1		18.5	Chem	1-126			Moisture	-
Scenedesmus sp. D-1		200	2000				Moisiar	
Scenedesmus sp. D-1	Scenedesmus sp, Scenedesmus sp, Scenedesmus sp, S. brasiliensis S. obliquus	07	Mano	100-210			Varione enhetratee	
Septendesmins sp. D-1 2.9 Mano 2022	S. brasiliensis S. obliquus	2	Maria	200			various substrates	1
S. brasiliensis S. D. D. D. D. D. D. D. D. D. D. D. D. D.		0.7	Mario	7332			Carbonyurate substrates	
S. brasiliensis S. obliquus S. obliquus S. obliquus S. obliquus S. varians S. rivularis S. varians S. varians S. varians S. varians S. varians S. varians S. varians S. varians S. varians S. chem bellocecus bacillaris S. varians S.	, vi	62	Meno	130-100			1 A	_
S. brasiliensis S. brasiliensis S. chiquus S. chiquus S. chiquus S. chiquus S. chiquus S. chiquus S. chiquus S. rivalaris S. trainaris	જં જં	67	Mano	130-180			Hd	_
S. brasiliensis 20 Mano 140 0.92-1.80 S. obliquus 20 Mano 140 0.92-1.80 S. varians 20 Mano 16.3 1.15 S. ravalaria 10.4 Chem 0.53 1.15 S. varians 10.4 Chem 0.583 1.15 S. varians 10.4 Chem 1.60 0.98-1.80 S. varians 10.4 Chem 1.60 0.98-1.80 S. varians 20 Mano 1.40-620 0.95-1.80 Ulothris flacea 18.5 Chem 1.60 0.95-1.1 Ulothris flacea 20 Chem <td>vi vi</td> <td></td> <td>Mano</td> <td>180-410</td> <td></td> <td></td> <td>Metabolic poisons</td> <td>_</td>	vi vi		Mano	180-410			Metabolic poisons	_
S. obliquue 2.0	s,	07	Mano	140				_
S. obliquus 25 Mano 180-750 S. rivillaris 20 Mano 18.3 S. ravillaris 10.4 Chem 0.53 S. varians 10.4 Chem 0.583 S. varians 20 Mano 140-620 S. varians 20 Mano 140-620 Trebousia sp 18.5 Chem 150-60 Ulothrist flacea 20 Chem 150-60 Ulya lactuca 20 Chem 150-60 Ascophyllum nodosum 20 Chem 160-620 Chorda filum 20 Chem 130 Chordatilum 20 Chem	<u>~</u>	02	Mano			0.92-1.80	Various substrates	
S. obliquus 25 Mano 50 Spirogyra majuscula 20 Mano 10.4 Chem 0.53 degrees S. varians S. varians 10.4 Chem 0.53 degrees 1.115 Stichococcus bacillaris 20 Mano 140 degrees 140 degrees 1.15 degrees Ulothrik flacca 18.5 Chem 150 0.95 0.95 Ulothrik flacca 12 Chem 150 0.95 0.95 Ulothrik flacca 17 Chem 160 0.95 0.95 Ulothrik flacca 17 Chem 160 0.95 0.95 Ulothrik flacca 17 Chem 160 0.95 0.67 Ulothrik flacca 17 Chem 17 Chem	o,		Mano	180-750			Various substrates	
Spirogyra majuscula 10.4 Chem 0.53 Sivarians 10.4 Chem 0.58 Sivarians 10.4 Chem 0.58 Sivarians 10.4 Chem 0.58 Sivarians 10.4 Chem 140-620 Sivarians 10.4 Chem 140-620 Chem 140-620 Chem 18.5 Chem 160-620 Chem 18.5 Chem		25	Mano	50			На	
Spirogyra majuscula 10.4 Chem 0.53 / 93 Strivolaria S. varians S. varians 20 Mano 140-620 140-620 Sichococcus bacillaris 20 Mano 140-620 140-620 140-620 Trebouxia sp 18.5 Chem 1.6-30.0 0.95 0.95 Ulothrix flacca 20 Chem 160-67 0.95 0.95 Ulva lactuca 20 Chem 160-7 0.95 0.67 Ulva lactuca 20 Chem 160-8 0.95 0.95 Ulva lactuca 20 Chem 160-8 0.95 0.67 Ulva lactuca 20 Chem 190-8 0.95 0.67 Ascophyllum nodosum 20 Chem 193-8 0.80 0.80 Ascophyllum nodosum 20 Chem 193-8 0.80 0.80 C. tomentosa 20 Chem 193-8 0.80 0.80 C. tomentosa 20 Chem 10-1-1-		50	Mano			1.15		
S. rivularis Chem 3.83 S. ravialaris S. ravialaris S. varians S. varians<	_	10.4	Chem	0.53			Hd	
S. varians 10.4 Chem 0.583 Stithococcus bacillaris 20 Mano 140 Trebouxia sp 18.5 Chem 140 Ulothrix flacca 20 Chem 11 Ulothrix flacca 20 Chem 150 Ulothrix flacca 20 Chem 150 Ulothrix flacca 20 Chem 150 Ulothrix flacca 20 Chem 160 Ulothrix flacca 20 Chem 170 Ulothrix flacca 20 Chem 170 Ulothrix flacca 20 Chem 170 Ulothrix flacca 20 Chem 56 Ulothrix flacca 20 Chem 170 Valonia utricularis 20 Chem 160 Ascophyllum nodosum 20 Chem 174 Chem 150 1.5-5.7 Chem 150 1.5-5.7 Chem 150 1.5-5.7 Chem 150	_		Chem	3.83			H	_
Stichococcus bacillaris 20 Mano 140-620 Trebouxia sp 18.5 Chem 18-30.0 Ulothrix flacea 18.5 Chem 18-30.0 Ulothrix flacea 20 Chem 191 13-16 2.35-6.1 2.5 Chem 150 Chem Chem 160 Chem 170 C	_	10.4	Chem	0.583			H	
Trebouxia sp	L.	20	Mano	140				
Trebouxia sp	_	20	Mano	140-620			Various substrates	
Ulotaturix flacca	L	18.5	Chem	1 8-30 0			Moisture	
Ulva lactuca	1		Chorn	140			- Indian	+
1.1 1.1	1	90	Cilein	100				1
Chem 150 Chem 150 Chem 150 Chem 150 Chem 150 Chem 150 Chem 150 Chem		0.7	Chem	16	_			
13-16 2.35-6.1 12			Chem	150				
U. Jinza 25 Mano 81 0.95 U. Linza 12 Chem 56 0.057 Urospora penicillioides 17 Chem 90 0.67 Valonia utricularis 20 Chem 160 8.4 1.5-5.7 Ascophyllum nodosum 20 Chem 193 0.80 Chordaria filum 20 Chem 174 0.80 Chordaria flagelliformis 20 Chem 130 0.80 Chordaria flagelliformis 20 Chem 39 7.2-17.0 0.53-2.10 Chordaria flagelliformis 20 Chem 39 7.2-17.0 0.53-2.10 Cystoseira abrotanifolia 20 Chem 39 7.2-17.0 0.53-2.10 Cystoseira abrotanifolia 20 Chem 20 Chem 20 Chem 17 2.1-4.0 Camentacea 20 Chem 20 Chem 20 20 20 20 Desmarestia aculeata 14 Chem 12 20 20 20 20 Dictyota dichotoma 20 Chem 20 20 20 20		50	Chem		13-16	2.35-6.1	Oxygen	
U. Jinza 12 Chem 56 0.95 U. Jinza 18 Chem 90 0.67 Urospora penicillioides 20 Chem 160 8.4 1.5-5.7 Valonia utricularis 20 Chem 1.93 0.80 Ascophyllum nodosum 20 Chem 1.93 0.80 Chorda filum 20 Chem 1.93 0.80 Chordaria flagelliformis Chem 1.93 0.80 Chordaria flagelliformis Chem 130 1.2-5.7 Culteria multifida 20 Chem 39 7.2-17.0 0.53-2.10 Cystoseira abrotanifolia 20 Chem 39 7.2-17.0 0.53-2.10 Cystoseira abrotanifolia 20 Chem 20 Chem 1.7-10.0 0.53-2.10 C. barbata Desmarestia aculeata 14 Chem 17 1.1-4.0 Dictyota dichotoma 12 Chem 120 Chem 120 Ectocarpus siliculosus 12 </td <td></td> <td>25</td> <td>Mano</td> <td>81</td> <td></td> <td></td> <td>Various substrates</td> <td></td>		25	Mano	81			Various substrates	
U. Jinza 18 Chem 90 50 0.67 Urospora penicillioides 17 Chem 160 8.4 1.5-5.7 Valonia utricularis 20 Chem 160 8.4 1.5-5.7 Ascophyllum nodosum 20 Chem 14 Brown Chorda filum 20 Chem 150 0.80 Chordaria flagelliformis 20 Chem 130 0.80 Chordaria flagelliformis 20 Chem 39 7.2-17.0 0.53-2.10 Cutleria multifida 20 Chem 39 7.2-17.0 0.53-2.10 Cystoseira abrotanifolia 20 Chem 20 Chem 17 3.9 Cystoseira abrotanifolia 20 Chem 20 Chem 17 3.9 Cystoseira abrotanifolia 20 Chem 27 1.4.0 3.9 Cystoseira abrotanifolia 20 Chem 27 0.98-1.04 Dictyota dichotoma 14 Chem 12 <td></td> <td>12</td> <td>Chem</td> <td>99</td> <td></td> <td>0.95</td> <td></td> <td>_</td>		12	Chem	99		0.95		_
U. linza U. linza 17 Chem 90 90 Valonia utricularis 20 Chem 160 8.4 1.5-5.7 Ascophyllum nodosum 20 Chem 1.93 0.80 Chorda filum 20 Chem 1.93 0.80 Chordaria filum 20 Chem 1.93 0.80 Chordaria filum 20 Chem 130 0.80 Chordaria filum 20 Chem 130 0.80 Chordaria filum 20 Chem 130 0.53-2.10 Chordaria filum 20 Chem 130 1.2-17.0 0.53-2.10 Cystoseira abrotanifolia 20 Chem 20 Chem 17-17.0 0.53-2.10 Cystoseira abrotanifolia 20 Chem 27 0.53-2.10 0.53-2.10 C. barbata 20 Chem 27 0.74-0.2 0.98-1.04 D. viridis 14 Chem 170 0.4-9.2 0.98-1.04 Ectocarp		18	Chem		50	0.67		_
Urospora penicillioides Chem 160 8.4 1.5-5.7 Valonia urricularis 20 Chem 160 8.4 1.5-5.7 Ascophyllum nodosum 20 Chem 1.93 0.80 Chorda filum 20 Chem 1.93 0.80 Chordaria filum 20 Chem 1.93 0.80 Chordaria filum 20 Chem 1.7 1.7 Chordaria flagelliformis 20 Chem 3.9 1.2-17.0 Chordaria flagelliformis 20 Chem 3.9 2.0 Culteria multifida 20 Chem 3.9 2.1-4.0 Cystoseira abrotanifolia 20 Chem 2.5 Chem C. barbata 14 Chem 2.0 Chem Desmarestia aculeata 14 Chem 2.0 Dictyota dichotoma 20 Chem 1.7 Ectocarpus siliculosus 12 Chem 4.1 Ectocarpus siliculosus 17 Mano		12	Chem	00	3			_
Ascophyllum nodosum	1		Client	2,2				1
Ascophyllum nodosum	_		Chem	100	,			1
Ascophyllum nodosum Chem 143 Brown Chorda filum 20 Mano 1.93 0.80 Chordaria filum 9 Chem 150 0.80 Chordaria filum 9 Chem 63 0.80 Chordaria filum 9 Chem 130 0.80 Chordaria filum 20 Chem 130 0.53-2.10 Cladostephus sponglosus 20 Chem 17-2-17.0 0.53-2.10 Culteria multifida 20 Chem 4.5-10.0 1.2-3.7 Cystoseira abrotanifolia 20 Chem 20 Chem 17-2-17.0 0.53-2.10 C. barbata 20 Chem 20 Chem 27-17.0 1.2-3.7 Desmarestia aculeata 14 Chem 27-14.0 1.2-4.0 D. viridis 14 Chem 413 1.4-9.2 0.98-1.04 Ectocarpus siliculosus 12 Chem 413 1.7-9.2 0.98-1.04 Fucus sp 17 Ma		07	Chem		8.4	1.5-5.7	Oxygen	
Ascophyllum nodosum Chem 14 0.80 Chorda filum 20 Mano 1.93 0.80 Chorda filum Chem 150 0.80 C. tomentosa 9 Chem 130 0.80 Chordaria flagelliformis 20 Chem 39 7.2-17.0 0.53-2.10 Cystoseira abrotanifolia 20 Chem 4.5-10.0 1.2-3.7 1.2-4.0 C. barbata 20 Chem 20 Chem 1.2-14.0 Desmarestia aculeata 14 Chem 27 1.4-0 D. viridis 14 Chem 27 0.98-1.04 Ectocarpus siliculosus 12 Chem 413 0.4-9.2 0.98-1.04 E. tomentosus 17 Chem 140 0.26 0.26 Fucus sp 17 Chem 60 0.26 0.26				В	rown			
Chorda filum 20 Mano 1.93 0.80 Chordaria filum Chem 150 0.80 Chordaria filagelliformis Chem 74 0.80 Chordaria filagelliformis Chem 43 0.80 Ciadostephus spongiosus 20 Chem 39 7.2-17.0 0.53-2.10 Cutleria multifida 20 Chem 4.5-10.0 1.2-3.7 3.9 Cystoseira abrotanifolia 20 Chem 4.5-10.0 1.2-3.7 3.9 C. barbata 20 Chem 20 Chem 2.1-4.0 Desmarestia aculeata 14 Chem 120 1.2-10.0 1.2-3.7 D. viridis 20 Chem 17 2.1-4.0 0.98-1.04 Ectocarpus siliculosus 12 Chem 413 9.4-9.2 0.98-1.04 E. tomentosus 17 Mano 1.15 0.25 0.26 Fucus sp 17 Mano 1.15 0.25 0.25	_		Chem	14				
Chorda filum Chem 150 C. tomentosa 9 Chem 74 C. tomentosa Chem 63 Chem Chordaria flagelliformis 20 Chem 39 Culdostephus spongiosus 20 Chem 39 Culdostephus spongiosus 20 Chem 4.5-10.0 Cystoseira abrotanifolia 20 Chem 4.5-10.0 Cystoseira abrotanifolia 20 Chem 17-3.7 C. amentacea 20 Chem 20 C. barbata 14 Chem 12-3.7 Desmarestia aculeata 14 Chem 120 Dictyota dichotoma 20 Chem 170 Dictyota dichotoma 12 Chem 413 Ectocarpus siliculosus 12 Chem 413 E. tomentosus 17 Mano 115 0.26 Fucus sp 17 Mano 115 0.26		20	Mano	1.93		0.80		_
C. tomentosa 9 Chem 74 Chordaria flagelliformis Chem 63 Cladostephus spongiosus 20 Chem 130 Culteria multifidat 20 Chem 39 7.2-17.0 0.53-2.10 Cystoseira abrotanifolia 20 Chem 4.5-10.0 1.2-3.7 1.2-3.7 C. barbata 20 Chem 243 13-17 2.1-4.0 Desmarestia aculeata 14 Chem 120 2.1-4.0 Desmarestia aculeata 20 Chem 120 2.1-4.0 Do viridis 14 Chem 170 2.1-4.0 Dictyota dichotoma 20 Chem 413 9.4-9.2 0.98-1.04 Ectocarpus siliculosus 12 Chem 413 60 1.15 0.26 Fucus sp 17 Mano 1.15 0.26 2.2 0.26	L_		Chem	150				
Chordaria flagelliformis Chem 63 Cladostephus spongiosus 20 Chem 130 Cutleria multifida 20 Chem 7.2-17.0 0.53-2.10 Cystoseira abrotanifolia 20 Chem 4.5-10.0 1.2-3.7 C. amentacea 20 Chem 17 3.9 C. barbata 20 Chem 120 1.2-4.0 Desmarestia aculeata 14 Chem 27 21-4.0 D. viridis 14 Chem 170 21-4.0 Dictyota dichotoma 20 Chem 170 21-4.0 Ectocarpus siliculosus 12 Chem 413 21-4.0 E. tomentosus 17 Chem 60 20.26 Fucus sp 17 Mano 1.15 0.26		6	Chem	74				
Chordaria flagelliformis Chem 130 Cutleria multifida 20 Chem 39 Cutleria multifida 20 Chem 7.2-17.0 0.53-2.10 Cystoseira abrotanifolia 20 Chem 4.5-10.0 1.2-3.7 C. amentacea 20 Chem 17 3.9 C. barbata 14 Chem 120 2.1-4.0 Desmarestia aculeata 20 Chem 27 2.1-4.0 D. viridis 14 Chem 170 2.1-4.0 Dictyota dichotoma 20 Chem 413 2.4-9.2 0.98-1.04 Ectocarpus siliculosus 12 Chem 413 2.1-4.0 0.26 Fucus sp 17 Mano 1.15 0.26 0.26			Chem	63				
Ciadostephus spongiosus 20 Chem 39 7.2-17.0 0.53-2.10 Cutteria multifida 20 Chem 4.5-10.0 1.2-3.7 C. amentacea 20 Chem 4.5-10.0 1.2-3.7 C. barbata 20 Chem 17 3.9 C. barbata 14 Chem 120 2.1-4.0 Desmarestia aculeata 20 Chem 27 2.1-4.0 D. viridis 14 Chem 170 9.4-9.2 0.98-1.04 Ectocarpus siliculosus 12 Chem 413 60 1.15 0.26 Fucus sp 17 Mano 1.15 0.26 0.26	L		Chem	130				-
Cutteria multiflad 20 Chem 7.2-17.0 0.53-2.10 Cystoseira abrotanifolia 20 Chem 4.5-10.0 1.2-3.7 C. amentacea 20 Chem 17 3.9-2.10 C. barbata 20 Chem 24.3 13-17 2.1-4.0 Desmarestia aculeata 20 Chem 120 2.1-4.0 D. viridis 14 Chem 170 14-9.2 0.98-1.04 Ectocarpus siliculosus 12 Chem 413 2.1-4.0 0.98-1.04 E. tomentosus 17 Mano 1.15 0.26 Fucus sp 17 Mano 1.15 0.26	1	20	Chem	30				1
Cystoseira muntinga Cystoseira abrotanifolia Cystoseira abrotanifolia Cystoseira abrotanifolia Cystoseira abrotanifolia Cystoseira abrotanifolia Cystoseira abrotanifolia Cystoseira abrotanifolia Cystoseira abrotanifolia Cystoseira abrotanifolia Cystoseira abrotanifolia Desmarestia aculeata Desmarestia aculeata Chem Chem Chem Chem Chem Chem Chem Chem	_	2 6	Circuit	,		0.00		+
Cystoseira abrotanifolia 20 Chem 4.5-10.0 1.2-3.7 C. amentacea 20 Chem 17 3.9 C. barbata 20 Chem 12 2.1-4.0 Desmarestia aculeata 14 Chem 120 2.1-4.0 D. viridis 14 Chem 170 2.1-4.0 Dictyota dichotoma 20 Chem 142 0.98-1.04 Ectocarpus siliculosus 12 Chem 413 0.4-9.2 0.98-1.04 E. tomentosus 17 Chem 140 0.26 0.26 Fucus sp 17 Mano 1.15 0.26	_	07	Chem		1.2-11.0	0.53-6.10	Oxygen	
C. amentacea 20 Chem 17 3.9 C. barbata 20 Chem 13-17 2.1-4.0 Desmarestia aculeata 14 Chem 120 2.1-4.0 D. viridis 20 Chem 170 2.1-4.0 D. viridis 14 Chem 170 2.1-4.0 Ectocarpus aliculosus 20 Chem 41.3 2.4-9.2 0.98-1.04 E. tomentosus 17 Chem 140 2.1-4.0 2.0-1.04 Fucus sp 17 Mano 1.15 0.26	_	702	Chem		4.5-10.0	1.2-3.7		
C. barbata 20 Chem 243 13-17 2.1-4.0 Desmarestia aculeata 14 Chem 243 13-17 2.1-4.0 Desmarestia aculeata 20 Chem 120 2.1-4.0 2.1-4.0 D. viridis 14 Chem 170 2.1-4.0 2.1-4.0 Dictyota dichotoma 20 Chem 413 9.4-9.2 0.98-1.04 Ectocarpus siliculosus 12 Chem 413 9.4-9.2 0.98-1.04 E. tomentosus Chem 140 0.26 0.26 Fucus sp 17 Mano 1.15 0.26		702	Chem		17	3.9		
Desmarestia aculeata 14 Chem 24.3 D. viridis 20 Chem 120 D. viridis 14 Chem 170 Dictyota dichotoma 20 Chem 14.2 0.98-1.04 Ectocarpus siliculosus 12 Chem 41.3 0.98-1.04 E. tomentosus Chem 140 0.26 Fucus sp 17 Mano 1.15 0.26	_	20	Chem		13-17	2.1-4.0	Oxygen	
D. viridis D. viridis D. viridis D. viridis D. viridis D. viridis D. viridis D. viridis D. viridis D. viridis D. viridis D. viridis D. Chem 170 Chem 170 Chem 170 Chem 170 Chem 170 Chem 170 Chem 170 Chem 170 Chem 170 Chem 140 Chem 1	L.	7-	Cho and	2,43			The state of the s	
D. viridis		F 7	Chem	- 1-2				
D. viridis Chem 170 Dictyota dichotoma 14 Chem 142 Dictyota dichotoma 20 Chem 413 9.4-9.2 0.98-1.04 Ectocarpus siliculosus 12 Chem 413 60 1.14 E. tomentosus Chem 140 60 1.15 0.26 Fucus sp Mano 1.15 0.26 0.26		6	Cilent	2 1				_
D. viridis Chem 170 Dictyota dichotoma 20 Chem 142 0.98-1.04 Ectocarpus siliculosus 12 Chem 140 0.98-1.04 E. tomentosus Chem 140 0.26 Fucus sp 17 Mano 1.15 0.26		0.7	Cuem	17				
14 Chem 14 ^c 14 ^c Chem 14 ^c 14 ^c 14 ^c 14 ^c 14 ^c 16 ^c 1		_	Chem	170				_
Dictyota dichotoma 20 Chem 413 9.4-9.2 0.98-1.04 Ectocarpus siliculosus 12 Chem 140 <td>J</td> <td>14</td> <td>Chem</td> <td>146</td> <td></td> <td></td> <td></td> <td></td>	J	14	Chem	146				
Ectocarpus siliculosus 12 Chem 413 Chem 140 E. tomentosus 60 Fucus sp 17 Mano 1.15 0.26		20	Chem		9.4-9.2	0.98-1.04	Oxygen	
E. tomentosus Chem 140 Chem 60 The Mano 1.15	_	12	Chem	413				
E. tomentosus Fucus sp 17 Mano 1.15		_	Chem	140				
Fucus sp 17 Mano 1.15	_		Chem	09				
Tr.	L	17	Mano		1.15	0.26		
	•	0	Mano		1.25	0.43		_

158. RESPIRATION RATES: ALGAE (Concluded)
Values for rates of gaseous exchange are µl/100 mg dry weight/hour, unless otherwise specified. Underlined number = control or endogenous value.

				Reeningtion Rate	ion Rate			
	a aio a co	Temp	Method	ul/100 mg/hr	mg/hr	R. Q.	Experimental	Reference
		ပ		90 ₂	QCO ₂	CO2/O2	Variable	
	(A)	(B)	(C)	(a)	(E)	(F)	(B)	(H)
				Brown	Brown (concluded			
86	Fucus canaliculatus	15	Mano			0.50		٣
66	F. platycarpus		Chem	19				21
100	F. serratus	20	Chem	188				57
101		18	Chem		18	0.54		77
102			Chem	35		(17
103		17	Chem	19		0.99		1.7
104		18	Mano	2.83		0.74		28
105	F. vesiculosus	20	Chem	25				23
106			Chem	34				2.1
107		17	Chem	,	11	09.0		22
108		18	Mano	5,13		0.78		87
109		18	Mano	202				30
110		18	Mano	2552			Antherozoids	3.0
111		18	Mano	54-1002			Eggs; fertilization	30
112	Halidrys siliquosa		Chem	33				21
113	Laminaria digitata	5	Mano		96.0	0.67		59
114	0	17	Chem	23				22
115			Chem	23				2.1
116	000000000000000000000000000000000000000		Chem	2 8				2.1
1 1 1	T. The state of th		Chemin	2 -				2.1
) 1 1	L. phyllins		Chem	1 7				3.3
118	L. saccharina	07	Chem	,				62
119			Chem	080				17
120		15	Chem		u			17
121		2	Mano		2.15	0.80		62
122	Myelophycus caespitosus	52	Mano	46			Various substrates	00
123	Pogotrichum filiformis		Chem	210				2.1
124	Punctaria sp		Chem	72				21
125	P. plantaginea		Chem	73				21
126	Sargassum linifolium	20	Chem		24	5.5		24
127	Scytosiphon lomentarius	52	Mano	150			Various substrates	ο <i>i</i>
128	6		Chem	067	0 0 0			17
129	Taonia atomaria	02	Chem		0.7-20.0	0.91-3.10	Oxygen	47
					Red			
130	\sqcup	20	Chem	64				23
131	Ceramium rubrum	17	Chem		45	0.89		77
132	Chondrus crispus		Chem	38				21
133		23	Mano	2.83		0.81		8 7
134		14	Chem	18				27
135		20	Chem	28				23
136		20	Chem		7.5-9.9	2.4-3.8	Oxygen	24
137	Ш		Chem	99				7.7
138	Delesseria alata		Chem	51				21
139		20	Chem	41				23

21	21	22	21	23	2.7	α α	2, 2	7.7	ά	24	1 0	1 00	24	1 ~	2.4	21	4.5	2 2 2	27	21	23	7.7		2.1	22	22	27	22	21	88	
						Various substrates			Various substrates		Oxygen	Various substrates																		Various substrates	
							3.26	0.98		1.4	2.2-4.1		1.49	4.5	4.88		1.56									1.02					
							13			6	15-16		4.2	8.8	18		4.6									107					
110	140	33	38	12	7	85		49	63			164				99		67	21	46	21	5	36	1 30	103		39	63	86	155	
Chem	Chem	Chem	Chem	Chem	Chem	Mano	Chem	Chem	Mano	Chem	Chem	Mano	Chem	Chem	Chem	Chem	Chem	Chem	Chem	Chem	Chem	Chem	Chem	Chem	Chem	Chem	Chem	Mano	Chem	Mano	i
		14		50	14	52	20	12	25	07	20	25	07	20	20		20		14		20	14			12	11	17			52	
D. sanguinea D, sinuosa	Dumontia filiformis	Furcellaria fastiglata				Gelidium amansii	G. corneum	Gigartina teedii	Gloiopeltis complanata	Gracilaria compressa	G. confervoides		Grateloupla consentinii	G. proteus	Laurencia papillosa	Phyllophora sp	P. nervosa	P. brodiaei	Plocamium coccineum			Polyides lumbricoides	P. rotundus	Polysiphonia urceolata		P. violacea	Porphyra lacinlata		P. leucosticta	P. tenera	Dr. Jones In St. C.

/1/ Mano = manometric, Chem = chemical. /2/ µ1/100 µl cell volume/hour. /3/ µ1/100 mg wet weight/hour. /5/ µ1/sq cm/hour.

Contributors: (a) Mandels, G. R., and Darby, R. T., (b) Blinks, L. R., (c) Myers, J., (d) Vallance, K. B.

References: [1] Webster, G. C., and Frenkel, A. W., Plant Physiol. 28:63, 1953. [2] Kratz, W. A., and Myers, J., ibid 30:275, 1955. [3] Bonnier, G., and Mangin, L., Ann. sc. nat. Botan. et. biol. végétale., Series 6, 19:217, 1884. [4] Kolkwitz, R., Wiss. Meeresuntersuch., Abt. Helgoland, N. S. 4:31, 1900. 16] Allen, M. B., Gest, H., and Kamen, M. D., Arch. Biochem., N. Y. 14:335, 1947. [17] Tang, P. S., J. Cellul. Physiol, 10:499, 1937. [18] Tang, P. S., [11] French, C. S., Kohn, H. I., and Tang, P. S., J. Gen. Physiol. 18:193, 1934. [12] Gaffron, H., ibid 28:259, 1945. [13] Cramer, M., and Myers, J., Plant Physiol. 24:255, 1949. [14] Gaffron, H., Biol. 2bl. 59:288, 1939. [15] Green, L. F., McCarthy, J. F., and King, C. G., J. Biol. Chem. 128:447, 1939. and French, C. S., Chin. J. Physiol. 7:353, 1933. [19] Warburg, O., Burk, D., Schocken, V., Korzenovsky, M., and Hendricks, S. B., Arch. Biochem., N. Y. 21:330, 1949. [20] Fratt, R., Am. J. Bot. 30:404, 1943. [21] Harder, R., Jahrb. wiss. Botan. 56:254, 1915. [22] Hoffmann, C., ibid 71:214, 1929. [23] Gessner, F., ibid 89:1, 1940. [24] Pantanelli, E., Ber. Deut. botan. Ges. 32:488, 1914. [25] Fraymouth, J., Ann. Botany. Lond. 42:75, 1928. [26] Bode, H. R., Jahrb. wiss. Botan. 65:352, 1925. [27] Kniep, H., Internat. Rev. Hydrob., Lpz. 7:1, 1914. [28] Kylin, H., Arkiv. für Bot. 11:1, 1911. Watanabe, A., Acta Phytochim., Japan 9:235, 1937. [9] Genevois, L., Biochem. Zschr., 186:461, 1927. [10] Genevois, L., Rev. gén. botan. 40:654, 1928. 5] Davis, E. A., Science 112:113, 1950. [6] Eny, D. M., Plant Physiol. 26:268, 1951. [7] Sorokin, C., and Myers, J., J. Gen. Physiol. 40:579, 1957. [8] Watanabe, A., Acta Phytochim, Japan 9:235, 1937. [9] Genevois, L. Biochem, Zschr. 186:46, 1977. [10] Genevois, L. Biochem, Zschr. 186:46, 1977.

Krascheninnikoff, T., C. rend. Acad. sc. 182:939, 1926. [30] Whitaker, D. M., J. Gen. Physiol. 15:167, 1931.

159. RESPIRATION RATES: LICHENS

Values for rates of gaseous exchange are $\mu l/100$ mg dry weight/hour, unless otherwise specified.

Column C	Temp
(F) (G) P. olivaria (Cond (D) (E) 1 70 P. physodes 18.5 Chem 3-40 ² 12 1 71 P. subautiliera Cond 40-70 ² 12 1 71 P. subautiliera Cond 40-70 ² 10 1 74 Peltigera aphthosa 30 Mano 90 50-100 ² 2 79 P. canina 10 Mano 12 40-70 ² 2 79 P. canina 10 Mano 12 144.5 2 80 P. canina 10 Mano 12 144.5 8 P. cuinsaria amara Mano 10 Mano 144.5 9 P. cr	Method 402 4CO2
1 69 P. olivaria Cond 17 17 P. physodes 18.5 Chem 3-40 ² 12 17 P. saxatilis Cond 340-70 ² 17 P. saxatilis Cond 340-70 ² 17 P. subaurifera 30 Mano 31 17 17 P. canina 30 Mano 31 18 18 P. subaurifera 30 Mano 31 30 Mano 32 30 Mano 32 30 Mano 34 32 34 32 34 34 34 34	(C) (D)
1 70 P. physodes 18.5 Cond 3-40 ² 1 72 P. saxatilis Cond 3-40 ² 1 73 P. subaurifera Cond 3-100 ² 1 74 Pelligera aphithosa 10 Mano 17 1 75 P. canina 10 Mano 12 2 80 P. canina 10 Mano 12 2 80 P. conmunis 10 Mano 19 3 P. subamericana 10 Mano 19 44,5 P. communis 10 Mano 10 1 84 P. communis 10 Mano 10 1 88 P. communis 10 Mano 10 1 89 P. ciliaris 10 Mano 17 1 89 P. ciliaris 10 Mano 17 1 90 P. parientina 10 Mano 17 1 10 10 P. parientina 10 Mano 10 1 10 10 P. parientina 10 Mano 10 1 10 10 P. parientina 10 Mano 10 1 P. parientina	
1 72 P. saxatilis Cond 60 40-702 1 73 P. subaurifera Cond 50-1002 1 75 P. subaurifera 10 Mano 17 2 78 P. canina 10 Mano 12 2 82 P. polydactyla 25 25 25 3 P. subamericana 10 Mano 12 15.33 4 P. communis 10 Mano 13 8 P. communis 10 Mano 14 1 8 P. communis 10 Mano 13 8 P. communis 10 Mano 13 9 P. ciliaris 10 Mano 13 1 9 P. ciliaris 10 Mano 10 1 9 P. parientina 10 Mano 10 1 10 P. parientina 10 10 1 10 P. parientina 10 10 10 P. parientina 10 10 11 10 P. parientina 10	Mano 14
1 73 P. subaurifera 30 Mano 30 75 1 74 Pelitigera aphthosa 30 Mano 30 75 2 75 P. canina 30 Mano 36 75 2 79 P. canina 30 Mano 36 1944, 5 2 80 P. subamericana 30 Mano 36 1944, 5 3 9 P. subamericana 30 Mano 42 4 P. communis 30 Mano 42 5 P. communis 30 Mano 43 6 Pertuaaria amara 30 Mano 14 8 Pryscia aipolia 45 Mano 17 9 P. communis 30 Mano 13 1 90 P. communis 30 Mano 17 1 90 P. ciliaris 30 Mano 3.3 1 90 P. ciliaris 30 Mano 17 1 100 P. caninacea 50 Mano 17 1 101 102 P. caninacea 50 Mano 16 1 102 P. caninacea 30 Mano 16 1 103 P. caninacea 30 Mano 16 1 104 P. caninacea 30 Mano 16 1 105 P. caninacea 30 Mano 16 1 106 P. caninacea 30 Mano 16 1 107 P. caninacea 30 Mano 3.8 1 108 P. caninacea 30 Mano 3.8 1 109 P. caninacea 30 Mano 3.8 1 100 P. caninacea 30 Mano 3.8 1 101 102 P. caninacea 30 Mano 3.8 1 102 P. caninacea 30 Mano 3.8 1 103 P. caninacea 30 Mano 3.8 1 104 P. caninacea 30 Mano 3.8 1 105 P. caninacea 30 Mano 3.8 1 106 P. caninacea 30 Mano 3.8 1 107 P. caninacea 30 Mano 3.8 1 108 P. caninacea 30 Mano 3.8 1 109 P. caninacea 30 Mano 3.8 1 100 P. caninacea 30 Mano 3.8 1 100 P. caninacea 30 Mano 3.8 1 100 P. caninacea 30 Mano 3.8 1 1 1 1 1 1 1 1 1 1	\vdash
1 75 Petitigera aphthosa 30 Mano 90 1 76 P. canina 10 Mano 17 2 78 P. canina 10 Mano 12 2 79 P. canina 10 Mano 12 3 82 P. polydactyla 25 1044,5 4 84 P. subamericana 30 Mano 12 5 86 Petitisaria amara 30 Mano 17 86 Petitisaria amara 30 Mano 17 88 Physicia aiolia 30 Mano 17 90 P. canina 45 Mano 17 10 90 P. canina 10 Mano 17 10 10 P. parientina 10 Mano 17 10 10 P. parientina 10 Mano 10 10 P. parientina 10 Mano 10 10 P. parientina 10 Mano 10 10 P. parientina 10 Mano 10 10 P. parientina 10 Mano 10 10 P. parientina 10 Mano 10 10 P. parientina 10 Mano 10 10 P. parientina 10 Mano 10 10 P. parientina 10 Mano 10 10 P. parientina 10 Mano 10 10 P. parientina 10 Mano 10 10 P. parientina 10 Mano 10 10 P. parientina 10 Mano 10 10 P. parientina 10 Mano 10 10 P. parientina 10 Mano 10 10 P. parientina 10 Mano 10 10 P. parientina 10 Mano 10 10 P. parientina 10 Mano 10 10 P. parientina 10	Mano 9
1 75 70 70 70 70 70 70 70	_
1	Mano 20
10	_
2 79 80 80 80 80 80 80 80 8	
1	
1	
1 84 P. subamericana 10 Mano 19 1 86 Pertusaria amara 10 Mano 19 1 86 Pertusaria amara 10 Mano 19 1 89 P. communis Mano 14 1 90 P. ciliaris 45 Mano 13 1 90 P. parientina 30 Mano 13 1 90 P. parientina 10 10 1 90 P. dendrescoides 30 Mano 17 1 100 P. farinacea 50 Mano 17 1 101 102 P. farinacea 50 Mano 19 1 101 P. farinacea 50 Mano 10 1 102 P. farinacea 50 Mano 10 1 103 P. farinacea 50 Mano 10 1 104 P. farinacea 30 Mano 10 1 105 P. farinacea 30 Mano 10 1 106 P. farinacea 30 Mano 10 1 107 P. farinacea 30 Mano 10 1 108 P. sushea 30 Mano 10 1 108 P. sushea 30 Mano 10 1 109 P. farinacea 30 Mano 10 1 100 P. farinacea 30 Mano 30 1 100 P. farinacea	Chem 31
1 84 Pertusaria amara 10 Mano 19 10 Mano 19 10 Mano 19 10 Mano 19 10 Mano 10 10 10 10 10 10 10 1	
1 86 Pertusaria amara 0 Mano 5.7 1 86 Pertusaria amara Mano 1 1 88 Physcia aipolia Mano 14 1 89 P. ciliaris Mano 14 1 90 P. parientina Mano 13 0.84 3 94 Ramalina alludens 30 Mano 17 1 97 Ramalina alludens 30 Mano 17 1 100 Mano 17 1 101 102 Mano 10 1 102 Raxinea 10 Mano 10 1 103 R. fraxinea 20 Chem 21 1 104 R. leptosperma 30 Mano 16 1 106 R. leptosperma 30 Mano 16 1 106 R. leptosperma 30 Mano 16 1 107 R. leptosperma 30 Mano 16 1 108 R. usnea 30 Mano 3.8 1 109 Mano 3.5 1 100 Mano 3.5 1 1 1 1 1 1 1 1 1	48
1 86 Pertusaria amara Mano 1 88 Physcia aipolia Mano 14 89 P. ciliaris Mano 14 90 P. parientina 10 Mano 13 94 Mano 14 95 Mano 15 94 Mano 17 95 Mano 17 96 Mano 17 97 97 97 97 97 97 97	Mano 19
1 87 P. communis Mano Lange Physicia aipolia Mano Lange Physicia aipolia Mano Lange Lange P. ciliaris Mano Lange	
1 88 Physicia aipolia Mano 23 1 90 P. ciliaris Mano 14 1 90 P. parientina Mano 13 1 90 Ramalina alludens 30 Mano 17 1 90 R. dendrescoides 30 Mano 17 1 90 R. farinacea 50 Mano 17 1 100 R. fraxinea 45 Mano 16 1 101 102 R. leptosperma 30 Mano 16 1 102 R. leptosperma 30 Mano 16 1 104 R. leptosperma 30 Mano 16 1 106 R. leptosperma 30 Mano 16 1 107 R. leptosperma 30 Mano 16 1 108 R. usnea 30 Mano 3.8 1 109 R. usnea 30 Mano 3.5 1 100 Mano 3.5 1	Mano 31
1 89 P. ciliaris 45 Mano 13 1 90 P. parientina 46 Mano 13 1 92 Ramalina alludens 30 Mano 13 0.80 3 94 P. dendrescoides 30 Mano 17 1 97 R. dendrescoides 30 Mano 17 1 100 Mano 4 24 1 101 102 Mano 19 1 102 R. fraxinea 45 Mano 16 1 104 R. leptosperma 30 Mano 16 1 106 R. leptosperma 30 Mano 16 1 107 R. leptosperma 30 Mano 16 1 108 R. usnea 30 Mano 16 0.88 3 110 Mano 3.5 0.88 3 110 Mano 3.5 1 108 R. usnea 30 Mano 30 1 109 R. usnea 30 Mano 30 1 100 Mano 3.5 1 100 Mano 3.5 1 1 1 1 1 1 1 1 1	_
1 90 P. parientina 45 Mano 14 0.84 3 94 Ramalina alludens 30 Mano 1.3 0.80 3 94 R. dendrescoides 30 Mano 1.2 1 97 R. farinacea 50 Mano 1.5 1 101 102 R. fraxinea 45 Mano 1.6 1 102 R. fraxinea 45 Mano 1.6 1 104 R. leptosperma 30 Mano 1.6 1 106 R. leptosperma 30 Mano 1.6 0.81 3 1.09 R. usnea 30 Mano 1.6 0.88 3 1.10 Mano 3.5 0.88 3 1.10 Mano 3.5 0.89 0.88 3.5 1.00 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.	
0.84 3 Parallina alludens 30 Mano 13 70 0.80 3 94 Ramalina alludens 30 Mano 13 70 0.80 3 95 R. dendrescoides 30 Mano 17 1 96 R. dendrescoides 30 Mano 17 1 97 R. farinacea 50 Mano 4 1 100 Mano 4 19 1 101 20 Chem 71 1 102 20 Chem 51 1 103 R. fraxinea 45 Mano 16 1 104 R. leptosperma 30 Mano 6.9 0.81 3 100 Mano 16 19 0.88 3 109 Mano 16 19 0.88 3 100 Mano 16 19 0.88 3 10 Mano	_
0.84 3 93 Mano 3.3 0.80 3 94 Mano 2.2 0.80 3 95 R. dendrescoides 30 Mano 17 1 96 R. farinacea 0 Mano 4 24 1 100 Mano 4 24 19 1 101 102 Chem 41 11 1 102 Chem 5 Chem 51 1 103 R. fraxinea 45 Mano 16 1 104 R. leptosperma 30 Mano 16 0.81 3 106 Mano 16 19 0.81 3 109 Mano 3.8 10 0.78 3 109 Mano 3.6 0.88 3 109 Mano 3.6 0.88 3 109 Mano 3.5	Mano 6.9
0.80 3 94 R. dendrescoides 30 Mano 2.2 0.80 3 95 R. dendrescoides 30 Mano 17 1 96 R. farinacea 0 Mano 4 24 1 100 Mano 40 19 19 1 101 Chem 20 Chem 41 1 102 R. fraxinea 45 Mano 16 1 104 R. leptosperma 30 Mano 16 1 106 R. leptosperma 30 Mano 16 0.81 3 109 Mano 3.8 10 0.78 3 109 Mano 16 10 0.88 3 110 Mano 3.5	+
0.80 3 95 R. dendrescoides 30 Mano 17 1 96 R. farinacea 10 Mano 4 24 1 1 100 Mano 19 19 1 1 100 Chem 20 Chem 41 1 1 102 Chem 41 10 10 1 1 102 Chem 5 10 10 11 1 1 104 R. leptosperma 30 Mano 16 19 0 1 1 106 R. leptosperma 30 Mano 16 19 0 1 1 106 R. usnea 30 Mano 3.8 10 0 1	
1 96 Mano 9 10 Mano 9 10 Mano 9 10 10 10 10 10 10 10	
1 97 8 R. farinacea 0 Mano 4 24 1 100 30 Chem 19 1 101 102 Chem 20 Chem 41 1 103 R. fraxinea 45 Mano 16 1 104 R. leptosperma 30 Mano 16 1 107 R. usnea 30 Mano 16 0 0.81 3 109 R. usnea 30 Mano 3.8 0 0.88 3 110 0 Mano 3.5 0 0.88 3 110 0 Mano 3.5	_
1 98 K. Iarinacea 50 Mano 24 1 100 20 Chem 21 1 101 20 Chem 41 1 102 20 Chem 41 1 103 R. fraxinea 45 Mano 16 1 104 R. leptosperma 30 Mano 16 1 107 R. usnea 30 Mano 16 0 0.81 3 109 R. usnea 30 Mano 3.8 0 0.88 3 110 Mano 3.5 1 1 1 1 1 1 1 1 1	_
1 99 17 17 17 17 17 17	Mano 3.1
1 100 20 Chem 41 100 102 102 103 R. fraxinea 45 Mano 16 17 104 106 R. leptosperma 30 Mano 16 19 100 Mano 16 100 Mano 100 100 Mano 100 10	Mano 24
1 102 103 R. fraxinea 45 Mano 17 19 104 105 R. leptosperma 30 Mano 16 19 106 106 10 Mano 16 107 Mano 16 108 R. usnea 30 Mano 16 108 3 110 Mano 3.5 110 M	Mano 2.9
1 103 R. fraxinea 45 Mano 17 104 105 R. leptosperma 30 Mano 16 19 106 106 10 Mano 6.9 108 R. usnea 30 Mano 16 100 Mano 16 100 Mano 16 100 Mano 10 100	+
1 104 R. leptosperma 30 Mano 16 19 106 106 10 Mano 16 10 Mano 16 10 Mano 16 108 108 R. usnea 30 Mano 16 10 Mano 16 10 Mano 10 Mano 10 Mano 10 Mano 3.5 110 Mano 3.5	_
1 105 R. leptosperma 30 Mano 106 100 1	Mano 5
1 106 10 Mano 10 M	
0 Mano 0.81 3 108 R. usnea 30 Mano 0.78 3 109 Mano 0.88 3 110 Mano	
0.81 3 108 R. usnea 30 Mano 0.78 3 109 Mano 0.88 3 110	Mano 7
0.78 3 110 0 Mano	
	Mano 21

1	43	30	Chem		99		Ž	111	Solorina crocea	30	Mano	43		-
Lecanora haematomma	44	20	Chem		31		2	112		10	Mano	24		1
Lecides augustana Mano 0.86 3 114 Sticta laciniata 30 Mano 11 Mano 11 Mano 12 Mano 13 Mano 14 Mano 14 Mano 15 Mano 16 Mano 17 Mano 17 Mano 18 Mano 19 Mano 19 Mano 19 Mano 19 Mano 19 Mano 10 Mano 10 Mano 10 Mano 11 Mano 12 Mano 12 Mano 13 Mano 14 Mano 15 Mano 15 Mano 15 Mano 16 Mano 16 Mano 17 Mano 18 Mano 19 Mano 19 Mano 19 Mano 19 Mano 19 Mano 10 Mano 1	45	0	Chem		5		2	113		0	Mano	10		
L. subfusca	4		Mano			08.0	3	1	Sticta laciniata	30	Mano	87		-
Lecides superans Mano 7 Mano 7 Anno 7 Anno 7 Anno 4 Anno 4 Anno 4 117 S. weigelii 90 Mano 7 Anno 4 117 S. weigelii 90 Mano 6.7 Anno 10 Mano 12 118 S. weigelii 90 Mano 6.7 Anno 1.2 4 120 Mano 6.7 Anno 1.2 4 120 Mano 1.1 1.2 Anno 1.2 4 1.2 Anno 1.2	_		Mano			0.80	3	115		10	Mano	11		_
Lobaria linita 30 Mano 72 1 117 S. weigelii 30 Mano 40 Anno 14 Anno 15 Teloschistes flavicans 30 Mano 24 Anno 15 Anno 11 Anno 15 Anno 16 Anno 17 Anno 17 Anno 17 Anno 17 Anno 17 Anno 17 Anno 18 Anno 19 Anno			Mano			0.85	3	116		0	Mano	7		_
L. pulmonaria 10 Mano 12 118 <t< td=""><td></td><td>30</td><td>Mano</td><td>7.5</td><td></td><td></td><td>_</td><td></td><td>S. weigelii</td><td>30</td><td>Mano</td><td>40</td><td></td><td>-</td></t<>		30	Mano	7.5			_		S. weigelii	30	Mano	40		-
L. scrobiculata 0 Mano 10 Mano 50 Mano 4.2 Mano <th< td=""><td>0</td><td>10</td><td>Mano</td><td>22</td><td></td><td></td><td>-</td><td>118</td><td></td><td>10</td><td>Mano</td><td>14</td><td></td><td>-</td></th<>	0	10	Mano	22			-	118		10	Mano	14		-
L. pulmonaria 27 Chem 1-26 ² 4 120 Teloschistes flavicans 30 Mano 24 L. scrobiculata 30 Mano 20 1-26 ² 1 122 Chem 10 Mano 11 122 Chem 10 Mano 12 1 122 Chem 10 Mano 12 1 122 Chem Chem 10 Mano 12 123 0.74 3 123 Mano 14 124 Tharmolia vermicularis 30 Mano 14 0.6-52.0 ² 12 0.6-52.0 ² 12 0.6-52.0 ²	1	0	Mano	10			-	119		0	Mano	6.7		7
L. scrobiculata 30 Mano 50 Mano 1 121 122 Mano 5 Mano 1 123 Chem, 5 5 Chem, 5 5 Chem, 5 0 Mano 5 0 6-52.02 0 Chem, 5 0 Chem, 6		27	Chem		1-262		4		Teloschistes flavicans	30	Mano	24		-
Omphalodiscus 10 Mano 29 1 123 Chem, Cond 5 Chem, C		30	Mano	20			-	121		10	Mano	11		_
Omphalodiscus Mano 12 123 Thamnolia vermicularis Chem, Cond Chem, Cond O.6-52.0 ² decussatus 10 Mano 5.2 2 1 124 Thamnolia vermicularis 30 Mano 28 6.5-52.0 ² Opegrapha notha Mano 3.1 1 124 Thamnolia vermicularis 30 Mano 1.2 4 4 2 6.5-52.0 ² 6 6 6 6.5-52.0 ² 6 6	4	10	Mano	62			-	122		0	Mano	2		_
Omphalodiscus 30 Mano 27 1 124 Thamnolia vermicularis 30 Mano 28 Cond Assistant Cond Mano 4.2 Properate acceptability 30 Mano 4.1 12.3 Umbilicaria 30 Mano 4.1 3.5	5	0	Mano	12			1	123			Chem,		0.6-52.02	6
decussatus 10 Mano 6.2 11 124 Thamnolia vermicularis 30 Mano 28 Anno 14 Anno 15 Anno 16 Anno 17 Anno Anno 18 Anno		30	Mano	27			1				Cond			
Opegrapha notha Mano 3.1 1 125 Mano 1.2 Mano 4.2 Mano 4.1 Mano 4.2 Mano		10	Mano	6.2			-		Thamnolia vermicularis	30	Mano	87		-
Opegrapha notha Mano 2.3 0.74 3 126 Mano 4.2 Mano 4.1 Mano 4.2 Mano 4.1 Mano 4.1	8	0	Mano	3.1			-	125		10	Mano	14		~
Parmelia acetabulum Mano 2.3 0.79 3 127 Umbilicaria 30 Mano 30 P. caperata Mano 25 0.75 3 128 cinereorufescens 10 Mano 9.8 P. centrifuga 10 Mano 2.4 1 130 U. proboscidea 30 Mano 4.1 P. furfuracea Cond Mano 2.5 10 5 132 0 Mano 3.5 77-540 ² P. nigrociliata 30 Mano 25 1 133 U. pustulata 28 Chem 11-22 P. nigrociliata 10 Mano 13 1 134 Usera dasypoga Cond 60-90 ²	<u> </u>		Mano			0.74	3	126		0	Mano	4.2	•	_
P. caperata Mano 25 0.75 3 128 cinereorufescens 10 Mano 4.1 Anno 4.1 Anno 4.1 Anno 4.1 Anno Anno 4.1 Anno	Ļ.		Mano		2.3	62.0	3	1	Umbilicaria	30	Mano	30		-
P. centrifuga 30 Mano 20 Mano 20 Mano 4.1 129 Mano 4.1 129 Mano 4.1 130 W. proboscidea 30 Mano 18 77-540 ² 77-540 ² P. furfuracea 30 Mano 25 13 1 131 W. pustulata 10 Mano 3.5 77-540 ² 11-22 11-22			Mano		25	0.75	9	128	cinereorufescens	10	Mano	8.6		7
10 Mano 8.5 1 130 U. proboscidea 30 Mano 18		30	Mano	02			-	129		0	Mano	4.1		-
P. furfuracea O Mano 2.4 Local lata I Local lata <td>3</td> <td>10</td> <td>Mano</td> <td>8.5</td> <td></td> <td></td> <td>-</td> <td></td> <td>U. proboscidea</td> <td>30</td> <td>Mano</td> <td>18</td> <td></td> <td></td>	3	10	Mano	8.5			-		U. proboscidea	30	Mano	18		
P. furfuracea Cond Cond 10 5 132 Description 0 Mano 3.5 77-540 ² P. nigrociliata 10 Mano 13 1 134 Wano 18 11-22 11-22 0 Mano 4 1 135 Usnea dasypoga Cond 60-90 ²	4	0	Mano	2.4			-	131		10	Mano	6.5		_
P. nigrociliata 30 Mano 25 1 133 U. pustulata 28 Chem 77-540 ² 10 Mano 13 1 134 135 Usnea dasypoga Cond 60-90 ²			Cond		10		2	132		0	Mano	3.5		-
10 Mano 13 1 134 28 Chem 11-222 0 Mano 4 1 135 Usnea dasypoga Cond 60-902	_	30	Mano	52			~		U. pustulata		Mano		77-5402	9
0 Mano 4 1 135 Usnea dasypoga Cond 60-902	2.0	10	Mano	13			7	134		82	Chem		11-222	4
	80	0	Mano	4			-	135	Usnea dasypoga		Cond		706-09	2

/1/ Mano = manometric; Chem = chemical; Cond = conductometric. /2/ Effect of moisture. /3/ µl/sq cm/hour. /4/ µl/100 mg wet weight/hour. /5/ Effect of temperature.

Contributors: Mandels, G. R., and Darby, R. T.

References: [1] Scholander, P. F., Flagg, W., Walters, V., and Irving, L., Am. J. Bot, 39:707, 1952. [2] Stålfelt, M. G., Planta 29:11, 1938. [3] Jumelle, H., Rev. gén. botan. 4:49, 103, 159, 220, 259, 305, 1892. [4] Stocker, O., Flora 121:334, 1927. [5] Neubauer, A. F., Beitr. Biol. Pflanz. 25:273, 1938. [6] Fraymouth, J., Ann. Botany, Lond. 42:75, 1928. [7] Boysen-Jensen, P., and Müller, D., Jahrb. wiss. Botan. 70:503, 1929. [8] Smyth, E. S., Ann. Botany, Lond. 48:781, 1934. [9] Cuthbert, J. B., Trans. Roy. Soc. S. Afr. 22:35, 1934.

160. RESPIRATION RATES: FUNGI

Values for rates of gaseous exchange are given in µl/mg dry weight/hour, unless otherwise specified. Species names in parentheses are former nomenclature. Column H: Numbers underscored = values for aerobic CO₂ production.

Species	Material	Temp Metn-	TITO TAT	2000	Specifications	ul/mg/hr	g/hr	P. 6.	Experimental	Reler
		υ Ο	1 po	strate ²		Q02	QCO ₂	CO2/O2	Variable	ence
(A)	(B)	(C)	(D)	(E)	(F)	(C)	(H)	(1)	(7)	(K)
					Myxomycetes					
Physarum	Plasmodium	22	Mano End	End	10;50;300 mg/vessel.	0.253-1.43-			Method	-
	Plasmodium	22	Mano		50 mg/vessel.		1.03-0.243			~ (
	Plasmodium	25	Mano	End	PO ₄ buffer,pH 6.0,0da.	1.083	0.113	0.83	Substrate	2 %
			!		Phycomycetes					+
Allomyces arbuscula	Mycelia4	20	Mano	Org	+0.1M glutamate.	0.84			Substrate	4
9	Mycelia4	28	Mano	End	Starved.	1.5-17.9			Starvation	2
7 A. cystogenus	Mycelia4	20	Mano	Org	+0.1M glutamate.	0.88			Substrate	4,
A. Javanicus A. moniliformis	Mycelia4	20	Mano	Org Org	+0.1M glutamate.	1.03			Substrate	7 7
10 Leptomitus lacteus	Pellets	20	Mano	End	Starved 0;4;8 hr.	20-15-10			Hr starved	9
	Pellets	20	Mano	Org	+p, L-Alanine, 2-5 hr.	35-40			Substrate; age	9
	Pellets	20	Mano	Org	+L-Leucine, 1-4 hr.	30-40			Substrate; age	9
	Pellets	200	Mano	Org	Francisco 6-0 nr.	10-10		000	Substrate; age	0 4
	Pellets	20	Mano	Org Org	+p. L-Alanine.			0.99	Substrate	9
	Pellets	20	Mano	Org	+Glycine.			1.12	Substrate	9
	Pellets	20	Mano	Org	+L-Leucine.			0.64	Substrate	9
	Pellets	20	Mano	Org	+Acetate.			0.98	Substrate	9
	Pellets	20	Mano	Org	+Butyrate.			0.83	Substrate	9
20 Mucor guilliermondi	Mycelia	25	Mano	End	Mycelial phase.	5.7-10.0	7.1		Substrate	١- ١
	Mycella	67	Mano	CEO	rolucose, inyceniai	5.U-C1.4	10.3-02.1		Substrate	_
	Mycelia	25	Mano	End	Mycelial phase.		3.2		Substrate	7
	Mycelia	25	Mano	СНО	+Glucose, mycellal		10.7-42.3		Substrate	7
	Coll angronous	25	Mono	7 5 6	Vones show	7 1 0 0			Cbottonto	,
1 N	Cell suspension	7 2 2	Mano	CHO	Heast plase.	7.8-39.0	30 9-142 0		Substrate	- ~
2 2 2	Cell suspension	25	Mano	CHO	+Glucose, yeast phase.		21.9-118.0		Substrate	~
	Mycelia; cell	25	Mano	СНО		12.1-29.0	52.3-78.7		Substrate	- 2
	suspension	L		Q.			1 7 7 00		1	-
0	Mycella; cell suspension	67	Mano	CEO	Tolucose, mixed phase.		30.0-03.3		anestrate	_
29 M. stolonifer	Mycelia	20	Chem	СНО				1.53	Temperature	00
		35	Chem	СНО				1.72	Temperature	00
Ξ	Pellets4, 5	25		End	Unstarved; starved.	21-1.9			Substrate	6
32 atrovirens	Pellets*, 2	25		CHO	+Glucose.	8.7-10.9			Substrate	6

		Pellets*,	25		CHO	+Citrate.	10.0			Substrate	7
立		Mycelia	20	Chem	СНО	1.5-3.5-7 da.		27-13-3		Age	10
37 blakesleeanus	snu		Room	Chem	Com	On bread.			0.99-1.21	Substrate	11
			Room	Chem	Com	On linseed.			0.66-0.75	Substrate	11
39 P. nitens		Mycelia	52	Mano	СНО	11y Vit B1/100 ml.	8.2-13.9			Accessory growth	12
40		Mycelia	10	Chem	wo.				0	factors	13
41 Rhizopus sp			28		CHO	4-8 da.		4.7			14
	moelleri		25	Mano	End	pH 3.6;5.0;6.0;6.8;8.8.	6.3-8.6-9.4-			Hd	15
							6.4-10.3				
43		Mycelia	25	Mano	СНО	+Glucose, pH 3.6;5.0;	33,6-40.0-			Hd	15
						6.0;6.8;8.0;8.8.	31.5-26.4-				
			ı		(14.9-13.8				1
44		Mycelia	52	Mano	СНО	+Glucose, NH4Cl, pH 3.6; 51.9-56.9-	51.9-56.9-			Hd	15
						5.0;6.0;6.8;8.0;8.8.	48.2-53.1-				
1							27.6-23.2				
45		Mycelia	25	Mano	СНО	pH 6.8 + glucose, KNO3;	28.1-29.0-			Substrate; pH	15
						glucose, NaNO2; glu-	23.2-44.6-				
						cose, NH2OH; glucose,	40.6-49.9-				
						urea;glucose,	47.2				
						aspartic;glucose,glu-					
						tamic:plucose, aspar-					
						orino					
46		Mycelia	2.5	Mano	CHO	DH 6 8 +sucrose.	35 5-60 4			Substrate: pH	15
						sucrose, NH ₄ Cl.					
47		Mycelia	25	Mano	CHO	pH 6.8, +fructose;	11.0-12.7			Substrate; pH	15
		>				fructose, NH4Cl.					
48		Mycelia	52	Mano	СНО	pH6.8, +acetate;	54.4-66.7			Substrate; pH	15
						acetate, NH ₄ Cl.			_		
49		Mycelia	52	Mano	СНО	pH 6.8, +succinate;	29.8-31.2			Substrate; pH	15
						succinate, NH ₄ CI.					
						Ascomycetes					
50 Ashbva gossvoji	ini	Mycelia4, 5	30	Mano	End	1:2:3 da.	19-11.8			Substrate: age	16
_		Mycelia4, 5	30	Mano	CHO	+Glucose 1:2:3 da	32-20-12			Substrate: age	16
52		Mycelia4, 5	30	Mano	CHO	+Sucrose 1:2:3 da	30-17-13			Substrate: age	16
23		Mycelia4, 5	30	Mano	CHO	+Maltose 1.2.3 da	4-6-10			Substrate: age	16
54		Mycelia4, 5	30	Mano	CHO	+Lactose, 1:2:3 da.	0-0-0			0	16
55		Mycelia4, 5	30	Mano	Org	+Pvruvate, 1:2:3 da.	8-3-1			Substrate; age	16
56		Mycelia4, 5	30		Org	+Acetate, 1;2;3 da.	2-6-9			Substrate; age	16
57			30		Org	+Ethanol, 1;2;3 da.	12-8-3			Substrate; age	16
58 Chaetomium sp	ds	Pellets	-25	Chem	СНО				1.22		17
59 Cochliobolus		Mycelia		Mano	End	10; 15; 18; 35; 42 da.	3.8-4.3-3.1-			Age	1.8
miyabeanus	03						1.5-1.7				
60 Erysiphe communis	simumu	Mycelia		Chem	Nat	Host (Torilis nodosa);			0.89-0.74	Parasitism	19
61 E. graminis tritici	ritici	Growing culture	22	Mano	Nat	host + fungus. Normal wheat leaf;	1.76-6.06			Parasitism	20
)				leaf + fungus.	,				
29		Growing culture	22	Mano	Nat	Wheat leaf epidermis;	0.056-1.36			Parasitism	20
						epidermis + inngus.					

Com = complex substrates; Nat = natural; Org = organic compounds. /3/ µl/mg wet wt/hr. /4/ Washed, /5/ Starved. /6/ µl/sq cm area/hr.

Values for rates of gaseous exchange are given in µl/mg dry weight/hour, unless otherwise specified. Species names in parentheses are former nomenclature. Column H: Numbers underscored = values for anaerobic CO₂ production, numbers not underscored = values for aerobic CO₂ production.

Refer-	ence	(K)		20	20	19	12	21	21	21	21	21	21	212	22	22	23	23	23	24	24	,	\$ 7	24	5		24	24		25	52	52	
al	Variable	(J)		Parasitism	Parasitism		Accessory growth	Substrate	Substrate	Substrate	Substrate	Substrate	Substrate	Substrate	Inhibitors	Inhibitors	Substrate	Substrate	Strains	Mutant	Mutant		Accessory growin factors; mutants	Or Strains	factors; mutants	or strains	Mutant	Accessory growth	or strains	Age	Time after activation	Time after	detretion
R. C.	20/200	(1)				0.82-0.78	1.0																										
on Rate hr	QCO2	(H)			1.86-2.76												0-5	9												<0.03	5.0-10.9		
Respiration Rate	90°2	(G)		6.06-4.56			3,0-6,43	9	9	10	1.1	15	1.1	7	16-55	12-21	11-38	26-44	11-44	11.7-31.2	15.1-26.8		24,0-43.1	21 8-27 0			18.7-35.6	19.2-26.4		0.25-0.59	4.5-10.9	10-20	
Specifications		(F)	Ascomycetes (continued)	Mildewed wheat leaf; leaf + 1x10-3M Na ₃ N.	Normal wheat leaf; leaf + fungus.	najus);	00 ml.	+Glucose.	+Fructose.				tkaninose,	+Glycogen.	Endogenous	nilamide.	Endogenous.	+Pyruvate.	4 mutant strains.	Starved, p-aminoben-	Starved, pantothenic-	tess mulant.	-;+p-Aminobenzoicacid, 24,0-45.1	Line of months of the			Starved, pyridoxine- less mutant.	-;+Pyridoxine.		Dormant.	Activated by heat.	Germinating.	
Sub-	strate	(E)	A	Nat	Nat	Nat	СНО	СНО	СНО	СНО	СНО	CHO	CHO	CHO	CHO	СНО	Org	Org	Org	СНО	СНО	City	СНО	CHO			СНО	СНО		End	End	End	
Temp Meth-	DO	(Ω)		Mano	Mano	Chem	Mano	Mano	Mano	Mano	Mano	Mano	Mano	Mano	Mano	Mano	Mano	Mano	Mano	Mano	Mano		Mano	Mono			Mano	Mano		Mano	Mano	Mano	
Temp	<u>၂</u>	(C)		22	22		25										30	30	30							_		_		25	52	52	
Material		(B)		Growing culture	Growing culture	Mycelia	Mycelia	Mycelia	Mycelia	Mycelia	Mycelia	Mycelia	Mycella	Mycelia	Myrelia	Mycelia	Mycelia	Mycelia	Mycelia	Mycelia	Mycelia	5 ::	Mycella	Macolios	m) ceria		Mycelia	Mycelia5		Ascospores	Ascospores	Ascospores	/
Species		(A)		Erysiphe graminis tritici (concluded)		E. lamprocarpa	Melanospora								Neurospora crassa												N. sitophila			N. tetrasperma			
				63	64	65	99	67	89	69	70	7.3	7 7 7	74	75	92	77	78	4	80	8	0	28	O.	3		84	85		98	82	88	

92	24	24	27	27	72	27	27	22	27	27	87	67	67	3.5	31		32	33.5	1	33	33	34	•	35	35		35	36		37	37
	Mutant	Mutant	Organic nutrition	Organic nutrition	Organic nutrition Organic nutrition	Organic nutrition	Organic nutrition	Organic nutrition	Organic nutrition	Organic nutrition		Substrate	Substrate	Method	Method		1.	Inhibitors		Inhibitors	Inhibitors	Ħ						Padiation	nana na		Accessory growth factors
																						800-100	0		0 94-0 80		0.94-0.73	08 0188 0	20.00		
			370-432-	249-322	63- <u>116</u> 160-348-	276-284	82-83	377-421-	500-377	156-117	10-250	22 03 46 23	31.87-46.27				88-280	793	<u>: </u>	343	873									55.3	84.0
0.5-1.3-3.9-	15.1-56.0 16.0-35.6	25.0-41.0	83-109	92	0 10-137	125	47	60-74	127	52	90	4.83-3.93	553_633_423	12 33	12.93		113	293		103	283	23-0		31-85						5.5	4.8
-;+10-5M, 10-4M; 10-3M;10-2M; 5x10-2M furfurol (determinations after 290-350 min).	hiamine-less	mutant. Starved, nicotinic-less	reserves.	-	Glycogen reserves.			No stored reserves.	Fat reserves.	erves.		us;+glucose.	+Glucose.	ontoneo		electrode.		+Glucose.		-3M	formaldehyde. +Glucose, +5x10-3M	-		Endogenous; +5x10-4M	Fricinoleic acid.	decoic acid.	Endogenous; +4.3x10-3M	hexoic acid.	treated.		+10 y -pantothenate.
End	СНО	СНО	СНО	СНО	СНО	СНО	СНО	СНО	СНО	СНО	СНО	СНО	CHO	Collin	Org Org		СНО	CHO		СНО	СНО	3	 5	End	0,40		Org	OII.	010	Com	Com
Mano	Mano Mano	Mano	Mano		Mano Mano			Mano	Mano									Mano		Mano	Mano		Mario	Mano	Mono		Mano		Mano		Mano
92							-				28	22-25 Mano	26-25 Mano		52		(30	2	30	30	00	0	37	37	·	37	76	0 %	30	30
Ascospores	Mycelia ⁵ Mycelia ⁵	Mycelia5	Cell suspension	Cell suspension	Cell suspension	Cell suspension	Cell suspension	Cell suspension	Cell suspension	Cell suspension	Cell suspension	Cell suspension	Cell suspension	Cell suspension			Cell suspension	Cell suspension*	- moremanene mao	Cell suspension4	Cell suspension ⁴		sion ⁴ , 5	Cell suspension4	Coll anananaion4	- internations reco	Cell suspension ⁴		cell suspen- sion4, 5	Cell suspension4	Cell suspension ⁴
	Neurospora sp		Saccharomyces		S. cerevisiae U			×	S. globosus (GII hybrid)		S. cerevisiae, bakers									-								,			
89	90 1	26	93	94		26	86	66	100	101		103	104	106	107		108	109	217	111	112	113	011	114	116	711	116	1	711	118	119

/1/ Mano = manometric; Chem = chemical; Volu = volumetric; Cond = conductometric; Pola = polarographic. /2/ End = endogenous; CHO = carbohydrates; Com = complex substrates; Nat = natural; Org = organic compounds, /3/ µ1/mg wet wt/hr. /4/ Washed. /5/ Starved. /6/ µ1/sq cm area/hr.

Values for rates of gaseous exchange are given in µ1/mg dry weight/hour, unless otherwise specified. Species names in parentheses are former nomenclature. Column H: Numbers underscored = values for aerobic CO₂ production, numbers not underscored = values for aerobic CO₂ production.

	ence	(X)		vth 37	vth 37	vth 37	vth 38	vth 38	39	39	41	41	on 41	on 41		on +	on 41	on 41	on 41	vth 42	vth 42	00	- 4 5 4 8 3	43	43	
Experimental	Variable	(1)		Accessory growth	Accessory growth	Accessory growth	factors Accessory growth	Accessory growth factors			Age	Age	Organic nutrition	Organic nutrition		Organic nutrition	Organic nutrition	Organic nutrition	Organic nutrition	Accessory growth	factors Accessory growth		Substrate	Inhibitors	Inhibitors	
R.Q.	CO2/O2	(1)										0.6-1.0														
ion Rate	QCO ₂	(H)		0.09	76.2	93.0				39-209				5.53-23.03-	27.03					23		120	011-001			
Respiration Rate	Q02	(B)		5,3	6.3	5,5	2.8-9.3	70-75	54	27	3.23-0.93		553-16,03-	13,52	7	1.23	8.03-2.53-	8.03-11.03-	2.53 8.03-13.03-	2.03	3-6.4	0	11.8-33.7	11.8-7.5-1.1	27.3-18.1-2.2	
Specifications	•	(F)	Ascomycetes (continued)	+0.1 y -thiamine.	+0.1 γ-pantothenate +	+10 mg liver extract.	-Biotin.	Biotín rich.			0-4 hr in buffer.	0-3 hr in buffer.	+10-3;5x10-2;10-1M	glucose. +10-3;10-2;10-1M			+10-4M ethanol at	thanol at	lanol at	0;3;5 hr. #Glutathione;#cysteine.	+Glutathione; +cysteine.		Endogenous: +glucose	+2x10-5; 2x10-4;	2x10=3M KCN. +Glucose; -2x10=5;	2x10-4; 2x10-3M KCN.
Sub-	strate	(E)	A	Com	Com	Com	СНО	СНО		CHO	End	End	СНО	СНО		 20 20 20 20 20 20 20 20 20 20 20 20 20	Org	Org	Org	СНО	СНО	Ond	CHO	End	СНО	
Temp Meth-	1 po	(D)		Mano	Mano	Mano	Mano	Mano	Mano	Mano		Mano	Mano	Mano		Mano	Mano	Mano	Mano	Mano	Mano	N. C. C.		Mano	Mano	
Temp	ာ	(C)		30	30	30	30	30	27	30	20	20	20	20			20	20	20	30	30	0.0	25	25	25	
Material		(B)		Cell suspension4	Cell suspension ⁴	Cell suspension4	Cell suspension	Cell suspension	Cell suspension	Cell suspension	Cell suspen-	Cell suspen-	Cell suspen-	sion*, 3 Cell suspen-	sion4,5	Cell suspension	Cell suspension ⁴	Cell suspension4	Cell suspension ⁴	Cell suspension ⁴	Cell suspension4		Cell suspension	Cell suspension	Cell suspension	
Species		(A)		Saccharomyces cerevisiae, bakers																		S de la companya de l				
				120	121	122	123	124	125	126	128	129	130	131	1 2 3	136	133	134	135	136	137	30	139	140	141	

144 brewers 145 147 148 S. cerevisiae, 149 150 151 S. cerevisiae, 153 154 S. italious	top wine	Cell suspension ⁴ Cell suspension ⁴ Cell suspension ⁴	Room Volu	Volu	End CHO	-; +5x10-2M fluoride.		1.85-05	TI II	Inhibitors Inhibitors	45 45
ശ് ശ്ശ് ശ	top					" TONTO TATE OFFICE "					
vi vi vi	top	_	Room	Volu	CHO	+fructose.		20 43_03		יייין יין יין יין יין יין יין יין יין י	r u
ഗ് ഗ്ഗ് ഗ	top wine					+glucose.		7	-		<u> </u>
vi vi vi	top wine	Cell suspension	Коот	n o o	CHO	fluoride.		18.0-02		Inhibitors	45
ഗ് ഗ് ഗ	wine	Cell suspension	30	Mano	СНО	±Glutathione; ±cysteine +0;5x10-2N phenol;	28	207-216	II	Inhibitors	39
ഗ്ഗ് ഗ്	wine	Cell suspension	30	Volu	Com	+glucose.		153	1	Inhibitors	46
vi vi v	wine	,			,	+peptone.		143			
i v	n	Cell suspension	27 1	Mano		15.10-23# others1 st	57	177			39
· · · · · · · · · · · · · · · · · · ·		noremadene			20	0:3:6 hr.	10.03		5	Organic nutrition	4
V.		Cell suspension ⁴	20	Mano	Org	ethanol at	8.03-8.53-		0	Organic nutrition	41
2		Cell suspension4	30 1	Mano	End			0			40
ŝ					СНО	Endogenous; + glucose.	38-144	6.0	S	Substrate	44
		Cell suspension		-	СНО			140	S	Substrate	47
		Cell suspension		Volu	Org	+Dioxyacetone.	56-64		Š	Substrate	47
158 S. wanching		Cell suspension			End		147	07	S	Substrate	48
159		Cell suspension			СНО	+Fructose.	367	17,	S	Substrate	48
160		suspension				+Galactose.	247	27 2	S	Substrate	48
161		suspension				+Glucose; mannose.	401-391	40,-40,	Š	Substrate	48
162		suspension			СНО	+Maltose.	517	45/	S	Substrate	48
163		suspension	25 I				361	37	S I	Substrate	48
164		suspension					42'	45'	ςΩ (Substrate	80 (
165		suspension				+Xylose.	187	201	SO CO	Substrate	24 , 00 (
100		suspension	1 52	_		+Arabinose.	25,	5, 57, 57	n c	Substrate	80 0
		Cell suspension		Mano	Org	+Succinate; oxalate;	14'-14'-14'	0-0-0	, and a second	substrate	4 , xo
		Cell suspension	25 1	Mano	Org	; formate;	187-147-167-	-20-20-20	S	Substrate	48
						propionate; butyrate;	127-197	20-20			
		Cell suspension		Mano	Org	o tato	337-287	70-70	V.	Substrate	8 4
170			25				427	187	S S	Substrate	84
171		suspension				H 5.4; 6.8.	467-337	Į	d	Hd	49
172					СНО		237-287		, d	Hd	49
173				Mano	СНО	+Pyruvate, pli 4.1; 6.8.	407-427		a.	pH Hq	49
		Cell suspension	20 1	Mano	СНО	+Glucose-phosphate,	427-407		d	Hd	49
						pH 4.5; 6.8.			+		
175 Schizosaccharomyces	aromyces	Cell suspension	3.0	Mano	CHO	Endogenous +alucose	21-90	1 0			44
176 S. nombe					CHO		0.2353				50
		suspension			СНО	us, +glucose,	17.9-36.4	0.4			44
178 Sclerotinia sp	di	1	-25	· duna	СНО	D			1,15		17
	iicola		26		End		1.28				51
	3		25		СНО		}		1.56		17

Com = complex substrates; Nat = natural; Org = organic compounds. /3/µl/mg wet wt/hr. /4/Washed. /5/Starved. /7/µl/108 cells/hr.

Values for rates of gaseous exchange are given in µl/mg dry weight/hour, unless otherwise specified. Species names in parentheses are former nomenclature. Column H: Numbers underscored = values for anaerobic CO₂ production; numbers not underscored = values for aerobic CO₂ production.

	Refer-	ence	(K)		19	52	52	55	52	53	52	2	53			54	54	54	54		13	55	99	57	13		58	59	55		58	58	09		1 3	61	
1	Experimental	Variable	(3)		Parasitism	Temperature	Temperature	Temperature	Temperature	Substrate; age	Substrate; age	or age	Substrate; growth			Substrate; age	Substrate; age	Substrate; age	Substrate; age								+ -	-					Temperature			O2 pressure	
	R.Q.	20/200	Ξ		1.04;0.84	0.91-0.94	1.04-1.07	0.95-0.98	5.88-1.00									2.13-1.55	1.14		0.54-0.59	1.07	0.87	0.70-0.90	0.5-0.6				0.89						25 0 75 0	0.00-0.00	
	ion Rate	QCO ₂	(H)														59-53							2.3-4.0			1.5	8.73-5.63			2.7	4.5	8.47-12.27-	14.67		3.67-8.57-	10.4
	Respiration Rate	402	(0)							16-7-7	00-35-35	3-01	17-11			32-38-67			1				1.9	1.9-2.9													
	Specifications		(F)	Ascomycetes (concluded)	Host (Amygdalus com- munis); host + fungus.				12hrinN2.		+Ulucose at 24;48;12nr.		+Glucose for 72-144hr; 17-11	cells grown anaer-	obically.	+0.01;0.04;0.2% glucose. 32-38-67	+Glucose for 1-2 hr.	+Glucose for 1-4 hr.	4 hr.	Basidiomycetes				1				i					17.5°C;25.5°C;33.5°C.			+2;21;100% O2.	
	Sub-	strate	(E)	A	Nat	Com	Com	End	End	End	Cric		СНО			СНО	СНО	End	End			End					End	End	End		End	End	Com			Com	
	Temp Meth-	po	(Q)		Chem Nat	Chem	Chem	Chem	Chem	Mano	Mano	Outs	Mano						Mano		Chem	Mano	Mano	Volu	Chem		Chem	Chem	Mano End		Chem	Chem	Chem Com		5	Chem Com	
	Temp	ر د د	(C)			27	45	45	45	0 0	0 7 0	3	28									28		52			17	00	28		17	17				17.5	
	Material		(B)		Mycelia	Mycelia	Mycelia	Mycelia	Mycelia	Cell suspension4	Cell suspension 1 20	note in dept.	Cell suspension ⁴		•	Cell suspension ⁴ 28	Cell suspension4 28	Cell suspension4 28	Cell suspension ⁴ 28		Sporophores	Sporophores	Growing culture	Growing culture	Mycelia		Sporophores	Sporophores	Sporophores		Sporophores	Sporophores	Mycelia		Marcolin	Mycelia	
	Species		(A)		Taphrina deformans	Thermoascus	aurantiacus			Zygosaccharomyces	acidinaciens										Agaricus bisporus		Psalliota	campestris)	Auricularia mesen-	terica (Thelephora tremelloides)	Boletus luridus	Bovista funicata	fumosa	(Polyporus imberbis)	Coprinus comatus		Coriolus versicolor	(Polyporus versi-	color; Polystictus	1010010	
					181	182	183	100	185	9 0	188		189			190	191	192	193		194	195	196	197	198		199	200	201		202	203	204		205	206	

Values for rates of gaseous exchange are given in µl/mg dry weight/hour, unless otherwise specified. Species names in parentheses are former nomenclature. Column H: Numbers underscored = values for aerobic CO₂ production, numbers not underscored = values for aerobic CO₂ production.

	00000	-			Respiration Rate	on Kate	R. Q.	Experimental	Refer-
Species	Material	°C od1	strate ²	Specifications	QO,	QCO,	CO2/O2	Variable	ence
(A)	(B)	(C) (D)	(E)	(F)	(5)	(H)	(3)	(3)	(K)
			Fur	Fungi Imperfecti (continued)					
Aspergillus albus	Pellets	25	CHO				1.16		65
A. aureus	Mycelia	30 Volu	CHO	4-6 da.	11-12			Age	99
	Mycelia	52	CHO			3,1			29
awamori	Mycelia	30 Volu	CHO	6-4 da.	28-24	60		Age	99
candidus	Pellets	23-25 Chem					1.11-1.58	Mutants or strains	6.5
	Mycelia	15-25 Volu				14.1			29
A. carbonarius	Pellets	23-25 Chem	CHO				1.68		99
clavatus	Pellets	25		4 strains.			1.63-2.48	Strains	9
	Mycelia	30 Volu	СНО	4-6 da.	11-9			Age	99
	Mycelia	15-25 Volu	СНО			12.4			29
	Mycelia	15-25 Volu	Com			44.3			29
conicus	Pellets	23-25 Chern	СНО				1.21		99
cyaneus	Pellets	23-25 Chem	CHO				1.22		69
disjunctus	Pellets	23-25 Chem	СНО				1.08		9
effusus	Pellets	23-25 Chem	СНО				1.36		9
elegans	Pellets	23-25 Chem	СНО	2 strains.			1.58-1.81	Strains	69
ferrugineus	Pellets	23-25 Chem					1.01		69
ficuum	Pellets	23-25 Chem	СНО				1.96		9
fischeri	Pellets	23-25 Chem		2 strains.			1.03-1.17	Strains	99
flavipes	Pellets	23-25 Chem		2 strains.			1.03-1.20	Strains	99
flavus (A. soya)	Pellets	25	_	2 strains.			2.21-2.56	Strains	99
	Mycelia	30 Volu	СНО	4-6 da.	2-9			Age	99
	Mycelia	30 Volu	СНО	4-6 da.	11-9			Age	99
	Mycelia	25	СНО			16.6			29
flavus var.	Mycelia	30 Volu		3-5 da.	27-18			Age	99
fumaricus	Pellets	25					1.05		59
fumigatus	Mycelia	30 Volu	СНО	4-6 da.	17-15			Age	99
	Mycelia	15-25 Volu				0			29
	Pellets	23-25 Chem		3 strains.			1.11-1.15	Strains	9
A. fuscus	Pellets	23-25 Chem					1,76		69
giganteus	Pellets	23-25 Chem		2 strains.			1.49-1.84	Strains	9
	Mycelia	30 Volu	СНО	4-6 da.	11-14			Age	99
	Mycelia	15-25 Volu				0			29
glaucus	Pellets	23-25 Chem	СНО	2 strains.			0.89-1.02	Strains	9
	Mycelia	30 Volu	СНО	3-5 da.	21-20			Age	99
	Mycelia	15-25 Volu	Com, CHO			0			29
A. gymnosardae	Mycelia	30 Volu	СНО	2-4 da.	17-8			Age	99
	Mycelia	15-25 Volu	СНО			14.5			29
	Mycelia	15-25 Volu	Com			0			29

99	59	67	89	89	89	89	89	89	89	89	89	29	99	99	29	65	29	99	99	29	99	29	69		69	,	69	20	20	20	71	00	00	00	00	00	00	00	œ		00		οο 	_	00	
Age	Strains		Hd	hH	Hd	Hd	hd	pH	Hd	hd	Hd			Age		Strains			Strains		Age	b	Substrate		Substrate	1.0	Substrate	Substrate	Substrate	Substrate	Substrate	Temperature	Substrate;	temperature	Substrate;	temperature	Substrate;	temperature	Substrate;	temperature						
	1,52-1,87												66.0			1.15-1.19		86.0	1.22-1.64				0.89-1.30-	0.47	0.85-1.04-	0.73	1 50 1 57	1.09-1.37	1 17-1 19	0.90-0.93		0.36	99.0	1.06-1.19	0.62	0.87	0.51	0.57	0.98		1.00		1.30	6	1,32	
11.1	. 4											0			7		0			0		2.9																								
16-12			3.9-4.5-3.7	5.0-7.0-5.1	3.9-3.8-4.1	2.0-3.3-3.5	8.2-8.8-4.8	8.1-6.8-3.3	9.6-9.7-10.8	4.8-5.0-3.6	2.0-2.3-2.8			12-11							15-12										6.2-11.4															
4-6 da.	3 strains.		+Raffinose, pH 4;6;8.	+Sucrose, pH 4;6;8.	+Furanose, pH 4;6;8.	+Mallose, pH 4; 6;8.	+Cellobiose, pH 4;6;8.	+Trehalose, pH 4;6;8.	+Glucose, pH4;6;8.	+Fructose, pH4;6;8.	Endogenous, pH 4;6;8.			4-6 da.		2 strains.			7 strains.		2-4 da.		+1;10;17% glucose.		+1;10;25% sucrose.	100 to 30	+5;10% manning.	11.3,1.0 % larurate.	+10% alucose	+10% raffinose.	+0.02%;0.2%K>HPO4.	Starved 1 da.	Starved 1 da.	Starved 1 da.	Starved 3 da.	Starved 3 da.	Starved 5 da.	Starved 5 da.	+Glucose.		+Glucose.		+Glucose.		+Glucose.	
СНО	СНО	Com	СНО	СНО	СНО	CHO	СНО	СНО	СНО	СНО	СНО	СНО	СНО	СНО	СНО	СНО	СНО	СНО	СНО	СНО	СНО	СНО	СНО		Org, CHO		Org, CHO	Org. CHO	Ord CHO	Org, CHO	End	End	End	End	End	End	End	End	CHO		СНО		СНО	0	CHO	
Volu	23-25 Chem				Mano	_					Mano	Volu	Chem	Volu	Volu	Chem	Volu	Chem	Chem	Volu	Volu	Volu	Chem		24-25 Chem		Chem	Chem				Chem			Chem		Chem CHO		Chem CHO							
30	23-2	15-2	30	30	30	00	30	30	30	30	30	15-25	23-25	30	15-25	23-25	15-25	23-25	23-25	15-25	30	15-25	24-25		24-2	, , ,	24-45	7 - 1 - 2	202	20	30	3-5	19-20	35	21	36	22	36	19		22		35	,	36	
Mycelia Mycelia	Pellets	Mycelia	Conidia	Conidia	Conidia	Conidia	Conidia	Conidia	Conidia	Conidia	Conidia	Mycelia	Pellets	Mycelia	Mycelia	Pellets	Mycelia	Pellets	Pellets	Mycelia	Mycelia	Mycelia	Mycelia		Mycelia	P. C. C. C. C. C. C. C. C. C. C. C. C. C.	Mycella	Mycelia	Mycelia	Mycelia	Mycelia	Mycelia	Mycelia	Mycelia	Mycelia	Mycelia	Mycelia	Mycelia	Mycelia		Mycelia		Mycelia		Mycelia	-
A. itaconicus A. japonicus	A. luchuensis											A. mannitus	A. medius	A. melleus		A. minimus		A. mollis	A. nidulans		A. niger)																								
281	283	285	286	187	887	607	067	167	262	293									302	303	304	305	306		307	300	300	310	311	312	313	314	315	316	317	318	319	320	321		322		323	7	324	

/1/ Mano = manometric; Chem = chemical; Volu = volumetric; Cond = conductometric; Pola = polarographic. /2/ End = endogenous; CHO = carbohydrates; Com = complex substrates; Nat = natural; Org = organic compounds.

Values for rates of gaseous exchange are given in µl/mg dry weight/hour, unless otherwise specified. Species names in parentheses are former nomenclature. Column H: Numbers underscored = values for anaerobic CO₂ production; numbers not underscored = values for aerobic CO₂ production.

Refer-	ence	(K)		00	00		œ	00	at	>	œ	00		00	7.1			72	73		74	7.7	ر د ا	0 7	9)	10	97	92	92	92	77	65	28	0.0	7 8 7	2
Experimental	Variable	(J)		Substrate;	Substrate;	temperature	Substrate;	Substrate;	temperature Substrate:	temperature	Substrate;	Substrate;	temperature	Substrate:	Substrate; age			Method			Inorganic nutrition		Age	Age	Age	Age	Age	Temperature; age	Temperature; age	Temperature; age		Strains	Substrate	() () () () () () () () () ()	Age	
R.Q.	20/200	(3)		0.91	1,22		1.40-2.11	1.35-2.03	0 50-0 54		0.82-0.86	0.73		1.20					1.00-0.90-	66.0	0.73-0.87				1.05-0.91	2.54-1.00	1.76-0.84	1.68-0.91	1.54-0.78	1.13-0.87		1.24-1.93			10-1	1.75
Respiration Rate	QCO ₂	(H)																													7-2		20	701 7001	1001-100	
Respiration	402	(B)								_					12.7-1.6-	3,6-0.5-	5.8-1.3-	20-22-18		**	(12.7	5.2-1.6-0.6	12.2-2.9-1.1	_											
Specifications		(F)	Fungi Imperfecti (continued)	+Sucrose,	+Sucrose.		+Tartrate.	+Tartrate.		ralycerui.	+Glycerol.	+Mannitol.		+Mannitol.	4 da, +glucose;glucose	iodoacetate; glucose	fluoride; glucose	azide; glucose cyanide.	Acid: neutral:alkaline.		+0.5% total salts.		2;5;9 da.	2;5;9 da.	+Sucrose, 7;26 da.	+Tartrate, 10;23 da.	+Malate, 9;31 da.	+Citrate, 34;54 da.	+Citrate, 8;21 da.	+Tannin, 2;17 da.		4 strains.	+Citrate, malate, glyco-	late, oxalate.	0-500 hr.	Endogenous; †glucose; †citrate.
Sub-	strate2	(E)	Fun	СНО	СНО		Org	Org		5	Org	Org	0	Org	СНО			CHO	CHO		СНО	СНО	End	СНО	СНО	Org	Org	Org	Org	Com	Com	СНО	Org	-		Chem Org, ChO
Meth-	, po	(D)		Снеш СНО	Chem		Chem	Chem	20 40	Cuem	Chem Org	Chem Org		Chem Org	Mano '	-		Chom													Chem				Chem	Chem
Temp Meth-	ည ဂ	(C)		18	35		22	36			36	3-5	_	35	30			3.3	3.6) 1										.33		23-25	23-25 Chem		23	6.3
Material		(B)		Mycelia	Mycelia		Mycelia	Mycelia	34	Myceila	Mycelia	Mycelia		Mycelia	Mycelia			Marcolin	Mycelia		Mycelia	Mycelia	Mycelia	Mycelia	Mycelia	Mycelia	Mycelia	Mycelia	Mycelia	Mycelia	Mycelia	Pellets	Mycelia4		Mycelia*	Mycella
Species		(A)		Aspergillus niger	Concrete																															
				325	326		327	328	330	264	330	331		332	333			224	335		336	337	338	339	340	341	342	343	344	345	346	347	348	4	349	000

351		Conidia	30	Mano CHO	СНО	Glucose, ethanolamine 0.3-1.0-3.0 buffer, 0-4; 4-6;	0.3-1.0-3.0			Age	62
352	A. niger mut.	Pellets	23-25	Chem	СНО				66.0		99
353	A. niger citricus	Pellets	23-25	Chem	СНО	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$			1.45		65
355	A. ocnraceus (A. oniki)	Mycelia	30		CHO	4-6 da.	15-14		00.1-61.1	Age	99
356		Mycelia	15-25 Volu	Volu	СНО			<1			29
357		Mycelia	30	Volu	СНО	3-5 da.	16-15	;		Age	99
358		Mycelia	15-25 Volu	15-25 Volu	CHO			I>	1 20		79
360	A orvzae	Mycelia	62-62	Mano	CHO	0:33:67% O2.	0-15.3-31.7		27:1	O, pressure	80
361		Mycelia		Mano	СНО	17;50;83% O ₂ .	8.6-5.9-0.7			O ₂ pressure	80
362		Mycelia		Mano	СНО	1		9.3-10.8			80
363		Mycelia		Mano	СНО	O2/CO2=50/0;50/20;	32-40-40			Inhibitors	80
364		Mycelia		Mano	СНО	N2;CO(dark);CO(light);	49-26-30	5.6-9.7-		Inhibitors	80
						(gas/O2:95/5).		10.4	_		
365		Mycelia		Mano	СНО	0;10-3;10-2M KCN	41-36-12			Inhibitors	80
366		Mycelia		Mano	СНО	surface culture. 0;10-3;2x10-3M KCN	73-16-11			Inhibitors	80
367		Mycelia	30	Volu	СНО	submerged culture. 2:3:6 da.	26-30-20			Age	99
368		Mycelia	15-25		СНО			4.2-13.4			29
369		Mycelia	25		Org	End;+M/20 oxalate.	4.6-3.9		(Substrate	81
370		Pellets	23-25		СНО				2.05		65
37.1		Mycelia	30	Chem	CHO	+2x10-3;2x10-2; 2x10-1 M sucrose.	5.5-13-64			Substrate	70
372		Mycelia ⁵	30	Chem	End				96.0	Substrate	82
373		Mycelia5	30	Chem	СНО	+Sucrose.			1.13	Substrate	82
374		Mycelia5	30	Chem	Org	+Gluconate.			1.11	Substrate	82
375		Mycelia ⁵	30	Chem	Org	+Mannitol.			96.0	Substrate	28
376		Mycelia	30	Chem	Org	+Ethanol.			0.67	Substrate	78
377		Mycelia	30	Chem	CHO	+Glycerol.	1 26-2 40-		0.00	Age	83
			3			nating, 0;2;3 hr.	2.17			0	
379	Aspergillus ostianus	Pellets	23-25	Chem	СНО	2 strains.			1,42-1,65	Strains	65
380)	Mycelia	30	Volu	СНО	4-6 da.	11-11			Age	99
381		Mycelia	15-25	Volu	СНО			-	(29
382		Pellets	23-25	23-25 Chem	СНО				1.50		00
383	A. pseudo-glauca	Pellets	23-25	23-25 Chem	СНО				1.03		50
384	A. pulverulentus	Pellets	23-25	Chem	СНО				1.57		99
385	A. repens	Pellets	23-25	Chem	СНО	2 strains.			0.91-1.09	Strains	99
386		Mycelia	30	Volu	СНО	3-5 da.	13-7			Age	99
387	A.	Pellets	23-25	Chem	СНО				1.09		65
388	Ą.	Pellets	23-25	23-25 Chem	СНО				1.12-1.54	Strains	69
389		Pellets	23-22	23-25 Chem	CHO	2 strains.			1.48-1.75	Strains	65
270	A. Icrieus	A CALICIS	27-1-27	Cinemi		3			- Cadododono	(2) End = and advances CHO = carbohudrates	Instead

/1/ Mano = manometric; Chem = chemical; Volu = volumetric; Cond = conductometric; Pola = polarographic. /2/ End = endogenous; CHO = carbohydrates; Com = complex substrates; Nat = natural; Org = organic compounds. /4/ Washed. /5/ Starved. /7/ µ1/108 cells/hr.

Values for rates of gaseous exchange are given in µl/mg dry weight/hour, unless otherwise specified. Species names in parentheses are former nomenclature. Column H: Numbers underscored = values for anaerobic CO₂ production.

Temp Meth- Sub- Specifications of odl strate2 (E) (E)
-
23-25 Chem CHO
23-25 Chem CHO 23-25 Chem CHO
Volu CHO
۳
Mano CHO
Mano CHO
Mano End
Mano Org +Acetate; endogenous.
Mano End Endogenous, pH2;6;8.
Mano CHO +Glucose, pH 2;6;8. Mano CHO Endogenous; +glucose.
Mano CHO 1;1.5 da. Mano CHO 2;3;4;5;6 da.
Mano CHO Endogenous; +pyruvate;
Mano CHO +Ketoglutarate; succinate; malate; oxalate.
Mano CHO +Glycolate; glucose; fructose.
Mano CHO +Glucose-1-phosphate; glucose-6-phosphate fructose-1, 6, diphos
Mano CHO +Gluconate;5-ketogluco- 4.2-8.4-1.9- nate;phosphogluconate; 3.9-3.8-7.

00 00	89	06	06	10	91	91	17	17	17	17	17	92	93	17	94	94	46	56	96 po:	96 poi	94	94	94	94	94 04	94	94	94	94	94	94	94	96	96		96
Substrate		Growth		Cubotanto	Substrate	Starvation		Strains	Strains				pH					Age	Substrate; method	Substrate; method													Substrate: age	Substrate; age)	Substrate; age
						1.0	1.19	1.10-1.28	1.30-1.74	1.69	1.59	10.1.1		1.11	5.46	3.69	1.85		1.24-0.84	1.11-0.72	4.46	3.88	1.70	2.00	3.36	2.78	3,61	6,45	4.74	3.17	1,45	1.90	0.78-0.84	1.85-1.55		1.01-0.92
1	01			+																													31-11	64-56		14-12
2.1-4.3-3.8- 7.6-2.8-5.5- 3.2-6.4		38-28	10	u	040	2	·					2.0	3.0;0.8;1.6					10-30	15.7-13.6	28.0-25.9													40-13	34-39		14-13
+Ribose;xylose;arabi- nose;ribose-5-phos- phate.		64-168 hr, grown	aerooraany. 144 hr, grown anaerobically.		+Glucose			5 strains.	2 strains.			c species.	pH 3.0;5.0;6.0.					45-90 hr.	+Glucose; endogenous	(whole cells). +Glucose; endogenous (minced cells).													1-4 hr (1 da-old mycelia), 40-13	+Glucose, 1-4 hr	(1 da-old mycelia).	1-4 hr (3 da-old mycelia). 14-13
СНО	СНО	СНО	СНО	1	CHO	End	СНО	СНО	СНО	СНО	CHO	End	End	СНО	СНО	CHO	OHO	CHO	СНО	СНО	СНО	СНО	CIIO	СНО	CHO	CHO	CIIO	CHO	СНО	СНО	CIIO	СНО	CHO	CHO		End
Mano CHO	Mano	Mano	Mano		Mano		Chem	23-25 Chem		23-25 Chem CHO	23-25 Chem CHO	Mano	-				23-25 Chem			Mano	Chem	Chem	Chem	Chem	Chem	Chem	Chem	Chem	Chem	Chem	Chem	Chem	Chem			Mano
Mycelia ⁵ 26	Cell suspension4 30	Cell suspension	Cell suspension	Coll ananonoion 5 30		Cell suspension ⁵	Pellets 23-25	Pellets 23-	Pellets	Pellets		Myrelia	Mycelia				Pellets 23-			Pellets 30	Pellets 23-25				Pellets 23-25					Pellets 23-25			Myrelia9 30			Mycelia 30
	Brettanomyces	B. claussenii		Condido othions	Candida albicans		ecium	roseum Cladosporíum spp	dd		E. viridescens	Epidermonhyton		Fumago vagans	cemm	F. coeruleum	F. dianthi	F. graminearum	0		F. uncinatum		F. lini	F. martii	F. metachroum	F. orthoceras	F. rhizophilum			F. scirpi			F. trichothecioides			
414	415	416	417	710	410	420	421	422	423	424	465			429	430	431	432			436	437	438		440	441	443	444	445	446	447	448	449	450	452		453

/1/ Mano = manometric; Chem = chemical, Volu = volumetric; Cond = conductometric; Pola = polarographic. /2/ End = endogenous; CHO = carbohydrates; Com = complex substrates; Nat = natural; Org = organic compounds. /4/ Washed. /5/ Starved. /8/ µ1/10 µ1 tissue volume/hr. /9/ Homogenized.

Values for rates of gaseous exchange are given in µl/mg dry weight/hour, unless otherwise specified. Species names in parentheses are former nomenclature. Column H: Numbers underscored = values for an aerobic CO2 production.

tal F	Variable ence	(J) (K)							ite 96				ite 96	ite 96	96		te 96	te 96	96		ite 96	ite 96	96		.re	te 96	te 96		te 96	te 96	te 96
Expe	Va			Substrate	Substrate	Substrate	Substrate		Substrate	Substrate			Substrate	Substrate	Substrate		Substrate	Substrate			Substrate	Substrate	Substrate		Substrate	Substrate	Substrate		Substrate	Substrate	Substrate
R.Q.	CO2/O2	(I)		0.88-0.95	1.75-1.84	1.58-2.33	1.20-2.30		1.00-0.98	0.87-0.89	0.92-0.64	0.91-0.68	1.67-1.71	0.90-0.95	1 70		1.75-1.80	1.33-1.37	0 87-0 95		0.89-0.93	1.09-1.14	0 89-0 93		0.83-0.89	0.89-0.90	0.59-0.61		0.51-0.61	0.95	1.35-1,44
Respiration Rate	QCO ₂	(H)																													
Respiration	QO ₂	(9)																													_
Specifications		(F)	Fungi Imperfecti (continued)	Grown on glucose.	Grown on glucose.	Endogenous; +galactose.	Endogenous; +glucose	and galactose.	Endogenous; +xylose.	Endogenous; tarabinose.	Endogenous; +glycerol.	Endogenous; +lactate.	+Mannose, grown on	glucose. +Galactose, grown on	glucose.	grown on glucose.	+Glucose and galactose,	grown on glucose. +Fructose, grown on	glucose.	glucose.	+Arabinose, grown on	glucose. +Sucrose, grown on	glucose.	glucose.	+Lactose, grown on	+Mannitol, grown on	glucose. +Glycerol, grown on	glucose.	+a-Glycerol phosphate,	grown on glucose. +Hexose diphosphate,	+Pyruvate, grown on
Sub-	strate ²	(E)	Fun	End	СНО	СНО	СНО		СНО	СНО	СНО	СНО	СНО	СНО	CHO		СНО	СНО	CHO)	СНО	СНО	CHO		СНО	СНО	СНО		СНО	СНО	CHO
Temp Meth-	od1	(D)			Mano		Mano		Mano				Mano	Mano	Mano		Mano	Mano	Mano		Mano	Mano	Mano		Mano	Mano	Mano		Mano	Mano	 Mano
Temp	ပ	(C)		30	30	30	30		30	30	30	30	30	30	30		30	30	30		30	30	30	Ç	00	30	30		30	30	30
Material		(B)		Mycelia9	Mycelia9	Mycelia9	Mycelia9	•	Mycelia9	Mycelia9	Mycelia9	Mycelia9	Mycelia7	Mycelia9	Mycelia9		Mycelia ⁷	Mycelia9	Mycelia9		Mycelia ⁹	Mycelia9	Mycelia9		Mycella	Mycelia9	Mycelia9		Mycelia	Mycelia9	Mycelia?
Species		(A)		Fusarium	trichothecioides	(concluded)																									
				455	456	457	458		459	460	461	462	403	464	465		466	467	468		469	470	471		7 7 7	473	474		475	476	477

479	Mycelia ⁹	30	Mano CHO	CHO	+Succinate, grown on			0.00-0.00	Substrate)
480	Mycelia9	30	Mano	СНО	glucose. +Lactate, grown on			0.78-0.84	Substrate	96
	}				glucose.					ò
481	Mycelia9	30	Mano	СНО	+Acetate, grown on			0.86-0.96	Substrate	96
482 F. tubercularioides	Pellets	23-25	Chem	СНО				5.10		94
	Pellets	23-25	Chem					2.76		94
484 F. viride	Pellets	23-25				-		1.45		94
485 Fusarium sp H	Mycelia		Mano		Endogenous; +glucose.	7.3-6.1	6.7-10.2	0.95-1.75	Substrate	97
_	Mycelia		Mano		+Glucose.		3.4		Substrate	16
	Pellets	23-25	Chem					1.44		17
488 Helminthosporium	Pellets	23-25	23-25 Chem	СНО				1.30		- 1
_ ;	:							1 31		1.7
	Pellets	25-25	Chem					1.31		17
	Pellets	23-25	23-25 Chem					1.10		17
491 H. interseminatum	Pellets	23-25	Chem	CHO				1.13		17
-	Dallots	23-25	Cham		+			1.09		17
H	Lemens	7 7 7 7	Client							
gracile 404 H wariahile	Pollots	23-25	Chem	CHO				1.17		17
1		30			+Raffinose. pH 4:6:8.	3.9-3.7-3.8			Hd	89
_		30	Mano		+Melezitose, pH 4;6;8.	1.3-1.8-1.6			Hd	89
497	Conidia	30	Mano	CHO	+Sucrose, pH 4;6;8.	3.5-4.0-3.6			Hd	89
498	Conidia	30	Mano	СНО	+Furanose, pH 4;6;8.	1.9-2.4-2.0			hН	89
499	Conidia	30	Mano	0110	+Maltose, pH 4;6;8.	2.2-3.6-3.2			Hd	89
500	Conidia	30	Mano	_	+Cellobiose, pH 4;6;8.	1.3-3.5-1.8			Hd	89
501	Conidia	30	Mano		+Trehalose, pH 4;6;8.	1.7-2.8-2.9			Hd	89
502	Conidia	30	Mano		+Lactose, pH 4;6;8.	0.7-1.3-1.2			Hd	0 0 0
503	Conidia	30	Mano		+Melibiose, pH 4;6;8.	2.5-4.0-2.8			nd ha	0 40
504	Conidia	30	Mano		+Glucose, pH 4;6;8.	2.0-3.1-2.1			Hul	9 9
505	Conidia	30	Mano	CHO	+Coloctose, pin 4:6:8	2 6-3 9-3 1			Hu	89
506	Conidia	30	Mano		+Mannose, pH 4:6:8.	3.0-4.4-2.1			Hd	89
000	Conidia	30	Mano		+Sorbose of 4:6:8.	1.6-2.3-1.9			Hd	89
2000	Conidia	30	Mano		Endogenous, pH 4;6;8.	1.0-1.5-1.3			Hd	89
510	Conidia	30	Mano		Endogenous.	0.8			Substrate	89
5 1	Conidia	30	Mano		+Glucose.	0.8-10.4			Substrate	89
2	Conidia	30	Mano	CHO	+Glucose and biotin.	0.8-10.4		_	Substrate;	89
									accessory	
									growth lactors	
513	Conidia	30	Mano	СНО	+Glucose and yeast	0.8-31			Substrate;	89
					extract.				accessory	
									growth factors	00
514 Microsporum canis	Pellets	37.5	Mano		0-3 da starvation.			1.0-0.87	Starvation	96
	Cell suspension ⁴ 29	62		Org	+Ethanol.	1		0.67	Substrate	70
516	Cell suspension4 10-37	10-37				25-20		7	Superature	70
517	Cell suspension ⁴ 29	56	Mano		+Acetaldenyde.			100	Substrate	62
	Cell suspension4	62	Mano		+Acetate.	1007 1007		30.1	Substrate	0.0
519 Myrothecium	Conidia	30	Mano	CHO	+Sucrose.	100,-120.	ox m	1 16-1 25	Substrate	100
		9	RADO							

/1/ Mano = manometric; Chem = chemical; Volu = volumetric; Cond = conductometric; Pola = polarographic. 161 End = end Com = complex substrates; Nat = natural; Org = organic compounds. /4/ Washed. /7/ µ1/108 cells/hr. /9/ Homogenized.

Values for rates of gaseous exchange are given in μ 1/mg dry weight/hour, unless otherwise specified. Species names in parentheses are former nomenclature. Column H: Numbers underscored = values for aerobic CO₂ production; numbers not underscored = values for aerobic CO₂ production.

Material	Temp	Temp Meth-	Sub-	Specifications	piratior al/mg/h	R. Q.	Experimental	Refer-
	ر -	7 00	strate		902 9CO2	CO2/02	Variable	ence
(B)	(C)	(D)	(E)	(F)		3	(5)	(X
			Fu	Fungi Imperfecti (continued)				
Conidia	30		СНО	+Fructose, 1-3 hr.	2.3	1.25-1.28	Substrate	100
Conidia	30		СНО	+Glucose, 1-3 hr.	5.2	1.15-1.24	Substrate	100
Conidia	30	Mano	End	1-3 hr.	1.9	0.91-0.79	Substrate	100
Conidia	30	Mano	End	-;+10-3M azide.	3.3-28.4		Inhibitors	100
Conidia	30	Mano	СНО	+Raffinose, pll 4;6;8.	8.3-11.3-16.0		hd	89
Conidia	30	Mano	СНО	+Melezitose, pH 4;6;8.	2.8-9.9-11.3		pll	89
Conidia	30	Mano	СНО	+Sucrose, pH 4;6;8.	19.0-25.0-		pH	68
Conidia	30	Mano	СНО	+Furanose, pH 4;6;8.	11.7-15.7-		Ild	99
					19.2			
Conidia	30	Mano	СНО	+Maltose, pH 4;6:8.	3.9-12.7-14.5		pH	89
Conidia	30	Mano	СНО	+Cellobiose, pH 4;6;8.	3.4-4.2-7.3		pH	89
Conidia	30	Mano	СНО	+Trehalose, pH 4;6;8.	6.1-6.3-7.3		hd	89
Conidia	30	Mano	СНО	+Lactose, pH 4;6;8.	2.6-2.3-5.8		pH	68
Conidia	30	Mano	СНО	+Melibiose, pH 4;6;8.	2.9-4.3-8.8		pH	89
Conidia	30	Mano	СНО	+Glucose, pH 4;6;8.	11.4-13.5-		pH	68
					23.6		;	`
Conidia	30		СНО	+Fructose, pH 4;6;8.	9.3-12.9-15.0		PH ::	89
Conidia	20		CHO	+Galactose, pH 4;6;8.	8.2-9.5-15.6		Hd	00
Conidia	30	Mano	СНО	+Mannose, pH 4;6;8.	16.2-23.9-		Нф	200
Conidia	30	Mano	СНО	+Sorbose, pH 4:6:8.	4.3-10.8-11.4		Н	89
Conidia	30		СНО	+Xylose, pH 6.	10.0		hd	89
Conidia	30		End	Endogenous, pH 4:6:8.	2.9-2.6-5.6		Hd	68
Conidia	30	Mano	СНО	0;1;3 hr, germinating	2-65-75		Age	100
				spores.				
Conidia	30	Mano	СНО	+p L-Alanine.	8.8		Substrate	100
Conidia	30	Mano	СНО	+L(+) Arginine.	2.5		Substrate	100
Conidia	3.0	Mano	СНО	+pr-Aspartic acid.	3,3		Substrate	100
Conidia	30	Mano	СНО	+L(+) Glutamic acid.	2.0-5.6		Substrate	100
Conidia	3.0	Mano	СНО	+Glycine.	6.7		Substrate	100
Conidia	30	Mano	СНО	+L-Histidine.	2.5		Substrate	100
Conidia	30	Mano	СНО	+L-Leucine.	7.0		Substrate	100
Conidia	30	Mano	СНО	+L-Proline.	6.3-11.0		Substrate	100
Conidia	3.0	Mano	СНО	+Casein hydrolysate.	34.0		Substrate	100
Conidia	30	Mano	СНО	+Asparagine.	4.5		Substrate	100
Conidia	30	Mano	СНО	+Citrate.	2,1		Substrate	100
Conidia	30	Mano	СНО	+Ethanol.	9.5		Substrate	100
Conidia	30	Mano	СНО	+Ethylene glycol.	3.0		Substrate	100
Conidia	30	Mano	СНО	+Fumarate.	8.2		Substrate	100
Conidia	20	2 4 4			1 1			

100	100	100	100	100	101	101		101				101	101	101	1			101			101	101			101		101	101		101			101		į	101			101		
Substrate	Substrate	Substrate	Substrate	Substrate	Substrate	Substrate		Substrate			_	Substrate	Substrate	Substrate				Substrate			Substrate	Substrate			Substrate		Cubotanto	Substrate		Substrate			Substrate			Substrate			Substrate		-
						_																																			
5,3	10.0	7.5	6.5	3.5	8-9	58-58-65-	61	48-39-40-	42-46			22	4-10	59-45-61-	64-64			31-21-22-	15-52		14-18	42-47-47-64			20-25-34-36		12 12	60-67		56-50-47-	47-54		34			8-16	200		34-35-42-		×
+l-Malate,	+Pvruvate.	+Succinate.	+Tartrate.	+Urea.	Raffinose grown.	Raffinose grown,	+ maltose; glucose;	Raffinose grown,	+ sucrose; raffinose;	melezitose; cello-	biose; melibiose.	Raffinose grown,	Melezitose grown,	Starved.	+ maltose; melibiose;	glucose; galactose;	fructose.	Melezitose grown,	+ sucrose; railinose;	melezitose; lactose;	Sucrose grown.	Sucrose grown,	+ sucrose; maltose;	cellobiose; fructose.	Sucrose grown,	+ lactose; melibiose;	glucose; galactose.	Maltose grown.	+ maltose; galactose.	Maltose grown,	+ fructose; raffinose;	sucrose; cellobiose;	Maltose grown,	+ lactose; melezitose;	melibiose.	Cellobiose grown.	+ fructose; glucose;	galactose; maltose.	Cellobiose grown,	cellobiose; lactose;	melezitose.
СНО	СНО	СНО	СНО	СНО	End	СНО		СНО				СНО	End	CHO)			СНО			End	СНО			СНО		Ono	CHO		СНО			СНО			End			СНО		
Mano	Mano	Mano	Mano	Mano	Mano	Mano		Mano				Mano	Mano	Mano	~			Mano			Mano	Mano			Mano		() () () () () () () () () ()	Mano		Mano			Mano			Mano	Mann		Mano		
30	30	30	30	30	30	30		30		-		30	30	30				30			30	30			30		3.0	2 0	1	30			30			30	2		30		
Conidia	Conidia	Conidia	Conidia			Pellets4, 5		Pellets4,5				Pellets ⁴ , 5	Pellets ⁴ , 5	Pellets4, 5				Pellets*, 2			Pellets4,5	Pellets4, 5			Pellets4, 5		Dollar 4 5	Pellets 7		Pellets4, 5			Pellets4, 5			Pellets4, 5	reffers		Pellets4, 5		
557	529	960	561	562	563	564		565				999	295	568				569			20	571			572		2	7.7	•	575			576			577			579		

/1/ Mano = manometric; Chem = chemical; Volu = volumetric; Cond = conductometric; Pola = polarographic. /2/ End = endogenous; CHO = carbohydrates; Com = complex substrates; Nat = natural; Org = organic compounds. /4/ Washed. /5/ Starved.

160. RESPIRATION RATES: FUNGI (Continued)

Values for rates of gaseous exchange are given in µ1/mg dry weight/hour, unless otherwise specified. Species names in parentheses are former nomenclature. Column H: Numbers underscored = values for aerobic CO₂ production.

Refer-	ence	(K)		101	101	101		101		101		101	101			101	101	101		101		101		101			101		101	101		101	·		101	
á	2 variable	(J)		Substrate	Substrate	Substrate		Substrate		Substrate		Substrate	Substrate			Substrate	Substrate	Substrate		Substrate		Substrate		Substrate			Substrate		Substrate	Substrate		Subotroto	מתחפת שוב	-	Substrate	
R. O.	20/200	(1)																																		
Respiration Rates	QCO ₂	(H)								_																										
Respiration	QO ₂	(B)		19	21-23	35-36-30-30		26-28-25-27		9		51	31-28-26			6	00	21-18-20-22		0		4		19-15-17-17	10-14		6-2		12-17	59-55-57		13.16.16	25-25-07-		15-20	
Specifications		(F)	Fungi Imperfecti (continued)	Cellobiose grown, + melibiose.	Lactose grown.	Lactose grown,	+ maltose; galactose; cellobiose; melibiose.	Lactose grown,	+ lactose; sucrose;	glucose; fructose. Melibiose grown,	starved.	Melibiose grown,	+ cellobiose. Melibiose grown.	+ maltose, glucose;	galactose.	Melibiose grown, + lactose; melibiose.	Glucose grown.	Glucose grown,	+ sucrose; cellobiose;	glucose; galactose.	+ lactose; melibiose.	Galactose grown,	starved.	Galactose grown,	+ sucrose; manose;	galactose: fructose.	Galactose grown,	+ lactose; melibiose.	Fructose grown.	Fructose grown,	+ sucrose; maltose,	cellobiose.	rructose grown, + glucose; galactose;	fructose.	Fructose grown, + lactose; melibiose.	
Sub-	strate-	(E)	Fur	СНО	End	СНО		СНО		End		СНО	СНО			СНО	End	СНО		CHO	CIIC	СНО		CIIO			СНО		End	СНО		CIIO	CEC		СНО	
Temp Meth-	, po	(D)		Mano		Mano		Mano		Mano		Mano	Mano			Mano	Mano	Mano		Mano	MIGINO	Mano		Mano			Mano		Mano	Mano		() () () () () () () () () ()	Mano		Mano CHO	
Temp	ر ا	(C)		30	30	30		30		30		30	30			30	30	30		3.0	2	30		30			30		30	30		000	00		30	
Material		(B)		Pellets ⁴ , 5	Pellets ⁴ , 5	Pellets4, 5		Pellets ⁴ , 5		Pellets ⁴ , 5		Pellets ⁴ , ⁵	Pellets4, 5		,	Pellets4, 5	Pellets4, 5	Pellets4, 5		Pollete4, 5	t citets .	Pellets4, 5	1	Pellets4, 2			Pellets ⁴ , 5	i.	Pellets4, 5	Pellets4, 5		10-11-4-4 5	reliets ',		Pellets ^{4, 5}	
Species		(A)		Myrothecium	(concluded)																															
				580	581	585		583		584		585	586			587	588	589		500	2,0	591		592			593		594	565		702	0 % 0		597	

869		Pellets ⁴ , 5	30	Mano End	End		4-6			Substrate	101
-						sucrose grown.					
669		Pellets4,5	30	Mano	СНО	Malt extract and	35-28-26-33-			Substrate	101
						sucrose grown, + sucrose; maltose;	30-33-35				
						fructose; cellobiose; galactose; glucose; melibiose.					
009		Pellets4, 5	30	Mano	СНО	Malt extract and	15			Substrate	101
						sucrose grown,					
601		Mycelia4,9	30	Mano	Com	4;24;100 hr.	45-108-22			Age	102
209		Mycelia4, 9	30	Mano	СНО	0-1 min grinding in	38-5			Method	102
603		Mycelia4,9	30	Mano	End	0;20;60 hr starvation.	58-15-2		(Starvation	102
			30	Mano	СНО			ار	0.1		102
605	Oidium lactis	Mycelia	35	Chem	CHO				0.70	Temperature Temperature	x x
	Paecilomyces varioti	Pellets	23-25	23-25 Chem	СНО				1.37		94
809	Penicillium	Pellets	23-25	23-25 Chem	СНО				1.12		94
	avellaneum			į							
	P. baculatum	Pellets	23-25	Chem	CHO				1.12		4,0
	P. biourgeianum	Pellets	23-62	23-25 Chem	CHO				1.10		40
612	F. camemberu	Pellets	23-25	23-25 Chem	CHO	2 strains			1.12	Strains	94
	P. chrysogenum	Pellets	23-25	23-25 Chem	СНО	3 strains.			1.10-1.27	Strains	94
	0	Pellets	23-24	Mano	Com	2;3;4 da.	17-29-9			Age	103
619		Pellets	23-24	Mano	Com	2;3;4 da.	1,38-3,48-1.08			Age	103
919		Pellets	23-24	Mano	Com	At 3 da.	2568-3428				104
617		Pellets	25-28 Volu	Volu	Com	250;575 rpm stirring.	4.5-15.6			Method	105
		Pellets	72 22	Mano	CHO		3.1-9.0		1 22		100
619	P. citrinum D commune	Pellets	23-25	23-25 Chem	CHO				1.41		94
		Pellets	23-25	23-25 Chem	CHO	2 strains.			1.62-1.78	Strains	94
		Pellets	23-25	23-25 Chem	СНО				1.64		94
	P. daleae	Pellets	23-25	Chem	СНО				1.93		94
		Pellets	23-25	23-25 Chem	CHO				1,39-1,63	Charita	94
679	P. duclauxi	Pellets	23-25	23-25 Chem	CHO	2 strains.			1.22-1.55	Strains	94
	P. fusco-glancum	Pellets	23-24	23-24 Chem	CHO				1.68		94
		Pellets	23-25	23-25 Chem	CHO	6 strains.			1.14-1.30	Strains	94
	P. gladioli	Pellets	23-24		СНО				1,30		94
	P. glaucum	Growing culture		Chem	СНО	+Glucose.			1.0	Substrate	107
631		Growing culture		Chem	Org	+Quinic acid.			1.22	Substrate	107
632		Growing culture		Chem	Org	+Tartaric acid.			2.90	Substrate	107
633		Growing culture		Chem	Org	+Acetylamin.			0.67	Substrate	100
634		Mycelia	15	Chem	СНО			17-4		Substrate	,,
635		Mycelia	15	Chem	Com			14-14		Substrate	77
636		Mycelia	52	Chem	Com			20-0		Substrate	77
638		Mycella	25	Chem	Com	Endogenous: exogenous.		6-28			77
1000			3			The state of the s		12/ 544		OUO - OUO	10000

/1/ Mano = manometric; Chem = chemical; Volu = volumetric; Cond = conductometric; Pola = polarographic. /2/ End = endogenous; CHO = carbohydrates; Com = complex substrates; Nat = natural; Org = organic compounds. /4/ Washed. /5/ Starved. /8/ µ1/10 µ1 tissue volume/hr. /9/ Homogenized.

160. RESPIRATION RATES: FUNGI (Continued)

Values for rates of gaseous exchange are given in $\mu I/mg$ dry weight/hour, unless otherwise specified. Species names in parentheses are former nomenclature. Column H: Numbers underscored = values for anaerobic CO₂ production, numbers not underscored = values for aerobic CO₂ production.

			1		Total Committee Committee		Dogwing	Dogwinstign Dogo			-
	Species	Material	Temp Meth-	Meth-	Sub-	Specifications	nespira µl/m	piration rate	R.Q.	Experimental	Refer-
			ر ا	po	strate		QO2	9co2	20/200	Variable	ence
	(A)	(B)	(C) (D)	(Q)	(E)	(F)	(9)	(H)	(3)	(3)	(K)
					Fm	Fungi Imperfecti (continued)	1)				
639	639 Penicillium glaucum	Mycelia	52	Chem Org	Org	+Tartrate.		26-7			77
0+9	P. godlewskii	Pellets	23-25	Chem	СНО				1.14		94
641	P. herquei	Pellets			СНО				1.17		94
642	P. italicum	Pellets	23-25	Chem	СНО	2 strains.			1.25-1.32	Strains	94
643	P. kiliense	Pellets	23-25		СНО				1.05		94
644	P. lanoso-coeruleum	Pellets	23-25 Chem		СНО				1.21		94
645		Pellets	23-25 Chem		СНО				1.69		94
949		Pellets	23-25 Chem	Chem	СНО				1.14		94
249	P. lilacinum	Pellets	23-25 Chem	Chem	СНО	2 strains.			1.40-1.57	Strains	94
648	P. luteum	Pellets		Chem	СНО				1.04		94
649	P. meleagrinum	Pellets	23-25	Chem	СНО				1.24		94
059	P. notatum	Pellets	23-25 Chem	Chem	СНО				1.04		94
651		Mycelia	24	Chem	Com	4;8;11 da.		46-198-152		Age	108
652		Pellets	23-24 Mano	Mano	Com	3-5 da.	1.088-1.328			Age	104
653		Mycelia ⁵	20-24 Mano	Mano	End	0-1 da.	6.5-1.7			Age	109
654		Mycelia ⁵	20-24	Mano	СНО	2;4;7 da.	6;16;2			Age	601
659	P. ochraceum	Pellets	23-24	Chem	СНО				1.65		94
959	P. pfefferianum	Pellets	23-25	Chem	СНО	7 strains.			1.05-1.21	Strains	94
657	P. pinophilum	Pellets	23-25 Chem	Chem	СНО				1.10		76
859	P. psittacinum	Pellets	23-25 Chem	Chem	СНО				1.40		94
659	P. puberulum	Pellets	23-25 Chem	Chem	СНО				1.57		94
099	P. purpurogenum	Pellets	23-25 Chem	Chem	СНО				1.77		94
199	P. rugulosum	Pellets	23-25 Chem	Chem	СНО				1.11		94
299	P. schneggii	Pellets	23-25 Chem	Chem	СНО				1.45		94
663	P. spiculisporum	Pellets	23-25 Chem	Chem	СНО				4.03		94
664	P. steckii	Pellets	23-25 Chem	Chem	СНО				1.15		94
699	P. tardum	Pellets	23-25 Chem		СНО	2 strains.			1.05-1.56	Strains	94
999	P. terrestre	Pellets	23-25 Chem		СНО	8 strains.			1.19-2.26	Strains	7-6
299	P. verrucosum	Pellets	23-25 Chem		СНО				2.00		+6
899	P. viridicatum	Pellets	23-25 Chem	44	СНО				1.06-1.26		94
699	Rhacodium cellare	Pellets	23-25 Chem		CHO				1.03	l.	17
029	Scopulariopsis	Pellets	23-25 Chem	-	СНО	3 strains.			1.20-1.33	Strains	94
	brevicaulis			-							
671	Sp	Pellets	23-25 Chem	Chem	СНО				1.28		17
	bombycinum										
672	S. carneolum	Pellets	23-25 Chem CHO	Chem	СНО				1.16		17
673	Stysanus sp	Pellets	23-2	Chem			1		1.21		17
674	Torula sp	Cell suspension4	30	Mano	СНО	±Glutathione; ±cysteine.	28	6		Accessory growth	45
										factors	

675	Torulopsis dattila T. utilis	Cell suspension ⁴ Cell suspension	30	Mano	CHO End	Endogenous. No N added.	3.43	0	0.93	Inorganic nutri-	110
229		Cell suspension	30	Mano	End	+Ethylamine HC1.	3.53		0.83	Inorganic nutri-	110
819		Cell suspension	30	Mano	End	+Glycine.	3,73		0.86	tion; substrate Inorganic nutri-	110
629		Cell suspension	30	Mano	End	+Asparagine.	3,83		96.0	tion; substrate Inorganic nutri-	110
089		Cell suspension	30	Mano	End	+Urea.	3,53		1.15	tion; substrate Inorganic nutri-	110
681		Cell suspension	30	Mano	End	+a-Alanine.	5.23		0.89	tion; substrate Inorganic nutri-	110
682		Cell suspension	30	Mano	End	+p-Alanine.	4.23		1.16	tion; substrate Inorganic nutri-	110
683		Cell suspension	30	Mano	End	+(NH4) ₂ SO ₄ .	3,43		96.0	tion; substrate Inorganic nutri-	110
684		Cell suspension	30	Mano	End	+Diethylamine HCl.	3.73		0.93	tion; substrate Inorganic nutri-	110
689		Cell suspension	30	Mano	End	+Dimethylurea.	3,33		0.94	tion; substrate Inorganic nutri-	110
989		Cell suspension	30	Mano	End	+Guanidine SO4.	3,63		1.20	Ilon; substrate Inorganic nutri-	110
289		Cell suspension	30	Mano	End	+Methylamine HC1.	3,53		0.92	tion; substrate Inorganic nutri-	110
688		Cell suspension	30	Mano	End	+Propylamine HCl.	3.93			tion; substrate Inorganic nutri-	110
689		Cell enghengion	30	Mano	n L		2 03	1 83	0 97	tion; substrate	011
							``			tion; substrate	
069		Cell suspension	30	Mano	End	(NH ₄) ₂ SO ₄ , N starved.	5.83	5.23	06.0	Inorganic nutri-	110
169		Cell suspension	30	Mano	End	HC1,	8.43	6.83	0.80	non; substrate Inorganic nutri-	110
269		Cell suspension	30	Mano	End	+Glycine, N starved.	8.13	8.63	1.06	lorganic nutri-	110
693		Cell suspension	30	Mano	End	+Asparagine, N starved.	8.63	9.93	1.15	tion; substrate Inorganic nutri-	110
404		Coll cuspone (Col	20	1000	7		6.73		-	tion; substrate	0
* (0		Cett suspension	2	Mailo	בוום	starveu.			1.1.	tion; substrate	011
569		Cell suspension	30	Mano	End	+a-Alanine, N starved.	15.03	14.23	0.95	Inorganic nutri-	110
969		Cell suspension	30	Mano	End	+p-Alanine, N starved.	8,83	8.83	1.00	Inorganic nutri-	110
269		Cell suspension	30	Mano	End	ne HCl,	5.73	5.23	0.91	tion; substrate Inorganic nutri-	110
869		Cell suspension	30	Mano	End	N starved. +Dimethylurea,	4.53	4.43	0.98	tion; substrate Inorganic nutri-	110
669		Cell suspension	30	Mano	End	N starved. +Guanidine SO4,	6.03	6,43	1.07	tion; substrate	110
										tion; substrate	-

/1/ Mano = manometric; Chem = chemical; Volu = volumetric; Cond = conductometric; Pola = polarographic, /2/ End = endogenous; CHO = carbohydrates; Com = complex substrates; Nat = natural; Org = organic compounds. /3/ µ1/mg wet wt/hr. /4/ Washed. /5/ Starved. /8/ µ1/10 µ1 tissue volume/hr.

160. RESPIRATION RATES: FUNGI (Concluded)

Values for rates of gaseous exchange are given in µ1/mg dry weight/hour, unless otherwise specified. Species names in parentheses are former nomenclature. Column H: Numbers underscored = values for anaerobic CO2 production; numbers not underscored = values for aerobic CO2 production.

Species	Material	Temp	Temp Meth-	Sub-	Specifications	Respiration I	Respiration Rate	R.Q.	Experimental	Refer-
		ر	od 1	strate		QO ₂	QCO ₂	20/200	variable	ence
(A)	(B)	(C) (D)	(D)	(E)	(F)	(C)	(H)	(1)	(7)	(K)
				Fw	Fungi Imperfecti (concluded)					
700 Torulopsis utilis	Cell suspension	30	Mano	End	+Methylamine HCl,	7.83	7.13	0.91	Inorganic nutri-	110
(concluded)					N starved.		ć		tion; substrate	
701	Cell suspension	30	Mano	End	e HCl,	10.03	7.73	0.77	Inorganic nutri-	110
					N starved.				tion; substrate	
702	Cell suspension	30	Mano CHO	СНО	No Nadded, Nsufficient;			1.13-1.06	1.13-1.06 Inorganic nutri-	110
					N starved,				tion; substrate	
703	Cell suspension	30	Mano	СНО	+(NH4)2SO4, Nsuffi-			1.08-1.06	Inorganic nutri-	110
					cient; N starved.				tion; substrate	
704	Cell suspension	30	Mano	СНО	+Ethylamine HCl, Nsuf-			0.86-0.82	Inorganic nutri-	110
					ficient; N starved.				tion; substrate	
705	Cell suspension	30	Mano CHO	СНО	+Asparagine, N suffi-			1.24-1.18	Inorganic nutri-	110
					cient; N starved.				tion; substrate	
902	Cell suspension	30	Mano	СНО	+Urea, N sufficient;			1.16-1.21	Inorganic nutri-	110
					N starved.				tion; substrate	
707	Cell suspension	30	Mano	СНО	+a-Alanine, N suffi-			1.08-1.08	Inorganic nutri-	110
					cient; N starved.				tion; substrate	
708	Cell suspension	30	Mano CHO	СНО	+Guanidine SO4; N suf-			1.21-1.14	Inorganic nutri-	110
1					cient; N starved.				tion; substrate	
709 Trichoderma	Pellets	23-25	23-25 Chem CHO	СНО				1.20		17
lignorum										
710 Trichoderma sp	Pellets	23-25	23-25 Chem CHO	СНО				1.40		17
711 Trichophyton	Mycelia		Mano	End				1.7		65
712 gypseum	Mycelia		Mano	End	pH 4.6;7.0;8.0.	1.06-1.73-			pH	93
713. T. rubrum	Myrelia		Mano End		DH 4.6:8.0.	2.69			На	93
	2000	1					1	1 1		1

/1/ Mano = manometric; Chem = chemical; Volu = volumetric; Cond = conductometric; Pola = polarographic. /2/ End = endogenous; CHO = carbohydrates; Com = complex substrates; Nat = natural; Org = organic compounds. /3/ µ1/mg wet wt/hr.

Contributors: (a) Darby, R. T., and Mandels, G. R., (b) Sussman, A. S., (c) Cantino, E. C., (d) Allen, P. J., (e) Berry, L. J., (f) Robertson, R. N., (g) Turner, J. S., (h) Yeoman, M. M.

Biochem., Tokyo 39:489, 1954. [4] Shoup, C. S., and Wolf, F. T., J. Cellul. Physiol. 28:365, 1946. [5] Leonard, W. R., ibid 34:293, 1949. [6] Schade, A. L., and Thimann, K. V., Am. J. Bot. 27:659, 1940. [7] Lüers, H., Kühles, R., and Fink, H., Biochem. Zschr. 217:253, 1930. [8] Porievitch, K., Ann. sc. nat. Botan. et biol. végétale, Series 9, 1:1, 1905. [9] Wikén, T., and Somm, H., Experientia, Basel 8:140, 1952. [10] Wassink, E. C., Rec. trav. botan. néerl. 31:583, 1934. [11] De Boer, S. R., ibid 25:117, 1928. [12] Hawker, L. E., Ann. Botany, Lond. 8:79, 1944. [13] Bonnier, G., and Mangin, L., References: [1] Allen, P. J., and Price, W. H., Am. J. Bot. 37:393, 1950. [2] Price, W. H., and Allen, P. J., ibid 29:15s, 1942. [3] Ohta, J., J.

[54] Nickerson, W. J., and Carroll, W. R., Arch, Biochem., N. Y. 7:257, 1945. [55] Pringsheim, E. G., Jahrb. wiss. Botan. 81:579, 1935. [56] Hammon, F., Ann. Physiol., Par. 12:940, 1936. [57] Chevillard, L., Mayer, A., and Plantefol, L., Ann. physiol., Par. 6:506, 1930. [58] Richards, F. J., New Phytologist 26:187, 1927. [59] Stich, C., Flora 74:1, 1891. [60] Scheffer, T. C., Plant Physiol. 11:535, 1936. [61] Scheffer, T. C., and Livingston, B. E., Am. J. Bot. 24:109, 1937. [62] Chauvet, J., Enzymologia, Haag 11:57, 1943. [63] Shu, P., Tanner, K. G., and Ledingham, G. A., Canad. J. Bot. 32:16, 1954. [64] Allen, P. J., Am. J. Bot. 35:799, 1948. [65] Birkinshaw, J. H., Charles, J. H., Raistrick, H., and Stoyle, J. A., B. S., and Tytell, A. A., J. Gen. Physiol. 24:655, 1941. [97] Gould, B. S., and Tytell, A. A., 3rd Internat. Congr. Microb., Rept. Proc., p 230, 1940. [98] Melton, F. M., J. Invest. Derm. 17:27, 1951. [99] Shirk, II. G., and Byrne, H. E., Am. Chem. Soc. meetings, Atlantic City, 1949. [100] Mandels, G. R., and Norton, A. B., Res, Rept., Microb. Series No. 11, Quartermaster General Laboratories, 1948. [101] Darby, R. T., unpublished. [102] Darby, Schriff, 1929. [68] Mandels, G. R., upplished. [69] Porievitch, K., Berr. Deut. bof. Ges. 16:290, 1898. [70] Porievitch, K., Jahrb. wiss. Botan. 35:573, 1900. [71] Mann, T., Biochem. J., Lond. 38:339, 1944. [72] Nielsen, N., and Dresden, D., C. rend. Laborat. Carlsberg. Ser. physiol. 22:(18], 287, 1939. [73] Molliard, M., C. rend. Soc. biol. 83:50, 1920. [74] Molliard, M., ibid 90:21, 1924. [75] Hee, A., Bull. Soc. chim. biol., Par. 9:802, 1927. [76] Gerber, C., Ann. sc. nat. Botan. et biol. vegetale, Series 8, 4:1, 1896. [77] Diakonow, N. W., Berr. Deut. bot. Ges. 4:1, 1886. [78] Bennet-Clark, T. A., and LaTrouche, C. J., New Phytologist 94:211, 1935. [79] Yanagita, T., Arch. Mikrob., Berl. 26:329, 1957. [80] Tamiya, H., Advance. Enzymol., N. Y. 2:183, 1942. [81] Tamiya, H., Acta Phytochim., Japan 4:77, 1928-29. [82] Ohta, Y., and Matsuyama, H., ibid 14:167, 1944. [83] Terui, G., and Mochizuki, T., Tech. Rept., Osak, Univ. 5:219, 1955. [84] Nickerson, W. J., and Edwards, G. A. J. Gen. Physiol. 23:41, 1944. [88] Gentile, A. C., Plant Physiol. 29:257, 1954. [89] Kluyver, A. J., and Custers, M. T., Antonie van Leeuwenhoek. J. Mickerson, W. J., Am. J. Bot. 33:831, 1946. [92] Nickerson, W. J., Am. J. Bot. 33:831, 1946. [92] Nickerson, W. J., Am. J. Bot. 33:831, 1946. [92] Nickerson, W. J., Am. J. Bot. 33:831, 1946. [92] Nickerson, Riccobio. Serol. 6:121, 1940. [92] Arch. Biochem., N. Y. 6:303, 1945. [45] Macfarlane, M. G., Biochem. J., Lond. 33:565, 1939. [46] Von Euler, H., and Sandberg, V., Ferment-forschung 8:232, 1925. [47] Boysen-Jensen, P., Biochem, Zschr. 236:211, 1931. [48] Tang, P. S., and Lin, C. Y., J. Cellul. Physiol. 10:487, 1937. [49] Tang, P. S., and Wu, M., ibid 11:495, 1938. [50] Haehn, H., Wschr. Brau. 54:335, 1937. [51] Edwards, G. A., Buell, C. B., and Weston, W. H., Am. J. Bot. 34:551, 1947. [52] Noack, K., Jahrb. wiss. Botan. 59:413, 1920. [53] Nickerson, W. J., and Carroll, W. R., J. Cellul. Physiol. 22:21, 1943. W. J., Science 103:484, 1946. [93] Nickerson, W. J., and Chadwick, J. B., Arch. Biochem., N. Y. 10:81, 1946. [94] Birkinshaw, J. H., Charles, J.H., Hetherington, A. C., and Raistrick, H., Philos. Tr. R. Soc. London B 220:55, 1931. [95] Dorrell, W. W., (thesis), Univ. Wisconsin, 1948. [96] Gould, and Goddard, D. R., Am. J. Bot. 37:379, 1950. [103] Koffler, H., Knight, S. G., Emerson, R. L., and Burris, R. H., J. Bact., Balt. 50:549, 1945. and Raistrick, H., Philos. Tr. R. Soc. London B 220:99, 1931. [18] Akai, S., and Stoi, S., Lab. Phytopath., Contrib. No. 39, Kyoto Univ., Japan, 1955. [19] Nicolas, M. G., C. rend, Acad. sc. 170:750, 1920. [20] Allen, P. J., and Goddard, D. R., Science 88:192, 1938. [21] Hawker, L. E., "Physiology of Fungi," Univ. London Press, p 107, 1950. [22] Tatum, E. L., and Giese, A. C., Arch. Biochem., N. Y. 9:15, 1946. [23] Strauss, B. S., Arch. Gaden, E. L., Jr., Indust. Engin. Chem. 42:1792, 1950. [31] Baumberger, J. P., Sympos. Quant. Biol. 7:195, 1939. [32] Kluyver, A. J., and Hoogerhide, J. C., C. rend. Acad. sc. 195:443, 1933. [33] Watts, D. T., Arch. Biochem. and Biophys., N. Y. 34:391, 1951. [34] Barron, E. S., Ardeo, M. I., and Hearon, M., J. Gen. Physiol. 34:211, 1951. [35] Cook, E. S., and Morgan, M. N., Biochem. J., Lond. 34:15, 1940. [36] Giese, A. C., and Swanson, W. H., J. Cellul. Physiol. 30:285, 1947. [37] Pratt, E. F., and Williams, R. J., J. Gen. Physiol. 22:637, 1939. [38] Winzler, R. J., Burk, D., and Du Vigneaud, V., Arch. Biochem., N. Y. 5:25, 1944. [39] Cayrol, P., Ann. Physiol., Par. 9:999, 1933. [40] Kirby, G. W., Drill, V., and Frey, C. N., Indust. Engin. Chem. 31:596, 1939. [41] Aldous, J. C., Fisher, K. C., and Stern, J. R., J. Cellul. Physiol. 35:303, 1950. [42] Machlis, S., and Blanchard, K. C., ibid 9:207, 1937. [43] Stier, T. J., Stannard, J. N., J. Gen. Physiol. 19:479, 1935. [44] Spiegelman, S., and Nozawa, M., Biochem. and Biophys., N. Y. 36:33, 1952. [24] Giese, A. C., and Tatum, E. L., Arch. Biochem., N. Y. 9:1, 1946. [25] Goddard, D. R., Sympos. Quant. Biol. 7:362, 1939. [26] Sussman, A. S., Am. J. Bot. 40:401, 1953. [27] Lindegren, C. C., Arch. Biochem., N. Y. 9:353, 1946. [28] Meyerhof, O., Biochem. Zschr. 162:43, 1925. [29] Holtz, P., Exner, M., and Schumann, H. J., Arch. exp. Path., Lpz. 205:243, 1948. [30] Hixson, A. W., and Koffler, H., Emerson, R. L., Perlman, D., and Burris, R. H., ibid 50:517, 1945. [105] Galam, C. T., Driver, N., and Bowers, R. H., J. Appl. Ann, sc. nat. Botan, et biol. végétale, Series 6, 17:210, 1884. [14] Foster, J. W., and Waksman, S. A., J. Agr. Res. 57:873, 1938. [15] Moses, V., Biochem. J., Lond. 57:547, 1954. [16] Mickelson, M. N., J. Bact., Balt. 59:659, 1950. [17] Birkinshaw, J. H., Charles, J. H., Hetherington, A. C., 108] Hickenhull, D. J., Biochem. J., Lond. 40:337, 1946. [109] Wolf, F. T., Arch. Biochem., N. Y. 13:83, 1947. [110] Sperber, E., Arkiv. Kemi, Trans. Roy. Soc., Lond. B 220:27, 1931, [66] Tamiya, H., and Hilda, T., Acta Phytochim., Japan 4:343, 1928-29. [67] Tamiya, H., and Miwa, Y., Chem., Lond. 1:209, 1951. [106] Wolf, F. T., Arch. Biochem., N. Y. 16:143, 1948. [107] Diakonow, N. W., Ber. Deut. bot. Ges. 5:115, 1887. Mineral. Geol. 21A (3):1, 1945.

161. RESPIRATION RATES: LIVERWORTS AND MOSSES

Values for rates of gaseous exchange are µ1/100 mg dry weight/hour, unless otherwise specified. Material consists of entire plant, unless otherwise specified.

)),								
	Species	Temp	Method1	Respira	Respiration Rate	R.Q.	Experimental	Reference
		ပ္		90 ₂	QCO ₂	CO ₂ /O ₂	Variable	
	(A)	(B)	(C)	(D)	(E)	(F)	(B)	(H)
				Liver	Liverworts			
-	Chiloscyphus fragilis	52	Mano	60-100			Substrates; inhibitors	1
2	Frullania tamarisci				32-47		Light	2
3	Marchantia polymorpha	20	Chem		9.0			3
4,	Riccia fluitans	25	Mano	250-300			Substrates; inhibitors	1
_				Mos	Mosses			
2	Fissidens taxifolius				30			7
9	Fontinalis antipyretica				105			2
7		25	Mano	70-140			Substrates; inhibitors	-
00	Hylocomium parietinum	30	Chem		26			4
6		20	Chem		46			4
0.1		0			15			4
	H. proliferum	30	Chem		26			4
12		20	Chem		46			4
13		0	Chem		15			4
14	H. squarrosum	30	Chem		100			4
15		20	Chem		61			4
16		5	Chem		15			4
17	Hypnum cupressiforme	18.5	Chem	2-30	7.7		Moisture	٠ د د
	H, fluitans	18	Chem		0.833			9 9
20	H. triquetrum	20			0.8-30.0		Moisture	7
2.1			Mano	0.5-40.0			Moisture	80
22	Mnium undulatum				7.5-97.0		Moisture	2
23	Orthotrichum affine	55	Mano		12	0.70		6
24	Polytrichum juniperinum4	18			1.2-0.73	1.00-0.65	Growth, development, maturation	10
	Sphagnum cuspidatum				73-137	1.00-0.94		2
	S. girgensohnii	30	Chem		130			4
17		20	Chem		71			4,
28		ιΩ	Chem		20			4
							agrana and a same a same a same a same a same a same a same a same a same a same a same a same a same a same a	

/1/ Mano * manometric, Chem * chemical. /2/ \mul/sq cm/hour. /3/ \mul/100 mg wet weight/hour. /4/ Shoots or tops.

Contributors: (a) Mandels, G. R., and Darby, R. T., (b) Klein, R. M., (c) Henderson, J. H., and Henderson, L. L., (d) Lyon, C. J.

References: [1] Usami, S., Acta Phytochim., Japan 9:287, 1937. [2] Jönsson, B., C. rend. Acad. sc. 119:440, 1894. [3] Boysen-Jensen, P., and Müller, D., Jahrb. wiss. Botan. 70:503, 1929 b. [4] Stålfelt, M. G., Planta 27:30, 1937. [5] Fraymouth, J., Ann. Botany, Lond. 42:75, 1928. [6] Kolkwitz, R., Wiss. Meeresuntersuch., Abt. Helgoland, N. S. 4:31, 1900. [7] Mayer, A., and Plantefol, L., C. rend. Acad. sc. 178:1385, 1924. [8] Mayer, A., and Plantefol, L., Ann. physiol., Par. 1:239, 1925. [9] Jumelle, H., Rev. gén. botan. 4:49,103,159,220,259,305, 1892. [10] Bastit, E., ibid 3:255, 1891.

162. RESPIRATION RATES: HORSETAILS AND FERNS

Values for rates of gaseous exchange are $\mu l/100$ mg wet weight/hour.

		0		19			
				Respirat	Respiration Rate	(
Species	Material	lemp.	Method ²	µ1/100 mg/hr	mg/hr	٠ ج: ر	Reference
)		4O ₂	QC05	20/200	
(A)	(B)	(C)	(D)	(三)	(F)	(0)	(H)
			Horsetails				
1 Equisetum maximum	Shoot or top	20	Mano		9	0.78	1
2	Fruiting shoot or top	20	Mano		100	0.83	-
3	Stem	RT	Mano		9.6	0.80	2
4	Branchlet	RT	Mano		19	69.0	2
		F	Ferns				
5 Asplenium adiantum nigrum	Frond with sori	20	Mano		17	1.01	1
9	Frond	2.0	Mano		13	98.0	-
7	Blade	RT	Mano		13.4	0.80	2
80	Petiole	RT	Mano		8.3	0.80	2
9 Dryopteris austriaca	Frond	48	Chem		122		3
10	Frond	30	Chem		36		3
11	Frond	10	Chem		25		3
12 Eupteris aquilina	Frond	87	Chem		168		3
13	Frond	30	Chem		46		3
14	Frond	10	Chem		15		3
15	Frond	15.5	Chem		265-663		3
16 Polypodium vulgare	Frond with sori	20	Mano		61	1.06	
17	Frond	20	Mano		10	0.92	-
18	Frond	16	Chem		250-863		3
19 Pteris aquilina	Frond with sori	22	Mano		35	1,01	1
20	Frond	22	Mano		19	0.84	1
21 Scolopendrium scolopendrium	Frond	25	Mano	23-130-403			4
22	Frond	30	Mano	31			4
23	Frond	22	Mano	17.5			4
24	Frond	13	Mano	6.6			4
25	Frond	~	Mano	2.2			41
							Barriot .

/1/ RT = room temperature. /2/ Mano = manometric, Chem = chemical. /3/ Effect of growth, development, maturation.

Contributors: (a) Mandels, G. R., and Darby, R. T., (b) Klein, R. M., (c) Henderson, J. H., and Henderson, L. L., (d) Lyon, C. J.

References: [1] Maige, G., Ann. sc. nat. Botan. et biol. végétale, Series 9, 14:1, 62, 1911. [2] Nicolas, G., ibid 10:1, 1909. [3] Johansson. N., Svensk Botan. Tidskr. 20:107, 1926. [4] Belehradek, J., and Belehradkova, M., New Phytologist 28:313, 1929.

163. RESPIRATION RATES: HIGHER PLANTS, SEEDS

Values for rates of gaseous exchange are µ1/100 mg wet weight/hour, unless otherwise specified. Underlined number = control or endogenous value. For data on certain cereal "seeds" during development and maturation, see HIGHER PLANTS: FRUITS, beginning on Page 377.

Species	Condition	Tentp	Method ¹		Respiration Rate µ1/100 mg/hr	R.Q.	Experimental	Refer-
	Fart	ر د		G	QCO ₂	CO ² /O ²	Variable	ence
(A)	(B)	(C)	(Q)	(E)	(F)	(0)	(H)	Ξ
1 Acacia melanoxylon (blackwood acacia			Mano		0.012			1
	Resting				14			2
3 Aleurites sp (tung)	Embryo, endosperm					1.0-1.7	Growth, development, maturation	~
4 Amaranthus retroflexus (amaranth)	Moist	25	Mano	6.7		0.86		4.
5 Amygdalus communis (almond)	Germinating		Mano			0.7-0.86	Growth, development, maturation	5
6 Avena sativa (oat)	Seedling				2	0.89-1.49	Oxygen	9
	Resting	37.8	Chem	200	0.002-0.17		Moisture	7
8 A. sativa (oat, Fulghum)	Embryo,	76	Mano	400-1404			Oxygen	∞
9 A. sanva (oat. Gopher)	Resting	38			0.02-0.782		Moisture	6
ż	Coleoptile		Mano			0.82-1.29	pH; carbohydrates; hormones	10
=	Coleoptile,	30	Mano	47-39			Substrate	11
12 A. sativa (oat, States Pride)	segment Coleoptile	25	Mano	3602			Organic acids; metabolic	12
13 Brassica alba (wild nustard)	Resting	26	Chem		33-15	0.87-0.45	Carbon dioxide	13
	Seedling	19	Chem		25			9
_	Resting	18	Mano	11		0.82		14
_	Germinating	18	Mano	105		99.0		14
17 Chenopodium album (goosefoot)	Moist	25	Mano	9.6		0.93		-1"
	Resting	28	Mano			06.0		15
	Embryo	30	Mano	400-505			Development	16
20 21	Hypocotyl Endosperm	30	Mano	64 <i>4</i> 02				16
22 Crataegus sp (hawthorn)	Moist	25	Mano	4.4		0.77		4
23 Cucurbita melanospermum (gourd) 24 C. pepo (pumpkin)	Seedling Germinating				45	0.73-2.2	Oxygen	6 17
25 C. pepo (Sutton's long white vegetable	Germinating	2.5	Chem			0.95-0.63		18
26 C. pepo (Sutton's long white vegetable marrow)	Germinating	25	Chem		10-117	0.94-0.62		19
Ú	Resting	28	Mano		2000	1.16		15
87	Resting		Mano		0.002			I
	Seedling					0.85-2.00	Oxygen	20
30 Fagopyrum esculentum (buckwheat)	Germinating	25	ξ		41-306	0.8-1.0		21
Sutton's, Simpson's)	Germinaung	6.7	Chem			0.47-0.99		I o
32 Glycine max (soybean)	Germinating		Mano			0.65		22
33 Gossypiun, hirsutum (cotton, Delfos-3506)	Resting	26	Mano		0.03-6.0	0.96-1.12	Moisture; storage or starvation	23
34 G. hirsutum (cotton, Cokers-200)	Resting	97	Mano		0.1-1.5	0.92-1.05	Moisture; storage or starvation	23

Hannus (sunflower) Germinating 28 Mano 92 1.05 Hannus (sunflower, Russian) Germinating 28 Chem 152-862 1.05 Hannus (sunflower, Sutton's Grant Yellow) Germinating 25 Chem 0.005 90-900-350 Hannus (sunflower, Sutton's Glant Yellow) Germinating 25 Chem 0.005 90-900-350 Hannus (sunflower, Simpson's Glant Yellow) Resting 25 Chem 0.005 90-900-350 Hannus (sunflower, Simpson's Glant Yellow) Resting 25 Chem 0.005 90-900-350 Hannus (sunflower, Simpson's Glant Yellow) Resting 25 Mano 0.05 Hannus (sunflower, Simpson's Glant Yellow) Resting 25 Mano 0.05 Hannus (sunflower, Simpson's Glant Yellow) Resting 25 Mano 0.05 Hannus (sunflower, Simpson's Glant Yellow) Resting 25 Mano 0.05 Hannus (sunflower, Simpson's Glant Yellow) Resting 25 Mano 0.05 Hannus (sunflower, Simpson's Glant Yellow) Germinating 25 Chem 0.05 Hannus (sunflower, Simpson's Glant Yellow) Germinating 25 Chem 0.05 Hannus (sunflower, Simpson's Glant Yellow) Germinating 25 Chem 0.05 Hannus (sunflower, Simpson's Glant Yellow) Germinating 25 Chem 0.05 Hannus (sunflower, Simpson's Glant Yellow) Germinating 25 Chem 0.05 Hannus (sunflower, Simpson's Glant Yellow) Germinating 25 Chem 0.05 Hannus (sunflower, Simpson's Glant Yellow) Germinating 25 Chem 0.05 Hannus (sunflower, Simpson's Glant Yellow) Germinating 25 Chem 0.05 Hannus (sunflower, Simpson's Glant Yellow) Germinating 25 Chem 0.05 Hannus (sunflower, Simpson's Glant Yellow) Germinating 25 Chem 0.05 Hannus (sunflower, Simpson's Glant Yellow) Germinating 25 Chem 0.05 Hannus (sunflower, Simpson's Glant Yellow) Germinating 25 Chem 0.05 Hannus (sunflower, Simpson's Glant Yellow) Germinating 25 Chem 0.05 Hannus (sunflower, Simpson's Glant Yellow) Germinating 25 Chem 0.05 Hannus (sunflower, Simpson's Glant Yellow)	in tailibil								ī
Hambus (sunflower, Russian) Germinating 28 Chem 155-86		Germinating		Mano			0.88		
H. annus (sunflower, Russian) Germinating 18 Chem 92 Chem 153-86² 0.67-0.89 H. annus (sunflower, Sunflower, Sunflow) Germinating 25 Chem 1.05-6.50 0.65-0.50 Gard Yellow) Resting 22 Chem 0.005 90-900-350² 0.65-0.50 Horden distributu (barriey) Resting 37.8 Chem 0.005 90-900-350² H. vulgare (barley) Resting 37.8 Chem 0.005 0.702-0.36² H. vulgare (barley) Resting 37.8 Chem 0.005 0.702-0.36² H. vulgare (barley) Resting 28 Mano 6.2.5 0.70-0.36² H. vulgare (barley) Resting 28 Mano 6.2.5 0.70-0.36² Juglans regia (Persian walnul) Resting 25 Mano 6.2.5 0.70-0.36² Juglans regia (barley) Resting 25 Mano 6.2.5 0.70-0.36² Juglans regia (barley) Resting 25 Mano 6.2.5 0.70-0.36²	37	Resting	28	Mano			1.05		
H. annus (surflower, Russian) Germinating 25 Chem 1153-86 0.67-0.89 H. annus (surflower, Sutton's Germinating 25 Chem 0.005 0.67-0.89 H. annus (surflower, Simpost Grant Yellow) Germinating 25 Chem 0.005 0.002-0.362 H. annus (surflower, Simpost Grant Yellow) Resting 37.8 Chem 0.002-0.362 H. distichum var. mutans (barley) Resting 25 Mano 0.002-0.362 H. vulgare (barley, Chilean) Resting 25 Mano 0.052 H. vulgare (barley, Chilean) Resting 25 Mano 0.055 0.56-0.57 H. vulgare (barley, Chilean) Resting 25 Mano 0.055 0.64-0.57 H. vulgare (barley, Chilean) Resting 25 Mano 0.055 0.64-0.57 H. vulgare (barley, Chilean) Resting 25 Chem 417-5.6 0.64-0.57 H. vulgare (barley, Chilean) Resting 25 Chem 410-1002 Lapinus indicus (pigeon pea, Most) Germinating 25 Chem 410-100 L. doratus (sweet pea, What Joy) Germinating 25 Chem 410-100 L. doratus (sweet pea, What Joy) Germinating 25 Chem 410-100 L. doratus (sweet pea, Sutton's, Germinating 25 Chem 410-100 L. luleus (Sutton's Dwarf Yellow) Germinating 25 Chem 410-100 L. luleus (Sutton's Dwarf Yellow) Germinating 25 Chem 410-100 L. luleus (Sutton's Dwarf Yellow) Germinating 25 Chem 410-100 L. luleus (Sutton's Dwarf Yellow) Germinating 25 Chem 410-100 L. luleus (Sutton's Dwarf Yellow) Germinating 25 Chem 410-100 L. luleus (Sutton's Dwarf Yellow) Germinating 410-40-100 L. luleus (Sutton's Dwarf Yellow) Germinating 410-40-100 L. luleus (Sutton's Dwarf Yellow) Germinating 410-40-40 L. luleus (Sutton's Dwa	38	Germinating	18	Chem		76			-
Hammus (sunflower, Sutton's Germinating 25 Chem 11-407 0.67-0.89 Grant Vellows Simpson's Germinating 25 Chem 0.005 91-900-3502 Grant Vellows Simpson's Germinating 25 Chem 0.005 91-900-3502 Hammus (sunflower, Simpson's Embryo 22 Chem 0.005 91-900-3502 Hammus (stantionar (barley) Embryo 22 Chem 0.005 91-900-3502 Havigare (barley, Chilean) Resting 25 Mano 6.2.6 0.5.2 Havigare (barley, Chilean) Resting 25 Mano 0.005 0.05 Havigare (barley, Chilean) Resting 25 Mano 0.05 0.05 Lativar soloraus (sweet pea, What Joy) Germinating 25 Chem 27 Mano 0.05 Locatum ushatissinum (flax) Resting 27 Mano 24 0.00-0.35 Lupinus albus (white lupine) Germinating 25 Chem 21 0.00-0.35 Luteus (Satton's Dwarf Vellow) Germinating 25 Chem 0.00-0.35 Luteus (Satton's Dwarf Vellow) Germinating 25 Chem 0.00-0.35 Luteus (Satton's Dwarf Vellow) Germinating 14 Chem 0.01-1.5 Mano 0.05 0.00-0.35 Luteus (Satton's Dwarf Vellow) Germinating 14 Chem 0.00-1.5 Having a chlorina (tour-o'clock) Seedling 14 Chem 0.00-0.35 Having a chlorina (tour-o'clock) Seedling 14 Chem 0.00-0.35 Having a chlorina (tour-o'clock) Seedling 14 Chem 0.00-0.35 Having a chlorina (tour-o'clock) Seedling 13 Chem 0.00-0.35 Having a chlorina (tour-o'clock) Seedling 14 Chem 0.00-0.35 Having a chlorina (tour-o'clock) Seedling 14 Chem 0.00-0.35 Having a chlorina (tour-o'clock) Seedling 14 Chem 0.00-0.35 Having a chlorina (tour-o'clock) Resting 14 Chem	H. annuus (sunflower,	Germinating	20	Chem		153-86		Inorganic nutrition, salts	
Grant Wallow) Germinating 25 Chem 41-407 0.85-0.50 Glant Vellow) Resting Resting 22 Chem 0.005 90-900-350² 1-55-0.50 Glant Vellow Besting Besting 37.8 Chem 0.005 90-900-350² 1-65-0.50 H. vulgare barley Embryo Enclus Enclus Besting 37.8 Chem 0.005 90-900-350² 1-65-0.50 H. vulgare barley Chillean Enclus Besting 25 Mano 3.6 0.05-2 0.04-0.97 H. vulgare barley Chillean Enclus Besting 25 Mano 3.6 0.05-2 0.04-0.97 H. vulgare barley Chillean Resting 25 Mano 0.05 0.04-0.97 0.05-2 H. vulgare barley Enclus Certinating 25 Mano 0.05-2 0.04-0.97 Liganus indicus (pigeon pea) Resting 25 Mano 0.05-2 0.04-0.97 Maximus indicus (pigeon pea) <td< td=""><td>H. annuus (sunflower,</td><td>Gerninating</td><td>52</td><td>Chem</td><td></td><td></td><td>0.67-0.89</td><td></td><td></td></td<>	H. annuus (sunflower,	Gerninating	52	Chem			0.67-0.89		
Harming stationers, Supposite Stationers, Stationers	:		,	ξ		,	56.0-		
Hordeum distribum (barley)	i.	Germinating	67	Chem		707-17	0.03-0.30		
H. distichum var. mutans (barley, Embryo 22 Chem 37.8 Chem 6.002-0.362 Angare (barley) Chilean) Resting Mano 6.26 (b.26 6.26) Chocardus (barley) Chilean) Embryo 25 Mano 6.26 (b.26 6.26) Chilean) Ceruinating 25 Mano 6.47 (b.26 0.340-0.37) Ceruinating 21 Chem 430-1002 11-1102 11-0.085 (b.26 0.340-0.37) Ceruinating 25 Chem 6.42 47-5.6 11-1102 11-0.085 (b.26 0.340-0.37) Ceruinating 25 Chem 6.42 47-5.6 11-1102 11-0.085 (b.26 0.340-0.38) Ceruinating 25 Chem 73-0.085 (b.26 0.340-0.38) Chem 73-0.085 (b.26 0.34	Ho	Resting			0.005				1
H. Vulgare (barley)		Embryo	22	Chem		90-900-3502		Growth, development, maturation	F
H. vulgare (barley) H. vulgar		,				1			
H. vulgare (barley, Chilean) Resting Endosperu. Mano 6.2.6 7.2.6 7.3.6	H. vulgare (barley)	Resting	37.8	Chem		0.002-0.362		Moisture	
Endospern	H. vulgare (barley,	Resting		Mano		8.7			
Resting Seeding Seed		Embryo Endosperm		Mano		62.6 3.6			
Easting 25 Mano 0.05 0.76		Resting	28	Mano			0.52		
Resting 25 Mano 6.6-25 0.04-0.97 Lathyrus codoratus (sweet pea, What Joy) Seedling 20 Mano 6.45 1.0 L. odoratus (sweet pea, What Joy) Germinating 25 Chem 45-102 1.0-0.85 L. odoratus (sweet pea, What Joy) Germinating 25 Chem 46-102 1.0-0.85 L. odoratus (sweet pea, What Joy) Germinating 25 Chem 46-102 1.0-0.85 L. odoratus (sweet pea, Sutton's Germinating 25 Chem 24 66-102 1.0-0.85 L. odoratus (sweet pea, Sutton's Germinating 17 Mano 24 0.05-0.85 L. luteus (sweet pea, Sutton's Germinating 18 Mano 214 0.03-1.52 0.90-0.35 L. luteus (Sutton's Dwarf Yellow) Germinating 18 Mano 196 1.04-0.76 Macdicago sativa (four-o'clock) Seedling 14 Chem 12 1.04-0.76 Mano Corpus sativa (rice) Seedling 14 Chem 12 1.04-0.76 L. sativa (rice, Bely) Resting 14 Chem 1.17 1.00 Mano Corpus (corpus (c	Juniperus virginiana (red cedar)	Resting	25	Mano		0.05	0.76		i .
Committee Comm	0	Germinating	25	Mano		6.6-25	0.84-0.97		
Lathyrus odoratus (sweet pea, Maxima Abba) Moist 20 Mano 430-100 ² 1.0 1	Kajanus indicus (pigeon pea)	Resting	21	Chen		47-5.6			C
Maxima Alba) Seedling 20 Mano 430-100 ² 1.0 L. odoratus (sweet pea, What Joy) Germinating 25 Chem 46-102 1.0-0.85 L. odoratus (sweet pea, Sutton's, What Joy) Germinating 25 Chem 46-102 1.0-0.85 L. odoratus (sweet pea, Sutton's, What Joy) Germinating 17 Mano 24 0.653 Linum usitatissinum (flax) Resting 17 Mano 24 0.91 Germinating 16 Mano 21 0.03-1.5 ² 0.90-0.35 Lupinus albus (white lupine) Germinating 15 Mano 21 0.03-1.5 ² Lupinus albus (white lupine) Germinating 16 Mano 21 0.00-0.35 Lupinus albus (white lupine) Germinating 16 Mano 21 0.00-0.35 Lupinus albus (white lupine) Germinating 16 Mano 21 0.00-0.35 Liteus (Sutton's Dwarf Yellow) Germinating 16 Chem 10-0-0.35 M. Jalapa chlorina (four-o'clock)<	Lathyrus odoratus (sweet pea,	Moist	20	Mano	6.42				
L. odoratus (sweet pea, What Joy) Germinating 25 Chem 430-100² 1.0 <td>Maxima Alba)</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Maxima Alba)								
L. odoratus (sweet pea, What Joy) Germinating Germinating 25 Chem 11-110* 10-0.85 What Joy) Germinating 25 Chem 46-102 0.9-0.98 L. odoratus (sweet pea, Sutton's) Germinating 30 Mano 24 0.643 Linum usitatissinum (flax) Germinating 14 Mano 214 0.03-1.52 0.90-0.35 Linum usitatissinum (flax) Germinating 15 Mano 214 0.03-1.52 0.90-0.35 Linum usitatissinum (flax) Germinating 16 Mano 214 0.03-1.52 0.90-0.35 Lupinus albus (white lupine) Seedling 19 Chem 50 0.90-0.35 L. luteus (Sutton's Dwarf Yellow) Germinating 15 Chem 104-0.76 Medicago sativa (alfalfa) Resting 14 Chem 106 0.66 Mirabilis jalapa (four-o'clock) Seedling 14 Chem 17 0.06-2.3 Oryza sativa (rice) Besting 37.3 Chen 0.06-0.35 0.06-0.35 1.74 Or sativa (rice, Bely) Resting Mano 1.92 0.004-0.35		Seedling	20	Mano	430-100-	6	(Growth, development, maturation	
L. odoratus (sweet pea, Sutton's). Gerninating Cerninating 25 Chem 40102 10-0.85 What Joy) Gerninating 30 Mano 24 0.63 Linum usitatissinum (flax) Gerninating 17 Mano 24 0.63 Linum usitatissinum (flax) Gerninating 13 Chem 21 0.99-0.35 Lupinus albus (white lupine) Gerninating 15 Mano 24 0.03-1.52 0.90-0.35 Lupinus albus (white lupine) Gerninating 15 Mano 21 0.90-0.35 Lupinus albus (white lupine) Gerninating 15 Chen 21 0.90-0.35 Lupinus albus (white lupine) Gerninating 25 Chen 21 0.90-0.35 Medicago sativa (white lupine) Gerninating 15 Chen 10-0.03-1.12 0.00-0.35 Murabilis jalapa (four-o'clock) Seedling 14 Chem 12 0.00-0.35 Oryza sativa (rice) Belling 37.4 0.004-0.35 0.005-0.172 1.74 <tr< td=""><td></td><td>Germinating</td><td>52</td><td>Chem</td><td></td><td>11-110-</td><td>1.0</td><td></td><td></td></tr<>		Germinating	52	Chem		11-110-	1.0		
What Joy) Gerninating 30 Mano 24 0.63 Linum usitatissinum (flax) Resting 17 Mano 214 0.63 Linum usitatissinum (flax) Resting 17 Mano 214 0.55 Cherninating 37.3 Chen 214 0.55 Cherninating 13 Chen 21 0.90-0.35 Cerninating 15 Mano 21 0.90-0.35 L. luteus (Sutton's Dwarf Yellow) Gerninating 15 Mano 106 1.04-0.76 Medicago sativa (alfalfa) Resting 14 Chen 10.66 1.04-0.76 Mirabilis Jalapa (four-o'clock) Seedling 14 Chem 12 0.06-0.35 Oryza sativa (rice) Belling 37.3 Chem 1.74 1.74 O. sativa (rice, Bely) Resting Mano 1.04-0.35 1.74 O. sativa (rice, Blue Rose) Resting 33 Chem 1.19-2 O. sativa (rice, Oobe) Resting 36		Germinating	25	Chem		701-01	1.0-0.85		
Linum usitatissinum (flax) Gerninating Resting Resting 30 Mano 244 0.63 Lupinus albus (white lupine) Gerninating Gerninating Seedling 17.4 Mano 214 0.03-1.5 ² 0.90-0.35 Lupinus albus (white lupine) Gerninating Gerninating Seedling Seedling Seedling Mano 34 19 Chem 21 21 0.80-1.12 Medicago sativa (alfalfa) Resting Gerninating Seedling 14 14 Chem 34 1.04-0.76 Mirabilis jalapa (four-o'clock) Seedling 14 14 Chem 15 1.04-0.76 My jalapa chlorina (four-o'clock) Seedling 14 14 Chem 15 0.004-0.35 ² O. sativa (rice) Belling 14 37.4 Chem 15 0.004-0.35 ² O. sativa (rice, Bely) Resting 14 Mano 100 0.04-0.35 ² 1.17 O. sativa (rice, Blue Rose) Resting 15 Mano 119 ² 0.005-0.17 ² 1.15 O. sativa (rice, Oobe) Resting 11 Mano 119 ² 0.005-0.17 ² 1.15		0							- 1
Chemical C		Germinating	30	Mano			0.63		
Commonstring Comm		Resting		Mano	24		0.91		
Company of the lupine Comp		Germinating	27 27	Chop	+17	0.03-1.52	0.00	o i o i o i o i o i o i o i o i o i o i	
Lupinus albus (white lupine) Gerninating 19 Chem 50 Seedling Seedling 15 Chem 21 0.80-1.12 L. luteus (Sutton's Dwarf Yellow) Gerninating 15 Chem 21 0.80-1.12 Medicago sativa (alfalfa) Resting 14 Chem 36 1.04-0.76 Mirabilis Jalapa (four-o'clock) Seedling 14 Chem 12 0.36 M. jalapa chlorina (four-o'clock) Seedling 14 Chem 12 0.06-2.3 Oryza sativa (rice) Resting 37.4 Chem 1.17 1.17 O. sativa (rice, Bely) Moist Mano 1.192 1.00 O. sativa (rice, Blue Rose) Resting Mano 1.192 1.61 O. sativa (rice, Blue Rose) Resting Mano 0.032 0.005-0.172 O. sativa (rice, Oobe) Resting Mano 0.032 0.005-0.172		Germinating	10.0	Mano		0.1	0.90-0.35	Growth, development, maturation	S
Seeding 19 Chem 21 0.80-1.12 Seeding Seeding 19 Chem 21 0.80-1.12 Germinating 14 Chem 104 0.36 Mano 106 1.03 Mano 106 1.17 Mano 1.19^2 1.17 Mano 1.19^2 1.15 O. sativa (rice, Blue Rose) Resting 1.40 O. sativa (rice, Blue Rose) Resting 1.15 O. sativa (rice, Oobe)		Germinating				90			
L. Iuteus (Sutton's Dwarf Yellow) Seedling 25 Chen, Mano 34 1.04-0.76 Medicago sativa (alfalfa) Resting 14 Mano 106 1.04-0.76 Murabilis jalapa (four-o'clock) Seedling 14 Chem 12 0.36 M. jalapa chlorina (four-o'clock) Seedling 14 Chem 12 0.36 Oryza sativa (rice) Resting 37.3 Chen, O.042 0.004-0.352 1.17 O. sativa (rice, Bely) Moist Mano 1.19 1.44 1.44 O. sativa (rice, Blue Rose) Resting Mano 1.192 1.61 O. sativa (rice, Blue Rose) Resting Mano 1.192 1.61 O. sativa (rice, Oobe) Resting Mano 0.032 1.15		Seedling	19	Chem		2.1			
Medicago sativa (alfalfa) Resting 13 1.08 Mirabilis jalapa (four-o'clock) Seedling 14 Chem 13 0.36 M. jalapa chlorina (four-o'clock) Seedling 14 Chem 12 0.04 Oryza sativa (rice, Bely) Resting 37.3 Chen. 0.004-0.352 0.06-2.3 Mano Germinating Mano 4.42 1.74 O. sativa (rice, Blue Rose) Resting Mano 1.192 1.00 O. sativa (rice, Blue Rose) Resting Mano 0.032 0.005-0.172 1.15 O. sativa (rice, Oobe) Resting Mano 0.032 0.005-0.172 1.15	I luteus (Sutton's Owarf Vellow)	Seedling	2.5	Mano			0.80-1.12	Oxygen	
Murabilis jalapa (four-o'clock) Seedling 14 Chem 13 0.36 M. jalapa chlorina (four-o'clock) Seedling 14 Chem 12 0.36-2.3 Oryza sativa (rice, Bely) Resting 37.3 Chen. 0.004-0.352 0.06-2.3 O. sativa (rice, Blue Rose) Resting Mano 4.42 1.74 O. sativa (rice, Blue Rose) Resting 36 Chem 1.16 O. sativa (rice, Oobe) Resting Mano 0.032 1.15 O. sativa (rice, Oobe) Resting Mano 0.032 1.15	Medicago sativa (alfalfa)	Resting	18	Mano	38		1.08		
Mirabilis jalapa (four-o'clock) Seedling 14 Chem 13 M. jalapa chlorina (four-o'clock) Seedling 14 Chem 12 Oryza sativa (rice, Bely) Resting 37.3 Chen, Mano 0.042 0.065-0.35 O. sativa (rice, Blue Rose) Resting Mano 1.17 1.74 O. sativa (rice, Blue Rose) Resting 36 Chem 1.00 O. sativa (rice, Oobe) Resting Mano 0.032 1.15		Germinating	18	Mano	106		0.36		
M. jalapa chlorina (four-o'clock) Seedling 14 Chem 12 0.66-2.3 Oryza sativa (rice, Bely) Resting 37.3 Chen. 0.004-0.352 0.06-2.3 O. sativa (rice, Blue Rose) Resting Mano 1.17 1.74 O. sativa (rice, Blue Rose) Resting 36 Chem 1.00 O. sativa (rice, Oobe) Resting Mano 0.032 1.15		Seedling	14	Chem		13			
Oryza sativa (rice, Bely) Seedling 37.4 Chen. Chen. 0.04-2 0.06-2.3 O. sativa (rice, Blue Rose) Resting Mano 3.72 1.17 O. sativa (rice, Blue Rose) Resting 36 Chem O. sativa (rice, Blue Rose) Resting 36 Chem O. sativa (rice, Oobe) Resting Mano 1.192 O. sativa (rice, Oobe) Resting Mano 0.032		Seedling	14	Chem		12			- 1
O. sativa (rice, Blue Rose) Resting Mano 0.042 Mano 1.17 Mano 1.17 Mano 1.17 Mano 1.17 Mano 1.17 Mano 1.19 Chem O. sativa (rice, Blue Rose) Resting Mano 1.19 Mano 1.19 1.15		Seedling	37 8	Chen		0.004-0.352	0,86-2.3	Oxygen Moisture	
O. sativa (rice, Blue Rose) Moist Germinating Seedling O. sativa (rice, Oobe) Resting O. sativa (rice, Oobe) Mano O. 3.72 H.74 I.74 I.74 I.00 I.00 I.00 I.00 I.19 I.00 I.19 I.15 I.15	Ö	Resting	-	Mano	0.042		1.17		
O. sativa (rice, Blue Rose) O. sativa (rice, Cobe) Resting O. sativa (rice, Oobe) Resting Mano 1.19 ² 1.00 1.00 1.15 1.15		Moist		Mano	3.72		1.74		
O. sativa (rice, Blue Rose) Resting O. sativa (rice, Oobe) Resting Resting O. sativa (rice, Oobe)		Germinating		Mano	4.42		1.61		
O. sativa (rice, Blue Rose)		Seedling		Mano	1.19		1.00		
O. sativa (rice, Oobe) Resting Mano 0.032	Ö	Resting	34	Chem	ſ	0.005-0.172		Moisture	
32 00000	O. sativa (rice,	Resting		Mano	0.034		1.15		

163, RESPIRATION RATES: HIGHER PLANTS, SEEDS (Continued)

Values for rates of gaseous exchange are \$\mu 1/100 mg wet weight/hour, unless otherwise specified. Underlined number = control or endogenous value.

c	Condition	Tenp	Mosboal		Respiration Rate	R.Q.	Experimental	Refer-
Species	Part	ာ့	no in a ini	G	QC02	CO ² /O ²	Variable	ence
(A)	(B)	(C)	(G)	(E)	(F)	(D)	(H)	(1)
79 Oryza sativa (rice, Oobe) (concluded)	Germinating		Mano	4.92 1.062		1.98		35
	Resting	28	Mano		37	1.75		15
	Germinating				0.000			
83 Finus insignis (Monterey Line)	Resting		Mano		0.0013			- I
	Resting	88	Mano		· ·	1.00		1.5
500	Germinating				48			1 (
	Seedling	71	1	2 7		0.83-2.3	Oxygen Cambon dioxide	ا م
87 F. sativum (garden pea, Early	Resting	9	Chem	۵.5			Carbon gloxide	٦
Sunrise) 88 P. sativum (pea)	Intact	20	Chem		15-35	4.9-1.1	Oxygen	45
12	Moist	30				0.92		36
false buckwheat)		,						7 6
06	Moist	9				0.90		00
91 Frunus armeniaca (apricot)	Resting	28	Mano	(0.53		۲,
	Moist	25	Mano	7.0		0.65		dr. 4
	Moist	25	Mano	4.9		0.87		4
P. domestica (plum)	Resting	28	Mano			0.80		۲,
F. domestica (plum,	Moist	25	Mano	8.0		0.70		ক ব
	Moist	25	Mano	4.7		0.91		d" =
	Moist	25	Mano	5.8		0.68		d. -
	Moist	25	Mano	5.5	Î	0.88		7"
	Resting	19			2.82	0.86		~
100 Raphanus sativus (radish)	Resting	50	Mano	2.0		0.86		→ -
101	Germinating	20	Mano	103		0.58		7/2
102 Ricinus communis (castor bean)	Seedling	30	Mano	133		0.39		3.2
103	Endosperm	30	Mano	141		0.58		70
104	Resting	82	Mano			1.03		C7 4
50	Seedling	1.7	Chom		25	0.24-1.10	Calgeri	· · c
200	Germinating	-	Mano		1	0.70		22
108 R. communis (Simpson's Mirabilis,	Germinating	25	Chem			0.85-0.50		18
Gibson's Mirabilis)	,	_						
109 R. communis major (Sutton's)	Germinating	25	Chem		5.1-204	0.8-0.5		19
110 Rumex crispus (yellow curly dock)	Moist	25	Mano	6.7		1.16		4
111 Secale cereale (rye)	Seedling	1.8	Chem		12			9 -
112	Resting		Mano		800.0			- 1
113	Resting	38	Chem		0.002-0.11		Moisture	-
	Resting		Mano		0.002			-
115 Sinapis alba (white mustard)	Seedling					0.63		ا م
_	Germinating		Mano			0.93-0.87	Growth, development, maturation	
117 Sorghum vulgare (sorghum)	Resting	37.8	Chem		0.011-0.32		Moisture	-

T. durum (wheat, Kubanka)	Seedling,		Mano Cond		14.0-1732	1.01	Growth, development, maturation	38
	etiolated				r			
T. vulgare (wheat)	Resting	37.8	Chem		0.004-0.232		Moisture	7
	Resting	# 7 7			0.063-0.14		Moisture	Q
	Resung	00 1			70,00			2 5
	Resting	2,5			0.68-			04
	Resting	, 4			0.0052			40
	Resting		Mano		0.27			: _
	Resting	38	Chem		0,005-0.162		Moisture	34
	Germinating	38	Chem		0.014-0.532		Moisture	34
	Seedling		Mano			0.98-3.7	Oxygen	9
	Seedling	18	Chem		21			9
T. vulgare (wheat, Marquis)	Seedling	59	Mano	21-382			Hormones	41
	Seedling,		Cond		9.8-2142		Growth, development, maturation	3.8
	etiolated			ſ				
	Resting	28	Mano	0.05-104	r		Moisture	39
T. vulgare (wheat, Poso)	Seedling, etiolated		Cond		7.4-1934		Growth, development, maturation	00 m
Tropaeolum majus (nasturtium,	Germinating	25	Chem			0.89-0.68		18
Sutton's Tall Scarlet)								
Vicia faba (broad bean)	Resting	28	Mano			0.99		15
	Germinating			49				17
	Seedling		Mano			1.05-2.3	(9,
	Seedling	20	Chem		13	4	Oxygen	٥٠
V. faba (broad bean, Sutton's	Germinating	25	Chem			1.23-0.82		× 1
								,
V. sativa (common vetch)	Seedling					0.80-1.60	Oxygen	۰ و
	Seedling	18			56		Oxygen	٥
Zea mais (corn)	Seedling	(Mano	L.		0.89-1.37	Oxygen	9 7
	Seedling	× 1	Chem	15	2 0			0 -
	Resting	37.8	Chem		0.01-0.46		Moisture	01
	Resting		Mano		1.7			17
	Embryo		Mano		22.6	-		1.7
	Endosperm		Mano		0.36			2.7
	Resting		Mano		0.008			~ ⁽
	Germinating	10	Mano		0.036-0.974		Composition of varieties	45
	Germinating	20	Mano		1.3-32		Composition of varieties	43
	Germinating	30	Mano		2.0-584		Composition of varieties	43
mais (corn, Sutton's Improved	Germinating	25			10-127	0.75-1.0		21
Japanese Striped)			i			6		0
Z. mais (corn, Sutton's Early Sugar)	Germinating	25	Chem		2	1.0-0.73		0 7 7
Z. mais (corn, Hopeland Sweet)	Resting	22	Chem		0.24-1.25		Moisture	j* <
maio (come Doidle Vellem Done)	Recting	22	Chem	_	0.26-1.44		0.0000000000000000000000000000000000000	77

/1/ Mano = manometric, Chem = chemical, Cond = conductometric. /2/ µ1/100 mg dry weight/hour.

Contributors: (a) Mandels, G. R., and Darby, R. T., (b) Forward, D. F., (c) Klein, R. M., (d) Henderson, J. H., and Henderson, L. L., (e) Chapman, H. W., (f) Lyon, C. J., (g) Vallance, K. B.

163, RESPIRATION RATES: HIGHER PLANTS, SEEDS (Concluded)

Bot. 36:429, 1949. [12] Keily, S., ibid 34:521, 1947. [13] Kidd, F., Froc. Roy. Soc., Lond., B 89:136, 1916. [14] Godlewski, E., Jahrb. wiss. Botan. 13:491, 1882. [15] Pringsheim, E. G., ibid 81:579, 1935. [16] Cutter, V. M., Jr., Wilson, K. S., and Dubé, J. F., Am. J. Bot. 39:51, 1952. [17] Lewin, M., Ber. deut. botan. Ges. 23:100, 1905. [18] Stiles, W., and Leach, W., Froc. Roy. Soc., Lond., B 113:405, 1933. [19] Leach, W., and Dent, K. W., ibid 116:150, 1934. [20] Stocker, D., Planta 24:402, 1935. [21] Leach, W., Proc. Roy. Soc., Lond., B 119:507, 1936. [22] Meyer, B. S., and Rader, D. S., Plant Physiol. 11:437, 1936. [23] Karon, M. L., and Altschul, A. M., ibid 21:506, 1946. [24] Johnson, E. L., Botan. Gaz. 82:373, 1926. [25] Kolkwitz, R., Ber. deut. botan. Ges. 19:285, 1901. [26] Barnell, H. R., Proc. Roy. Soc., Lond., B 123:321, 1937. [27] Stoward, F., Ann. Botany, Lond., N.S. 22:415, 1908. 28] Pack, D. A., Botan. Gaz. 71:32, 1920. [29] Wardlaw, C. W., and Leonard, E. R., Ann. Botany, Lond., N. S. 50:621, 1936. [30] Genevois, L., Biochem. and Drosdoff, M., Plant Physiol. 23:359, 1948. [4] Sherman, H., Botan. Gaz. 72:1, 1921. [5] Ermakov, A. I., and Ivanov, N. N., Biochem. Zschr. 231:79, 29:388, 1942. [9] Ramstad, F. E., and Geddes, W. F., J. Agr. Res. 64:237, 1942. [10] Bonner, J., J. Gen. Physiol. 20:1, 1936. [11] Bonner, J., Am. J. 33] Plester, W., Beitr. Biol. Pflanz. 11:249, 1912. [34] Bailey, C. H., and Gurjar, A. M., J. Biol. Chem. 44:5, 9, 13, 17, 1920. [35] Erygin, P. S., 2:685, 1918. [41] Fratt, R., Am. J. Bot. 25:389, 1938. [42] Audus, L. J., New Phytologist 39:65, 1940. [43] Lantz, C. W., Am. J. Bot. 14:85, 1927 1931. [6] Stich, C., Flora 74:1, 1891. [7] Bailey, C. II., Plant Physiol. 15:257, 1946. [8] Albaum, H. G., Donnelly, J., and Korkes, S., Am. J. Bot. Plant Physiol. 11:821, 1936. [36] Ransom, E. R., Am. J. Bot. 22:815, 1935. [37] Harrington, G. T., J. Agr. Res. 23:117, 1923. [38] Jones, W. W., Plant Physiol. 11:565, 1936. [39] Shirk, H. G., and Appleman, C. O., Am. J. Bot. 27:613, 1940. [40] Bailey, C. H., and Gurjar, A. M., J. Agr. Res. Zschr. 191:147, 1927. [31] Stiles, W., and Leach, W., Proc. Roy. Soc., Lond., B 111:338, 1932. [32] Murlin, J. R., J. Gen. Physiol. 17:283, 1933. 44] Appleman, C. O., and Brown, R. G., ibid 33:170, 1946. [45] Plantenius, H., Plant Physiol. 18:671, 1943.

64. RESPIRATION RATES: HIGHER PLANTS, ROOTS

Values for rates of gaseous exchange are #1/100 mg wet weight/hour, unless otherwise specified. Underlined number = control or endogenous value.

		Condition	E			Respiration Rate	6		n-f-u
	Species	or	oc.	Method ²		µ1/100 mg/hr	F. 6	Werinental	Kelcr-
		Part)		Q02	QCO ₂	201200	Valiable	בווכב
	(A)	(B)	(C)	(a)	(E)	(F)	(B)	(H)	(1)
-	Achyranthes argentea	Intact	RT	Mano		4.7	1.04		-
7	Allium cepa (onion)	Segment	52	Mano	1390-		0.99-1.07		7
6	Aster tripolium (aster)	Intact	20	Chem		693			3
-3.	4 Beta vulgaris (beet)	Segment	23	Mano	5-13			Wounding	4
5		Intact	22			2.9-1.2		Storage or starvation	5
9	6 B. vulgaris (red beet)	Intact	25	Chem		9.0-6.0	8.0	Oxygen; storage or starvation	9
7		Segment	25	Mano	70-180-		1.01-0.85	Storage or starvation	7
00	B. vulgaris (sugar beet)	Intact	25		9	3,2-5,3-2.1 1.02-1.08	1.02-1.08	Storage or starvation	00
6	9 B. vulgaris (mangold)	Segment	25		43-2603		1.04	Storage or starvation	7
10	10 Borago officinalis (borage)	Intact	RT	Mano		4.5	0.77		-
11	11 Brassica napus (swede)	Segment	24	Mano	1803		0.88		6
12	12 B. rapa (turnip)	Intact	22	Chem		3.6			10
13		Intact	22			3.0-1.4		Storage or starvation	2
14	Bryonia dioica (bryony)	Intact	RT	Mano		1.5	06.0		
15	15 Caltha palustris (cowslip)	Intact	19		793				1.1
16	16 Cerinthe aspera	Intact	RT	Mano		5.6			-
17	17 Chrysanthemum sinense	Intact	28	Mano			0.93		12
1	(chrysanthemum)			1					
8	18 Convolvulus arvensis (bindweed)	Intact		Mano	27-64			Herbicides	13

_	2						
	24204	22			0 0-0 4		Storage or etargation
	macı	77	į.		2.7.0.1		Storage of star various
22 Daucus carota (carrot)	Intact	87	Chem		5.5		
23	Intact	3.5	Chem		0.7		
24	Segment	25	Mano	10-14			Storage or starvation
7	Intact	7.5	Chem		2 3-0.8		Oxygen: storage or starvation
		1	74000	1.7			
07	Segment		Uliailo.				Storage of star various
27	Segment	-	Mano	4-97			ph; poisons
28	Intact	20	Chem		2.9-4.3	5.8-1.0	Oxygen
29 D carota (carrot Red Core	Intact	24	Chem		3.3-1.5	1.10-1.18	Storage or starvation
)
Chantemay)							
30	Intact	10	Chem		1.5-0.5	10.1-80.1	Storage or starvation
3.1	Intact	5 0	Chem		0.44-0.22	0.92-1.16	Storage or starvation
	1.4-4	2.5	" I To		0 1 1	0 0	
32 Erodium moschatum (illaree)	Intact	1 2	Mano		11.0	0.00	
33 Fumaria capreolata	Intact	RT	Mano		1.6	06.0	
		FC	A Town		10.2	70 0	
34 Geranium robertianum (geranium)	Intact	K1	Mano		10.3	0.00	
35 Gossypium herbaceum (cotton,	Intact	38	Chem		380-735		Growth, development, maturation
Roseum)							
36 Hordenm vulgare (barley, Plumage	Intact	20	Cond		484-7403		Oxygen
(ho m)	7000	22.5	Chom		3.7		
(H. Vulgare (barley, Sacramento)	Excised	6.62	Cilein		7		
38	Segment	24	Mano			0.94-1.0-0.9	- 1
39 Impatiens sp (balsam)	Intact	38	Chem		625-1043		Growth, development, maturation
	12000				30-36		
40 Ipomuea batatas (sweet potato)	inact	(Start and start various
4.1	Intact	77			6.0-0.7		Storage of starvation
45	Segment	25	Mano	96		1.0	
43 [L. hatatas (sweet potato, Porto Rico)	Intact	15	Chem		1.9		
	latact 1	25	Cham		٦ -		
* LI	0 0	u -	Chom		6.3		
	Intact	00	Cilein		7.0		
46 [I. batatas (sweet potato, Triumph)	Intact	15	Chem		7.		
47	Intact	25	Chem		3.2		
. 00	12200	3.5	Chem		5 6		
	111000	ו ו		200	2	_	
49 I. grandiflora (morning glory)	Excised	20	Mano	12203			
50 Lamium album (dead nettle)	Intact	18-19		2623			
51 Lathyrus odoratus (sweet nea)	Excised	20	Mano	1603			
	Nodiilo Nodiilo	28		120-5503		0 0.1-1 4	
	amport	0.7	Mailo	1 200 - 020			
53 Lycopersicum esculentum (tomato)	Excised	28	Mano	30-1120-			Accessory growth factors
54 L. esculentum (tomato, Bonny Best)	Excised	25	Mano	600-8003		1.0	
_	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	DT	Mano		0.4	0 83	
PIAT	Intact	111	MIGNIO		7.0		
56 M. silvestris (high mallow)	Intact	RT	Mano		10.2	0.90	
57 [Melilotus alba (sweet clover)	Nodule	28	Mano	380-6603	_	0.95-1.09	
58 [Mentha aquatica (mint)	Intact	18-19		1543			
_	Intact	RT	Mano		4.7	0.82	
_	1-44	0 - 0 -		100 2203	+		donolonmont
_	Intact	21-61		100-7001	-		Growth, development, maturation
61 Oxalis corniculata (creeping laurel)	Intact	RT	Mano		14.7	1.0	
62 Pastinaca sativa (parsnip)	Intact	22	Chem		2.7		
63	Intact	1.5	Chem	_	1.1		
4.4	12400	2.2		_	4 5-7 1		Storage or starvation
P 1	111111111111111111111111111111111111111	1	1		2.1		

164. RESPIRATION RATES: IIIGHER PLANTS, ROOTS (Concluded)

Values for rates of gaseous exchange are µ1/100 mg wet weight/hour, unless otherwise specified. Underlined number = control or endogenous value.

	Condition	E		Respir	Respiration Rate			-
Species	or	1 emp*	Method ²		µ1/100 mg/hr	ж. С	Experimental	Refer-
	Part)		90 ₂	QCO ₂	20/200	Variable	ence
(A)	(B)	(C)	(D)	(E)	(F)	(C)	(H)	(3)
ob Pistia sp (water lettuce)	Intact		Chem		853	1.05		29
67 Pyrus malus (apple)	Intact	14	Chem		263	0.73		30
68 Raphanus raphanistrum (wild radish)	Intact	RT	Mano		11.9	0.87		
69 R. sativus (radish)	Intact	28	Mano			0.99		1.2
70 R. sativus aegyptiacus (radish)	Intact	25	Chem		3.1-21		Wounding	3.5
71 Soja max (soybean)	Nodule	28	Mano	60-4303		1.0-2.0	D	14
72 Stachys hirta (woundwort)	Intact	RT	Mano		11.8	0.81		: -
73 Taraxacum officinale (dandelion)	Intact		Chem		0.04-0.13	0.94-1.24	Herbicides	32
74 Thrincia tuberosa	Intact	RT	Mano		4.1	0.85		: -
75 Triticum vulgare (wheat)	Intact	15-18		234-3463			Growth, development, maturation	-
76	Intact	20	Chem	10-253			Inorganic nutrition, salts	33
77 Urtica membranacea (nettle)	Intact	RT	Mano		4.7	0.87		-
78 Vicia faba major (broad bean)	Excised	97	Mano			1.46		34
79 V. sativa (common vetch)	Nodule	28	Mano	170-7803		0.98-1.3		14
80 V. villosa (hairy vetch)	Nodule	28	Mano	230-9003		1.0-1.4		. 4
81 Vigna sinensis (cowpea)	Nodule	28	Mano	71-5803		1.0-1.1		14

Contributors: (a) Mandels, G. R., and Darby, R. T., (b) Forward, D. F., (c) Klein, R. M., (d) Henderson, J. H., and Henderson, L. L., (e) Chapman, H. W., /1/ RT = room temperature. /2/ Mano = manometric, Chem = chemical, Cond = conductometric. /3/ μ1/100 mg dry weight/hour.

(f) Lyon, C. J.

19:19, 1940. [30] White, D. G., and Childers, N. F., Plant Physiol. 19:699, 1944. [31] Sand, H., and El Shishiny, E. D., ibid 22:452, 1947. [32] Rasmussen, L. W., ibid 22:377, 1947. [33] Lundegårdh, H., Nature, Lond. 165:513, 1950. [34] Ruhland, W., and Ramshorn, K., Planta 28:471, 1938. N. S. 11:1, 1947. [8] Stout, M., Botan. Gaz. 110:438, 1949. [9] Boswell, J. G., Ann. Botany, Lond., N. S. 14:521, 1940. [10] Appleman, C. O., and Brown, R. G., Am. J. Bot. 33:170, 1946. [11] Kostytschev, S., "Plant Respiration," Philadelphia: Blakiston, 1927. [12] Pringsheim, E. G., Jahrb. wiss. Botan. Minor, F. W., Botan. Gaz. 101:513, 1940. [15] Turner, J. S., and Hanly, V., Nature, Lond. 160:296, 1947. [16] Flatenius, H., Plant Physiol. 18:671, 1943. 81:579, 1935. [13] Smith, F. G., Hamner, C. L., and Carlson, R. F., Flant Physiol. 22:58, 1947. [14] Allison, F. E., Ludwig, C. A., Hoover, S. R., and Gregory, F. G., Ann. Botany, Lond., N. S. 12:335, 1948. [20] Hoagland, D. R., and Breyer, T. C., Plant Physiol. 11:471, 1936. [21] Machlis, L., Am. J. 17] Platenius, H., ibid 17:179, 1942. [18] Inamdar, R. S., Singh, S. B., and Pande, T. D., Ann. Botany, Lond. 39:281, 1925. [19] Woodford, E. K., and References: [1] Nicolas, G., Ann. sc. nat. Botan. et biol. végétale., Series 9, 10:1, 1909. [2] Berry, L. J., J. Cellul. Physiol. 33:41, 1949. [3] Gabrielsen, E. K., and Larsen, P., Biologiske Medd. 11, No. 8, 1935. [4] Bennet-Clark, T. A., and Bexon, D., New Phytologist 42:65, 1943. [5] Smith, C. L., J. Agr. Res. 53:557, 1936. [6] Choudhury, J. K., Proc. Roy. Soc., Lond., B 127:238, 1939. [7] Stiles, W., and Dent, K. W., Ann. Botany, Lond., 31:528, 1944. [27] Rabideau, S., and Whaley, W. G., Plant Physiol. 25:334, 1950. [28] Stich, C., Flora 74:1, 1891. [29] Ranjan, S., J. Ind. Botan. Soc. Johnstone, G. R., Botan. Gaz. 80:145, 1925. [25] Genevois, L., Biochem. Zschr. 191:147, 1927. [26] Henderson, J. H., and Stauffer, J. F., Am. J. Bot. Bot. 31:281, 1944. [22] Johnstone, G. R., Botan. Gaz. 79:339, 1925. [23] Walter, E. M., and Nelson, J. M., Arch. Biochem., N. Y. 6:131, 1945. [24]

165. RESPIRATION RATES: HIGHER PLANTS, STEMS

Values for rates of gaseous exchange are µ1/100 mg wet weight/hour, unless otherwise specified. Underlined number = control or endogenous value.

		Condition	,		Poening	Recniration Rate			
	Species	or	Temp1	Method ²		ul/100 mg/hr	R. Q.	Experimental	Refer-
	•	Part	ر د		Ø	QC02	CO2/02	Variable	ence
	(A)	(B)	(C)	(Q)	(E)	(F)	(C)	(H)	Ξ
-	Acacia melanoxylon (blackwood acacia)	Intact	RT	Mano		10.5	0.82		1
_	Acer rubrum (red maple)	1	52	Mano	3.7-2.3			Growth, development, maturation	2
w 4		Cambium	25	Mano Mano	16.9			Growth, development, maturation Growth, development, maturation	7 2
	Acorus calamus (sweetflag)	Rhizome	25	Mano		22			KU 4#
_	Aesculus sp (horse chestnut)	Bud	20			9.7			5
-	Aloe spinosa (spinulosa)	Shoot	24	Mano	3.1		0.82		9
		Shoot	10	Mano	1.5	i c			
		Rhizome	25	Chem		3.7			4 -
17	Asparagus albus (asparagus)	Intact	10 J	Mano		015,2543	0.90	Storage or starwation	- 00
		Intact	2.4	Chem		35.4-13.2	1.04-0.95		2
1			,						
14	,	Intact	10	Chem		9.7-3.6	1.03-0.86	Storage or starvation	2
15		Intact	0.5	Chem		3.0-2.0	0.98-0.95	Storage or starvation	7
16	Borago officinalis (borage)	Intact	RT	Mano		6.1	0.81		-
	Bryonia dioica (bryony)	Intact	RT	Mano		8.5	16.0		-
18		Shoot	20	Chem	493				6
		Shoot	20	Chem		503			10
	Calamintha nepeta (savory)	Shoot	24	Mano	35.2				٥
		Intact	20	Mano	1203				
		Shoot	25			2.0-0.5		Storage or starvation	7.7
	Cassiope hypnoides (cassiope)	Shoot	40	Chem		47			21
24		Shoot	20	Chem		9.7			2 =
52		Shoot	0 .	Chem		2.1			13
07	C. tetragona (cassiope)	Shoot	2 0	Chem		4. t			13
7 28		Shoot	02	Chem		14			13
200	Constanting domonant thousand	Shoot	200	Chem	813	7.5			3
		Shoot	2 "	Mano	7 0				9
		Shoot	0	Mano	0.7				9
		Shoot	12	Mano	0.3				9
33		Intact	RT	Mano		12.4			
35	Convallaria sp (lily-of-the-valley) C. polygonatum (lily-of-the-	Bulb Rhizome	19	Mano		8.6 18			14
36	ြပိ	Rhizome		Mano	28-61			Herbicides	15
37	Crassula arborescens (crassula)	Shoot	14	Mano	2.2		0.89		9
38		Shoot	31 14 &	Mano	6.5		0.88	Light or photoperiod	9 9
			18						
40	Cynara scolymus (artichoke)	Tuber Tuber, segment	25	Chem Mano	1603	1.4-0.8		Oxygen; storage or starvation	17
42	_		25	Mano			66.0		56
4r 4	Diapensia lapponica	Shoot	40	Chem		60			13
	- 1	Shoot	071	Cuein		6			
/1/	/1/ RT = room temperature, /2/ Mano = m	/2/ Mano = manometric, Chem = chemical, /3/ µ1/100 mg dry weight/hour.	chemic	al, /s/	h1/100 mg	dry weignin	our.		

165. RESPIRATION RATES: HIGHER PLANTS, STEMS (Concluded)

Values for rates of gaseous exchange are µ1/100 mg wet weight/hour, unless otherwise specified. Underlined number = control of endogenous value.

0	0						namer - control of endogenous value	12.
	Condition	Temp1	Method 2	Kespira	Kespiration Kate	R.Q.	tal	Refer-
Species	5 ,		nomban	177 770	1118/111	CO,/O,	Variable	ence
	Fart			40 ₂	4CO2	1		
(A)	(B)	(C)	(D)	(E)	(F)	(9)	(H)	Ξ
45 Diapensia lapponica (concluded)	Shoot	0	Chem		2			13
	Shoot	20		806				11
47 E. crispa (waterweed)	Shoot	20		633				6
48 E. densa (waterweed)	Shoot	20		743				6
49	Shoot	20	Chem	40-2003		0.11-1.05		18
50 Empetrum nigrum (crowberry)	Shoot	40			39			13
51	Shoot	20	Chem		6			13
52	Shoot	0	Chem		1			13
53 Encelia farinosa (brittlebush)	Shoot	52			23-17		Storage or starvation	12
54 Euphorbia mamillaris (spurge)	Shoot	18 &	Mano		6.5-1.6	1.04-0.34	Light or photoperiod	9
	ĉ	24						,
55 E. rhipsaloides (spurge)	Shoot			7.1				9
56 Faba vulgaris (horse bean)	Shoot			7.6				9
57 Fraxinus nigra (black ash)	Xylem		Mano		31.3-1.4		Growth, development, maturation	2
58	Phloem	52	Mano		16.7		Growth, development, maturation	7
65	Cambium		Mano		22		Growth, development, maturation	2
60 Fumaria capreolata (fumitory)	Intact	RT	Mano		8.8	0.88		-
61 Galanthus nivalis (snowdrop)	Shoot		Mano	7.8				9
62 Geranium robertianum (geranium)	Intact	RT	Mano		6.5	0.94		1
63 Gladiolus sp (gladiola)	Corm	23	Chem		8.53			19
64 Gossypium herbaceum (cotton, Roseum)	Intact	38	Chem		168-423		Growth, development, maturation	20
of Hedera helix (English ivy)	Shoot	20	Mano		23.6	0.93	to the first think the second	9
Helianthus annuus (sunflower,	Shoot	5	Chem		763			21
5diton s Giant Tellow)	Shoot	-	Chom		1413			2.1
89	Shoot		Chem		4833			21
69 Hippuris vulgaris (mare's-tail)	Intact	16	Chem		25			3
70 Hottonia palustris (featherfoil)	Shoot	20	Chem	1503				6
71 Impatiens sp (balsam)	Intact		Chem		270-593		Growth, development, maturation	20
72 Ipomoea batatas (sweet potato) 73 L. grandiflora (morning glory)	Tuber	30	Chem	2503	1.4-7.0-2.4		Storage or starvation	22
The state of the s	Amact			200				11
75 Kiemia articulata (candle plant)	Intact	-24		5.	3.0-0.3	0.99-0.18	Storage or starvation Light or photoperiod	6
76 Lathyrus odoratus (sweet pea)	Shoot			3503				11
	Intact			1603				11
	Intact		Mano		11.3			
79 Lupinus albus (white lupine)	Shoot	12		7.4				9
80 Lycopersicum esculentum (tomato)	Segment	30		75-3004			Oxygen	27
200.2	Segment	30	Mano	300-1204			Hormones	27
	11100111			2			יופן מוניומרי	i

85 86	Segment Phloem	72	Mano	1195			morganic munition, sams	26
L. esculentum (tomato, Kondine Red)	Shoot	25)	24-19		Healthy vs diseased	24
Malva parviflora (mallow)	Intact	RT	Mano		9.7	0.85		1
89 Mamillaria elephantidens (cactus)	Shoot	12	Mano	9.0	L	60		9
Mesembryanthemum deltoides	Shoot	3.1	Mano		5.4	0.82		- 4
(midday-flower)		•			•			>
	Shoot	23	Mano		7.2	0.93		9
93	Shoot	23.0	Mano		2.9	0.88		9
	100110	31	MAIIO		0.4.4.0	0.02.0.00	Ligni of protoperiod	٥
M. nodiflorum	Intact	RT	Mano		3.9	1.0		-
96 Mirabilis jalapa (four-o'clock)	Shoot	15 & 18	Mano		17.5-12.0	0.98-1.00	Light or photoperiod	9
97 Myriophyllum hippuroides	Shoot	20	Chem	893				6
rrot's feather)	Shoot	20	Chem	1323				6
	Callus	30	Mano	3803		1.0		87
(tobacco) N. tabacum (tobacco, Burley)	Bud	25	Mano	4.4-8.34			Healthy vs diseased	29
	Rhizome	25	Chem		3.0			7
ar)	Shoot		Mano			0.58-0.06	Light or photoperiod	9
	Shoot	13	Mano	7.0				9
uejecta (priekry pear) intermedia (prickly pear)	Shoot	16	Mano	1.1			Growin, development, maturation	0 9
maxima (prickly pear)	Shoot	15	Mano	1.5		0.90-03	Light or photoperiod	9
O. monacantha (prickly pear)	Shoot		Mano			0.93-0.24	Light or photoperiod	9
	Shoot	56	Mano	9.6-4.1	L	3		9、
O. tomentosa (prickly pear)	Shoot	24	Mano		5.6-0.5 1.1-0.2	0.49-0.05	Growth, development, maturation Light or photoperiod	φ φ
(dn:	Rhizome	RT	Mano		2	1.18		-
O. corniculata (creeping laurel)	Intact	RT	Mano		15.4	0.97		
reskia aculeata (lemon vine)	Shoot	24	Mano		15.5-10.4	0.91-0.84		, 9
pee's	Shoot,	15	Chem		2703			30
Stringless Green Pod)	etiolated				•			
	Shoot,	25	Chem		5803			30
	Shoot,	35	Chem		4303			30
	etiolated							ć
F. vulgaris (bush bean, Stringless Green Pod)	Shoot		Chem	101				3.1
119 P. vulgaris (bean, California Red	Intact	30	Mano	28-7103		0.9-1.1	Herbicides; metabolic poisons	32
120 F. vulgaris (bean. Black Valentine)	Shoot	24	Chem		150-1903		Herbicides	33
liflorus (cactus)	Shoot	20-24	Mano		6.2-5.0	0.96-0.78	Growth, development, maturation	9
	Shoot	19	Mano		1.0-0.3	0.78-0.09	Light or photoperiod	9

165. RESPIRATION RATES: HIGHER PLANTS, STEMS (Continued)

Values for rates of gaseous exchange are \$\mu 1/100 mg wet weight/hour, unless otherwise specified. Underlined number = control or endogenous value.

Socioods	Condition	Templ	Mothod 2		Respiration Rate	R.Q.	Experimental	Refer-
	Part	၁ _၀)	3	QCO ₂	CO2/O2	Variable	ence
(A)	(B)	(C)	(a)	(E)	(F)	(5)	(H)	Ξ
123 Picea excelsa (Norway spruce)	Shoot	15	Mano	4.4			Growth, development, maturation	9
125 Pisum sativum (garden pea, Alaska)	Segment	25		532-3343		1.07-0.98	Storage or starvation	35
126	Segment.	25	Mano	552-660		1.07-0.98	Hormones	36
	etiolated			<u> </u>				`
128 Polygonum persicaria (lady's-thumb)	Intact	RT	Mano		6.9	0.82		~
129 Potamogeton perfoliatus (pondweed)	Shoot	20	Chem	673				6
130 Potentilla reptans (cinquefoil)	Intact	RT	Mano	2	11.0	0.83		
131 Proserpinaca palustris (mermaid- weed)	Shoot	20	Chem	623				6
132 Prunus laurocerasus (cherry laurel)	Shoot	22.5	Chem		14.4-2.6		Storage or starvation	37
133 Psoralea bituminosa (scurf-pea)	Intact	24	Mano		57-11	1.06-0.80	Growth, development, maturation	38
134	Intact	RT	Mano		9.6			
135 Ptelea trifoliata (hop-tree)	Intact	RT	Mano		7.7	0.88		
136	Intact	1.5	Mano		26-9	0.92-0.88	Growth, development, maturation	38
137 Pyrus malus (apple, Jonathon)	Intact	9	Chem		2.3-4.6		Precooling	39
38 P. malus (apple, Haraldson)	Intact	9	Chem		1.7-3.7		Precooling	39
P. malus (apple,	Intact	9、	Chem		1.6-2.6		Precooling	39
140 F. malus (apple, Duchess)	Intact	۰ ,	Chem		1.5-2.4		Frecooling	3.9
141 F. maius (apple, internal)	Intact	0 7	Chem		1.2-2.0		Frecoling	20
43 Quercus coccifera (oak)	Segment	21	Mano		31-11	0.91-0.83	Growth, development, maturation	38
44 Raphanus raphanistrum (wild radish)	Intact	RT	Mano		10.5	0.87		
45 Rhipsalis salicor (cactus)	Shoot	18	Mano		3.1	1.04		9
	Shoot	20	Mano		19.2	96.0		9
47 Rochea falcata	Shoot	23	Mano		0.03	0.92		9
48 Rubia peregrina (madder)	Intact	RT	Mano		6.3			
49 Rumex lunaria (dock)	Intact	RT	Mano		10			
50 R. pulcher (fiddle-dock)	Intact	RT	Mano		11.8	0.85		
51 Ruscus hypophyllum (butcher's broom)	Intact	RT	Mano		1.7	0.58		_
152 Saccharum officinarum (sugar cane)	Intact	28	Chem		27-43		Growth, development, maturation	40
153 Sagittaria latifolia (arrowhead)	Rhizome	25	Chem		4.1			4
154 Salicornia herbacea (glasswort)	Shoot	22	Chem		302			10
155 Salix herbacea (willow)	Shoot	07	Chem		23.4			13
57.	Shoot	0 0	Chem		9.1			13
58 Sambucus nigra (European elder)	Intact	RT	Mano		9.8			
159 Saxifraga oppositifolia (purple	Shoot	40	Chem		25			13
160 mountain saxifrage)	Shoot	2.0	Chem		7.1			13
161	Shoot	0	Chem	,	0.87			13

1	Soirme articulatus (hulmeh)	Shoot	30	Cham		73-17		Committee designation	14
164	Scripus at treatable (seri asi)	Scane	30	Chem		13-27		Oxygen	. 1
165	S. validus (soft-stem bulrush)	Rhizome	25	Chem		2.8			. 4
166	Sedum acre (mossy stonecrop)	Shoot	25		7.2-7.1		0.96-0.84	Light or photoperiod	9
167		Shoot	23	Mano	10.2-2.01			Growth, development, maturation	9
168	S. album (white stonecrop)	Shoot	14		5.7		96.0		9
169	S. carneum (stonecrop)	Intact	18 & 25	Mano		6.7-11.0	0.95-1.0	Growth, development, maturation	9
170		Intact	24	Mano		11.0-6.8	1.0-0.82	Light or photoperiod	9
171	S. dendroideum (stonecrop)	Shoot	12 &		1.9-3.1		1.0-0.1	Light or photoperiod	9
			81 %	;		t.	6	:	
172	S. reflexum (stonecrop)	Intact	19 & 26	Mano		4.0-12.5	0.83-0.97	Growth, development, maturation	9
173		Intact	23 &	Mano		12.0-8.7	0.98-0.88	Light or photoperiod	9
			31						
174	S. telephium (garden-orpine)	Intact	24 &	Mano		6.8-21.0	0.95-1.01	Growth, development, maturation	9
175		Intact	18 &	Mano		6.8-3.7	0.95-0.60	Light or photoperiod	9
			24						
176	Sempervivum tectorum (houseleek)	Shoot	42		17				9
177		Shoot	92		10				9
178		Shoot	1.5		5.5				٥
179	Smyrnium olusatrum	Intact	RT	Mano		4.7			-
180	Solanum tuberosum (potato)	Tuber	25	Chem		0.4-0.3		Oxygen; storage or starvation	91
181		Tuber		Chem		0.5-5.6		Wounding	7 4
781		Tuber		Chem		140- 803			φ. 4 Σ α
103		segment	63	MATIO		00			0 F
184		Tuber,	25	Mano	7.2-16.0		0.87-1.03	Storage or starvation	49
		segment							
185		Tuber,	23	Chem		10.5-16.5		Hd	20
106		segment	23	Chom		6-223		o de contrata ciacanon	ī
		segment	3			3		mor game man mon), same	•
187		Tuber,	28	Mano	353		1.0		52
		segment		į					i
188	S. tuberosum (potato, Arran Comrade)	Tuber	07	Chem		1.4-0.36		Growth, development, maturation	4. A
190		Tuber.	20	Chem		0.30-0.56		Growth, development, maturation	5. 4.
		sprouting							
191	S. tuberosum (potato, Farrukhabad)	Tuber	13			1.9-0.8	66.0-86.0	Growth, development, maturation	46
192	S. tuberosum (potato, Idaho)	Tuber,	30	Mano	0.85-2.3			pH and buffers	53
193	S. tuberosum (potato, King Edward)	segment Tuber	15	Chem		0.25-2.0	1.0-1.26	Metabolic poisons; storage	44
							1	or starvation	
194		Tuber		Chem		0.1-0.4		Storage or starvation	45
195	S. tuberosum (potato, Maryland	Tuber	77	Chem		0.6-0.25		Storage	42
196	S.	Tuber	22	Chem		1.5-0.22		Storage	42
1	RT = room temperature (2) Mana	= manomatric Cham = chamical (3)	= chom	13/	m 1/100 m	1/100 mg dry weight/hour	/bour		
	iti = 100m temperature. / 2/ mano	illalioniculary curren	Circum	Lan. 1-1	41/100	g as y western	loar.		

RT = room temperature. /2/ Mano = manometric, Chem = chemical. /3/ µ1/100 mg dry weight/hour.

165. RESPIRATION RATES: HIGHER PLANTS, STEMS (Concluded)

Values for rates of gaseous exchange are \$\mu 1/100 mg wet weight/hour, unless otherwise specified. Underlined number = control or endogenous value.

J		D				I			
		Condition	Templ	``		Respiration Rate	R.O.	Experimental	Refer-
	Species	or		Method-	- (µ1/100 mg/hr	CO,/O,		ence
		Part			Q02	QCO ₂	77_		
	(A)	(B)	(C)	(D)	(E)	(F)	(3)	(H)	(Ξ)
197	197 Solanum tuberosum (potato,	Tuber	2.5	Chem		0.4			42
	Ţ		,	į		(1		ı
198	S. tuberosum (potato, Kural)	Iuber	47	Chem		0.6-0.3	1,02-0.75	Storage or starvation	- 1
199		Tuber	10	Chem		0.2-0.15	0.86-0.99	Storage or starvation	7
200		Tuber	0.5	Chem		0.07-0.15	0.45-0.66	Storage or starvation	_
107	S. tuberosum (potato, Russet	Tuber	77	Chem		0.5			45
	Buroank)								
202		Tuber	2.5	Chem		0.2			42
203		Tuber	22	Chem		3.7-0.6		Wounding	42
204	S. tuberosum (potato, Russett Rural)	Tuber	-0.83	Chem		0.1		,	43
205		Tuber	0.22	Chem		0.2			43
206		Tuber	3	Chem		0.1			43
207		Tuber	11.5	Chem		0.3			43
208	Sparganium eurycarpum (bur-reed)	Rhizome	25		2.3				4
607	Spartium junceum (Spanish broom)	Intact	RT	Mano		16	0.8		-
210	Stachys hirta (woundwort)	Intact	RT	Mano		9.8	0.81		-
211	Svringa vulgaris (lilac)	Cambium		Mano			1.29-1.38		55
212	Taxus baccata (yew)	Shoot	28	Mano			76.0		99
213		Cambium		Mano			1.99-2.23		55
214		Shoot	13	Mano		67	86.0		9
215		Shoot	00	Mano		19	1.03		9
210	T. vulgare (wheat, Marquis)	Shoot	30	Mano		61-343		Healthy vs diseased	57
217		Shoot	30	Chem		61-783		Freezing	57
	Bluestem)								
218	Typha lattfolia (cat-tail)	Rhizome	52	Chem		2.4			4
219	Urtica membranacea (nettle)	Intact	RT	Mano		8.8	0.88		-
220	Vaccinium sp (cranberry, Howes)	Shoot	24	Chem		34-17		Growth, development, maturation	58
177		Did	20	Lnem	3	55			20
777	valeriana officinalis (garden- heliotrope)	Intact	0.7	Mano	1505				1
223	5	Intact	RT	Mano		6.2			-
224		Shoot	21	Mano		62.6	06.0		7
572		Shoot,	2.1	Mano		48.8	0.87		~
		etiolated							
977	V. sativa (common vetch)	Intact	RT	Mano		14.9	0.86		
227	Zea mais (corn, Albino)	Shoot	30	Mano		7603		Light or photoperiod	59
228		Shoot	30	Mano		500-1000		Carbohydrates	56
(77	229 Z. mais (corn, Green)	Shoot	30	Mano		710-870-		Carbohydrates	29
11/	BT - moon tomoromotimo /2/ Mone -	The state of the s		121 121	1/100 ==	1	140000		

/1/ RT = room temperature. /2/ Mano = manometric, Chem = chemical. /3/ µ1/100 mg dry weight/hour.

Contributors: (a) Mandels, G. R., and Darby, R. T., (b) Forward, D. F., (c) Klein, R. M., (d) Henderson, J. H., and Henderson, L. L., (e) Chapman, H. W., (f) Lyon, C. J., (g) Vallance, K. B.

[41] Samantarai, B., J. Ind. Botan. Soc. 17:195, 1938. [42] Appleman, C. O., and Brown, R. G., Am. J. Bot. 33:170, 1946. [43] Hopkins, E. F., Botan. Gaz. 78:311, 1924. [44] Hanes, C. S., and Barker, J., Proc. Roy. Soc., Lond., B 108:95, 1931. [45] Barker, J., ibid B 119:453, 1936. [46] Singh, B. N., 1940. [3] Stich, C., Flora 74:1, 1891. [4] Laing, H. E., Am. J. Bot. 27:574, 583, 1940. [5] Sherman, H., Botan. Gaz. 72:1, 1921. [6] Aubert, E., Rev. Gustafson, F. G., Am. J. Bot. 19:823, 1932. [13] Wager, H. G., New Phytologist 40:1, 1941. [14] Stocker, D., Planta 24:402, 1935. [15] Smith, F. G., Hamner, C. L., and Carlson, R. F., Plant Physiol. 22:58, 1947. [16] Choudhury, J. K., Proc. Roy. Soc., Lond., B 127:238, 1939. [17] Stiles, W., and Dent, K. W., Ann. Botany, Lond., N. S. 11:1, 1947. [18] Russell, R. S., ibid 4:595, 1940. [19] Denny, F. E., Contr. Boyce Thompson Inst. 10:453, 1939. Michel, B. E., Arch. Biochem., N. Y. 28:377, 1950. [53] Lemmon, P., Am. J. Bot. 23:296, 1936. [54] Whitehead, T., Ann. Appl. Biol. 21:48, 1934. [55] Ruhland, W., and Ramshorn, K., Planta 28:471, 1938. [56] Pringsheim, E. G., Jahrb. wiss. Botan. 81:579, 1935. [57] Bailey, C. H., and Gurjar, A. M., N. S. 3:677, 1939. [24] Caldwell, J., Ann. Appl. Biol., Lond. 21:206, 1934. [25] Klein, R. M., Arch. Biochem., N. Y. 30:207, 1951. [26] Eberts, F. S., Jr., Burris, R. H., and Riker, A. J., Am. J. Bot. 38:618, 1951. [27] Mitchell, J. E., Burris, R. H., and Riker, A. J., ibid 36:368, 1949. [28] Newcomb, Lond., N. S. 4:257, 1940. [49] Schade, A. L., Levy, H., Bergmann, L., and Harris, S., Arch. Biochem., N. Y. 20:211, 1949. [50] Steward, F. C., and and Thimann, K. V., Plant Physiol. 24:178, 1949. [37] Audus, L. J., Ann. Botany, Lond. 11:165, 1947. [38] Nicolas, G., Rev. gen. botan. 30:209, 1918. References: [1] Nicolas, G., Ann. sc. nat. Botan. et biol. végétale, Series 9, 10:1, 1909. [2] Goodwin, R. H., and Goddard, D. R., Am. J. Bot. 27:234, E. H., ibid 37:264, 1950. [29] Wynd, F. L., Plant Physiol. 18:90, 1943. [30] Michaels, W. H., Botan. Gaz. 91:167, 1931. [31] Freeland, R. O., Plant Preston, G., Plant Physiol. 16:481, 1941. [51] Steward, F. C., and Preston, G., ibid 15:23, 1940. [52] Barron, E. S., Link, G. K., Klein, R. M., and Physiol. 24:621, 1949. [32] Smith, F. G., ibid 23:70, 1948. [33] Brown, J. W., Botan. Gaz. 107:332, 1946. [34] Ranjan, S., J. Ind. Botan. Soc. 19:19, 1940. [35] Christiansen, G. S., Kurz, L. J., Bonner, W. D., Jr., [48] Boswell, J. G., and Whiting, G. C., Ann. Botany, [20] Inamdar, R. S., Singh, S. B., and Pande, T. D., Ann. Botany, Lond. 39:281, 1925. [21] Kidd, F., West, C., and Briggs, G. E., Proc. Roy. Soc., Lond., B 92:368, 1921. [22] Hasselbring, H., and Hawkins, L. A., J. Agr. Res. 5:509, 1913. [23] Thoday, D., and Jones, K. M., Ann. Botany, Lond., 39] DeLong, W. A., Beaumont, J. H., and Willaman, J. J., Plant Physiol. 15:509, 1930. [40] Hes, J. W., Proc. Akad. wet. Amsterdam 52:915, 1949. Gessner, F., Jahrb. wiss. Botan. 89:1, 1940. [10] Neuwohmer, W., Planta 28:644, 1938. [11] Genevois, L., Biochem. Zschr. 191:147, 1927. [12] [7] Platenius, H., Plant Physiol. 17:179, 1942. [8] Benoy, M. P., J. Agr. Res. 39:75, 1929. [9] J. Biol. Chem. 44:5, 9, 13, 17, 1920. [58] Bergman, H. F., Am. J. Bot. 12:641, 1925. [59] Groner, M. G., ibid 23:381, 1936. and Mathur, P. B., Ann. Appl. Biol. <u>25:79</u>, 1938. [47] Hopkins, E. F., Botan. Gaz. <u>84</u>:75, 1927. gén. botan. 4:203, 273, 321, 337, 373, 421, 1892.

100. RESPIRATION RATES: HIGHER PLANTS, LEAVES

Values for rates of paseous exchange are ul/100 mg wet weight/hour, unless otherwise specified. Underlined number = control or endogenous value

the state of factors committee and factors and the state of the state	11 c htt 100 mg mc m	C1611111111	data disect	2	or operated.	מומר ייוור	named - common of changement val	tar.
	Condition	Templ	242.1.2.2	Respira	Respiration Rate	R.Q.	Experimental	Refer-
Salled	Part	ပ္ပ	-poulain	001/100	HILLIOU III BLIIF	CO2/O2	Variable	ence
	3 44 4			~U2	200×			
(A)	(B)	(C)	(D)	(E)	(F)	(D)	(H)	(1)
1 Abutilon striatum (flowering manle)	Intact	20	Chem		1.23			-
2 Acacia melanoxylon (blackwood	Tendril, phyllode, RT	RT	Mano		11.9	99.0		2
acacia)	or cladode							
3 Acanthus mollis (bear's breech)	Intact	22	Mano		1.8	0.77		3
4 Acer pseudoplatanus (sycamore-	Intact		Chem		614			4
maple)								
22	Intact	10	Chem		33			5
6 A. pseudoplatanus atropurpureum	Intact	16	Chem		23			5
(maple)								
7 A. pseudoplatanus cupreum (maple)	Intact	16	Chem		24			5
8 A. pseudoplatanus luteo-virescens	Intact	10	Chem		28			5
(maple)								
9 A. pseudoplatanus lutescens (maple)	Intact	16	Chem		23			5
10 A. pseudoplatanus purpureum	Intact	16	Chem		25			5
(maple)								
11 Achyranthes argentea	Blade	RT	Mano		9.4	0.71		2
12 Achras sapota (sapodilla)	Intact	20	Chem		1.33			1
13 Acokanthera spectabilis (wintersweet)	Intact	15	Mano		9	0.94		9
14	Intact, red	15	Mano		∞	0.71		9

11/ RT = room temperature. /2/ Mano = manometric, Chem = chemical, Cond = conductometric. /3/ µ1/sq cm/hour. /4/ µ1/100 mg dry weight/hour.

166, RESPIRATION RATES: HIGHER PLANTS, LEAVES (Continued)

Values for rates of gaseous exchange are \$\mu1/100 mg wet weight/hour, unless otherwise specified. Underlined number = control or endogenous value.

(D) (E) (F) (E) (F) (Chem Anno Chem Anno Anno Anno Anno Anno Chem Anno Chem Anno Anno Anno Anno Anno Anno Anno Ann	Species	Condition	Templ	Method ²	Respira µ1/100	Respiration Rate	R. Q.	Experimental	Refer-
Acteae spicate (baneberry) Infact 18 (C) (D) (E) (F)		Part			QO ₂	QCO ₂	701700	vat table	ence ence
Actages spicata (baneberry) Intact 118 In-2.43 Actages spicata (baneberry) Intact 12 Chem 49 chestnut) Intact 25 Mano 25 Aluga reptans (bugle-weed) Intact 20 Chem 25 A. vateri (lady's-mantle) Intact 20 Chem 1.53 A. vateri (lady's-mantle) Intact 20 Chem 1.53 A. vateri (lady's-mantle) Intact 20 Chem 1.53 A. vateri (lady's-mantle) Bulb 22 Chem 1.53 A. vateri (lady's-mantle) Bulb 22 Chem 1.54 A. vateri (lady's-mantle) Bulb 22 Chem 1.54 A. vateri (lady's-mantle) Bulb 22 Chem 1.54 A. vateri (lady's-mantle) Intact 20 Chem 1.54 A. vateri (lady's-mantle) Intact 20 Chem 1.54 A. catalor (lady's-mantle) Intact 20 Chem 1.54 </th <th>(A)</th> <th>(B)</th> <th>(C)</th> <th>(D)</th> <th>T</th> <th>(F)</th> <th>(D)</th> <th>(H)</th> <th>(I)</th>	(A)	(B)	(C)	(D)	T	(F)	(D)	(H)	(I)
Aceculush procastanum (horse Intact 12 Chem 26		Intact	18			1.4-2.43		Light or photoperiod	7
Aluga reptans (bugle-weed) Alugareptans (bugle-weed) Angelogsis hederacea (michx) Ampelogsis hederacea (michx) Ampelogsis hederacea (michx) Ampelogsis hederacea (michx) Angelogsis hederacea (michx) Anternaria alpina (everlasing) Infact Anternaria alpina (everlasing) Angelogsis haderangens Angelogsis		Intact	12	Chem		49			2
Intact 25 Mano 25		Intact, white	12	Chem		56			5
Intact 14 Mano 6	8	Intact	25	Mano		77	86.0		80
Authorities Chem Authorities Chem Authorities Chem Authorities Chem Authorities Chem Authorities Chem Authorities Chem Authorities Chem Authorities Chem Authorities Chem Authorities Chem Authorities Chem Authorities Chem Authorities Chem Authorities Chem Chem Authorities Chem	0.5	Intact		Mano		25	1.01		ος c
Authoritist Authoritist		Intact		Mano		1 53	0.97		× 0
National to the part of the	: 1	Interest	20	Chem		4-63			, 01
Allium cepa (onion) Bulb 22 Chem 2.1 A. P. Gepa (onion) A. Dependencea (mickx) Blade 22 Chem 2.1 A. Appelopsis bederacea (mickx) Blade 14 Mano 29 Amygdalus communis (almond) Intact 14 Mano 29 Anygdalus communis (almond) Intact 20 Chem 69-24 Antennaria alpina (everlasting) Intact 20 Chem 11-3 Antirrhinum majus (snapdragon) Intact 20 Chem 11-3 Arabia Arabia Intact 22 Chem 11-3 Arabia Arabia Intact 20 Chem 14-3		Intact	20	Chem		83			2 01
An cepa (onion, Yellow Globe) Bulb 22 Chem 57-22 Ampelopsis hederacea (michx) Blade 19 Mano 57-22 Amygdalus communis (almond) Intact, red 14 Mano 29 Anacardium occidentale (cashew) Intact, red 14 Mano 69-24 Antennaria alpina (everlasting) Intact 20 Chem 15-36 Aralia sp Antich 20 Chem 15-36 Aralia sp Antich 22 Chem 5-3 Asparagus albus (asparagus) Intact 20 Chem 113 Aster tripolium (aster) Intact 20 Chem 14 Aster tripolium (aster) Intact 20 Chem 30 Aster tripolium (aster) Intact	<u> </u>	Bulb	22			9.0-6.0		Storage or starvation	12
Ampelopsis hederacea (michx) Blade 19 Mano 57-22 Amygdalus communis (almond) Intact, red 14 Mano 29 Amacardium occidentale (cashew) Intact 1 Chem 69-24 Antenmaria alpina (everlasting) Intact 20 Chem 69-24 Antenmaria alpina (everlasting) Intact 20 Chem 69-24 Antenmaria alpina (everlasting) Intact 20 Chem 1.5 Aralia sp Intact 20 Chem 1.5 Arbutus unedo (strawberry tree) Intact 22 Chem 1.5 Arbutus unedo (strawberry tree) Intact 22 Chem 1.5 Arbutus unedo (strawberry tree) Intact 22 Chem 1.3 Arbutus unedo (strawberry trees) Intact 22 Chem 1.3 Asparagus albus (asparagus) Intact 22 Chem 1.3 Asparagus albus (aspadistra) Intact 25 Mano 1.2 A. Hortensis clorina (agraden ora	_	Bulb	22	Chem		2.1)	11
Amygdalus communis (almod) Intact, red 14 Mano 29 Anacardium occidentale (cashew) Intact Chem 69-24 Antennaria alpina (everlasting) Intact Chem 69-24 Antennaria alpina (everlasting) Intact 20 Chem 69-24 Antirrhium majus (snapdragon) Intact 20 Chem 15-56 Aralia sp Intact 22 Chem 15-36 Arbutus unedo (strawberry tree) Intact 22 Chem 15-36 Arbutus unedo (strawberry tree) Intact 22 Chem 15-36 Arbutus unedo (strawberry tree) Intact 22 Chem 13-3 Asparagus albus (asparagus) Intact 22 Chem 22.3 Asparagus albus (asparagus) Intact 25 Mano 14-4 Artiplex hortensis (asrden orach) Intact 20 Chem 14-4 Ar. hortensis chlorina (garden orach) Intact 22.5 Chem 22.0-8.5-22 Bambusa nana (bamboo) Intact	_	Blade		Mano		57-22	19.0-98-0	Growth, development, maturation	13
Anacardium occidentale (cashew) Intact red 14 Mano 30 Antennaria alpina (everlasting) Intact 20 Chem 63-24 Antirrhinum alus (snapdragon) Intact 20 Chem 1.5 Antirrhinum majus (snapdragon) Intact 20 Chem 1.5 Aristida sp Intact 22 Chem 1.5 Aristida junci formis (needlegrass) Intact 22 Chem 1.13 Aristida junci formis (needlegrass) Intact 22 Chem 5.3 Aristida junci formis (needlegrass) Intact 22 Chem 1.13 Aristida junci formis (needlegrass) Intact 22 Chem 1.13 Asparagus albus (asparagus) Intact 25 Chem 1.44 Aspatagus albus (asparagus) Intact 25 Chem 1.44 A. hortensis arropurpurea Intact 19 Chem 1.20-6.8 A. hortensis arropurpurea Intact 25 Chem 1.20-8.5 <t< td=""><td></td><td>Intact</td><td></td><td>Mano</td><td></td><td>62</td><td>1.00</td><td></td><td>9</td></t<>		Intact		Mano		62	1.00		9
Anacardium occidentale (cashew) Infact Chem 69-24 Antennaria alpina (everlasting) Infact 20 Chem 63 Antennaria alpina (everlasting) Infact 20 Chem 1.5 Antirrhinum majus (snapdragon) Infact 20 Mano 16 Arbius barria (snapdragon) Infact 22 Chem 15-36 Arristida junci (ormis (needlegrass)) Infact 22 Chem 13-3 Arristida junci (ormis (needlegrass)) Infact 22 Chem 17-3 Arristida junci (ormis (needlegrass)) Infact 22 Chem 22.3 Asparagus albus (asparagus) Infact 20 Chem 22.3 Asparagus aluci (aspidistra) Infact 20 Chem 44 Aster tripolium (aster) Infact 20 Chem 44 A. elatior (aspidistra) Infact 20 Chem 44 A. hortensis atropurpurea Infact 25 Chem 120-68.5-22 Bambusa ana (bamboo)	8			Mano		30	0.78		9
Anternaria alpina (everlasting) Intact 40 Chem 63 Antirrhinum majus (snapdragon) Intact 20 Chem 1.5 Aralia sp Aralia sp Intact 20 Chem 16 Aralia sp Intact 22 Chem 15-36 Arbutus unedo (strawberry tree) Intact 22 Chem 11-3 Aristida junci (ormis (needlegrass)) Intact 22 Chem 53-3 Aristida junci (ormis (needlegrass)) Intact 22 Chem 11-36 Asparagus albus (asparagus) Intact 20 Chem 22.3 Asparagus albus (asparagus) Intact 20 Chem 22.3 Asparagus albus (asparagus) Intact 20 Chem 3.2 Aster tripolium (aster) Intact 20 Chem 44 Aster tripolium (aster) Intact 19 Chem 3.2 Aster tripolium (aster) Intact 19 Chem 12.0-8.5-2 Bambusa atropurburea In		Intact		Chem		69-24		Growth, development, maturation	14
Infact 20 Chem 1.5 Antirrhinum majus (snapdragon) Infact 20 Chem 1.5 Aralia sp		Intact	40	Chem		63			15
Antirrhinum majus (snapdragon) Infact 0 Chem 1.5 Araila sp Araila sp Infact 28.5 Chem 15-36 Arbutus unedo (strawberry tree) Infact 22 Chem 53 Aristida junci formis (needlegrass) Infact 22 Chem 53 Asparagus albus (asparagus) Infact 25 Mano 113 Asparagus albus (asparagus) Infact 20 Chem 22.3 Aspidistra sp (aspidistra) Infact 20 Chem 1434 Astriplex hortensis (garden orach) Infact 20 Chem 37 A. bortensis atropurpurea Infact 19 Chem 38 A. bortensis atropurpurea Infact 22.5 Chem 34 A. bortensis atropurpurea Infact 22.5 Chem 38 Bambusa rama (bamboo) Infact 22.5 Chem 34 Begonia hageana (begonia) Infact 22.5 Chem 12.8 B. tuberhybrida (beet) <		Intact	50	Chem		20			15
Antitrinium majus (snapdragon) Infact 20 Mano 10 Aralia sp Aralia sp Infact 28.5 Chem 15.36 Aralia sp Aralia sp Infact 28.5 Chem 11.3 Arbutus unedo (strawberry tree) Infact 22 Chem 11.3 Asparagus albus (asparagus) Tendril, phyllode, RT Mano 22.3 Asparagus albus (asparagus) Infact 25 Mano 25.3 Aster tripolium (aster) Infact 20 Chem 1434 Aster tripolium (aster) Infact 20 Chem 37 Artiplex hortensis (garden orach) Infact 19 Chem 37 A. hortensis atropurpurea Infact 22.5 Chem 34 A. hortensis atropurpurea Infact 22.5 Chem 34 Bambusa nana (bamboo) Infact 22.5 Chem 34 B. rex (begonia) Infact 20 Chem 34 B. tuberhybrida (begonia) Infact 20 Chem 34 B. tuberhybrida (begonia) Infact 20 Chem 34 B. tuberhybrida (beet) Infact 27 Chem 23 Beta vulgaris (beet) Infact 27 Chem 23 Betula nana (birch) Infact 27 Chem 27 Betula nana (birch) Infact 20 Chem 20 Betula nana (birch) Infact 20 Chem 20 Betula nana (birch) Infact 20 Chem 20 Arabica 20 Chem 20 Betula nana (birch) Infact 20 Chem 20 Arabica 20 Chem 20 Betula nana (birch) Infact 20 Chem 20 Arabica 20 Chem 34 Betula nana (birch) Infact 20 Chem 20 Betula nana (birch) Infact 2		Intact	ľ	Chem		1.5	000		1.5
Arbitus app Intact 28.5 Chem 15-36 Arbitus unedo (strawberry tree) Intact 22 Chem 53 Aristida junci (ormis (needlegrass)) Intact 25 Mano 22.3 Asparagus albus (asparagus) Tendril, phyllode, RT Mano 22.3 Aspidistra sp (aspidistra) Intact 20 Chem 0.63 Astriplex hortensis (garden orach) Intact 20 Chem 44 Astriplex hortensis clarden orach) Intact 19 Chem 37 A. hortensis artopurpurea Intact 25 Mano 12.0-6.8 A. hortensis artopurpurea Intact 25 Chem 34 Aucuba sp (aucuba) Intact 25 Chem 12.0-6.8 Bambusa nana (bamboo) Intact 25.5 Chem 12.0-8.5-22 Begonia haageana (begonia) Intact 20 Chem 1.83 B. twberhybrida (begonia) Intact 27 Chem 1.33 Beta vulgaris (beet) Intact		Intact		Mano		10	0.88		91
Arbitus unedo (strawberry tree) Intact 22 Chem 57 Aristida junct formis (needlegrass) Intact 39 Mano 113 Asparagus albus (asparagus) Intact 25 Mano 22.3 Aspidistra sp (aspidistra) Intact 20 Chem 0.63 A. elatior (aspidistra) Intact 20 Chem 1434 Aster tripolium (aster) Intact 20 Chem 37 Astriplex hortensis (garden orach) Intact 19 Chem 34 A. hortensis chlorina (garden orach) Intact 19 Chem 37 A. hortensis atropurpurea Intact 25 Mano 12.0-6.8 A. hortensis atropurpurea Intact 22.5 Chem 34 A. hortensis atropurpurea Intact 22.5 Chem 12.0-6.8 Bambusa nana (baucuba) Intact 22.5 Chem 34 B. rex (begonia) Intact 20 Chem 1.8 B. semperflorens (begonia) Intact		Intact		Chem		15-36	0.73		17
Aristida junciformis (needlegrass) Intact 39 Mano 11° Asparagus albus (asparagus) Tendril, phyllode, RT Mano 22.3 Aspaidistra sp (aspidistra) Intact 20 Chem 0.6³ A. elatior (aspidistra) Intact 20 Chem 143 Aster tripolium (aster) Intact 20 Chem 143 Atriplex hortensis (garden orach) Intact 19 Chem 37 A. hortensis chlorina (garden orach) Intact 19 Chem 38 A. hortensis chlorina (garden orach) Intact 25 Mano 12.0-6.8 A. hortensis chlorina (garden orach) Intact 22.5 Chem 12.0-6.8 A. hortensis chlorina (garden orach) Intact 22.5 Chem 12.0-6.8 A. hortensis atropurpurea Intact 22.5 Chem 12.0-6.8 Bambusa nana (bamboo) Intact 22.5 Chem 1.8 B. semperflorens (begonia) Intact 20 Chem 1.8 B. tu	_	Intact		Chem		5-3			18
Asparagus albus (asparagus) Tendril, phyllode, RT RT Mano 22.3 Aspidistra sp (aspidistra) Intact 25 Mano 0.6³ Aster tripolium (aster) Intact 20 Chem 1434 Artiplex hortensis (garden orach) Intact 18 Chem 44 Artiplex hortensis (garden orach) Intact 19 Chem 37 A. hortensis atropurpurea Intact 19 Chem 38 A. hortensis atropurpurea Intact 25 Mano 12.0-6.8 Aucuba sp (aucuba) Intact 25 Mano 12.0-6.8 Aucuba sp (aucuba) Intact 22.5 Chem 34.3 Bambusa nana (bamboo) Intact 22.5 Chem 34.3 Begonia haageana (begonia) Intact 20 Chem 1.8 B. semperflorens (begonia) Intact 20 Chem 1.3 B. tuberhybrida (begonia) Intact 27 Chem 23 Beta vulgaris (beet) Intact				Mano		113			19
Aspidistra sp (aspidistra) Intact 25 Mano 0.6³ A. elatior (aspidistra) Intact 20 Chem 1434 Aster tripolium (aster) Intact 20 Chem 1434 Atriplex hortensis (garden orach) Intact 19 Chem 37 A. hortensis atropurpurea Intact 19 Chem 38 Aucuba sp (aucuba) Intact 22 Chem 12.0-6.8 A. japonica (aucuba) Intact 22.5 Chem 12.0-6.8 A. japonica (aucuba) Intact 22.5 Chem 34³ Bambusa nana (bamboo) Intact 22.5 Chem 12.0-6.8 Bambusa nana (bagonia) Intact 20 Chem 1.83 B. remperflorens (begonia) Intact 20 Chem 1.83 B. tuberhybrida (begonia) Intact 5 0.93 Beta vulgaris (beet) Intact 27 Chem 23 Betula nana (birch) Intact 20 Chem 23 <td></td> <td>phyllode, dode</td> <td></td> <td>Mano</td> <td></td> <td>22.3</td> <td>0.78</td> <td></td> <td>2</td>		phyllode, dode		Mano		22.3	0.78		2
A. elatior (aspidistra) Intact 20 Chem 0.6 ³ Aster tripolium (aster) Intact 20 Chem 1434 Atriplex hortensis (garden orach) Intact 19 Chem 44 A. hortensis atropurpurea Intact 19 Chem 37 A. hortensis atropurpurea Intact 25 Mano 12.0-6.8 Accuba sp (aucuba) Intact 22.5 Chem 12.0-6.8 A. japonica (aucuba) Intact 22.5 Chem 12.0-6.8 Bambusa nana (bamboo) Intact 22.5 Chem 34 ³ Begonia haageana (begonia) Intact 20 Chem 1.8 ³ B. rex (begonia) Intact 20 Chem 1.8 ³ B. tuberhybrida (begonia) Intact 5 0.9 ³ Beta vulgaris (beet) Intact 27 Chem 23 Betula nana (birch) Intact 20 Chem 23		Intact		Mano			0.94		20
Aster tripolium (aster) Intact 20 Chem 1434 Atriplex hortensis (garden orach) Intact 18 Chem 44 A. hortensis chlorina (garden orach) Intact 19 Chem 37 A. hortensis atropurpurea Intact 25 Mano 38 Aucuba sp (aucuba) Intact 22.5 Chem 12.0-6.8 A. japonica (aucuba) Intact 22.5 Chem 22.0-8.5-22 Bambusa nana (bamboo) Intact 22.5 Chem 34.3 B. rex (begonia) Intact 20 Chem 1.83 B. two (begonia) Intact 36 1.83 B. tuberhybrida (begonia) Intact 36 0.93 Beta vulgaris (beet) Intact 27 Chem 23 Betula nana (birch) Intact 20 Chem 23		Intact	20	Chem		0.63			-
Atriplex hortensis (garden orach) Intact 18 Chem 44 A. hortensis chlorina (garden orach) Intact 19 Chem 37 A. hortensis chlorina (garden orach) Intact 25 Mano 12.0-6.8 Aucuba sp (aucuba) Intact 22.5 Chem 12.0-6.8 A. japonica (aucuba) Intact 22.5 Chem 12.0-8.5-22 Bambusa nana (bamboo) Intact 20 Mano 34.3 Be gonia haageana (begonia) Intact 20 Chem 1.83 B. rax (begonia) Intact 20 Chem 1.83 B. tuberhybrida (begonia) Intact 5 0.93 Beta vulgaris (beet) Intact 27 Chem 23 Betula nana (birch) Intact 20 Chem 23		Intact	20	Chem		1434			21
A. hortensis chlorina (garden orach) Intact 19 Chem 37 A. hortensis atropurpurea Intact 19 Chem 38 (garden orach) Intact 25 Mano 12.0-6.8 A. japonica (aucuba) Intact 22.5 Chem 12.0-6.8 A. japonica (aucuba) Intact 22.5 Chem 12.0-6.8 Bambusa nana (bamboo) Intact 22.5 Chem 34.3 Be gonia haageana (begonia) Intact 20 Chem 1.83 B. rex (begonia) Intact 20 Chem 1.83 B. tuberhybrida (begonia) Intact 5 0.93 Beta vulgaris (beet) Intact 27 Chem 23 Betula nana (birch) Intact 20 Chem 23		Intact		Chem		44			5
A. hortensis atropurpurea Intact 19 Chem 38 Aucuba sp (aucuba) Intact 25 Mano 12.0-6.8 A. japonica (aucuba) Intact 22.5 Chem 12.0-6.8 Bambusa nana (bamboo) Intact 22.5 Chem 34.3 Begonia haageana (begonia) Intact 20 Chem 34.3 B. rex (begonia) Intact 20 Chem 1.83 B. tuberhybrida (begonia) Intact 5 0.93 Beta vulgaris (beet) Intact 27 Chem 23 Betula nana (birch) Intact 20 Chem 23	_	Intact		Chem		37			ر ا
Aucuba sp (aucuba) Intact 25 Mano 12.0-6.8 A. japonica (aucuba) Intact 22.5 Chem 12.0-6.8 Bambusa nana (bamboo) Intact 22.5 Chem 22.0-8.5-22 Begonia haageana (begonia) Intact 20 Mano 34.3 B. rex (begonia) Intact 20 Chem 1.83 B. tuberhybrida (begonia) Intact 5 0.93 Beta vulgaris (beet) Intact 27 Chem 23 Betula nana (birch) Intact 20 Chem 23		Intact	61	Chem		38			ر د
A. japonica (aucuba) Intact 22.5 Chem 12.0-6.8 Bambusa nana (bamboo) Intact 22.5 Chem 22.0-8.5-22 Begonia haageana (begonia) Intact 20 Mano 343 B. rex (begonia) Intact 20 Chem 1.83 B. tuberhybrida (begonia) Intact 5 0.93 Beta vulgaris (beet) Intact 27 Chem 23 Betula nana (birch) Intact 20 Chem 23		Intact		Mano			1.11		20
Bambusa nana (bamboo) Intact 22.5 Chem 22.0-8.5-22 Begonia haageana (begonia) Intact 17 Chem 34³ B. rex (begonia) Intact 20 Mano 1.8³ B. tubert/lorens (begonia) Intact 20 Chem 1.8³ B. tubertybrida (begonia) Intact 5 0.9³ Beta vulgaris (beet) Intact 27 Chem 23 Betula nana (birch) Intact 20 Chem 66		Intact		Chem		12.0-6.8		Storage or starvation	22
Begonia haageana (begonia) Intact 17 Chem 34 ³ B. rex (begonia) Intact 20 Mano 30 B. semperflorens (begonia) Intact 20 Chem 1.8 ³ B. tuberhybrida (begonia) Intact 5 0.9 ³ Beta vulgaris (beet) Intact 27 Chem 23 Betula nana (birch) Intact 20 Chem 66		Intact	2	Chem		22.0-8.5-22		Storage or starvation	22
B. rex (begonia) Intact 20 Mano 30 B. semperflorens (begonia) Intact 20 Chem 1.83 B. tuberhybrida (begonia) Intact 5 133 Beta vulgaris (beet) Intact 27 Chem 23 Betula nana (birch) Intact 20 Chem 66	_	Intact		Chem		343			23
B. semperflorens (begonia) Intact 20 Chem 1.8³ B. tuberhybrida (begonia) Intact 5 13³ Intact 5 0.9³ Beta vulgaris (beet) Intact 27 Chem 23 Betula nana (birch) Intact 20 Chem 66		Intact		Mano		30			16
B. tuberhybrida (begonia) Intact 36 133 Intact 5 0.93 Beta vulgaris (beet) Intact 27 Chem 23 Betula nana (birch) Intact 20 Chem 66		Intact	20	Chem		1.83			-
Beta vulgaris (beet) Intact 27 Chem Betula nana (birch) Intact 20 Chem		Intact	36 5			13 ³ n q3	0.79		24
Betula nana (birch) Intact 20 Chem		Intact		Chem		23			25
Detura mana (Direm)		Intact		Chom		77			1 2
		יוומרי		1					1

	Intact Intact	07	Ć	73	533		
B. verrucosa (birch) Borago officinalis (borage)	Intact Blade	RT	Mano		6.9	0.65	
Bourginvilles on (hoursinvilles)	Petiole	RT 29	Mano		3.7	0.92	
Brassica alba (brussels sprouts)	Intact	28	Mano			0.92	
Bryonia dioica (bryony)	Blade	RT	Mano		13.2	0.65	
	Fetiole Tendril, phyllode,	RT	Mano		11.3	1.02	
	or cladode Intact	20	Mano		76-11	09.0-0.60	Growth, development, maturation
Bryophyllum calycinum (life plant)	Segment	20	Mano	13-11-14		0.82-0.37-	
Calophyllum inophyllum	Intact	40			12.73		
	Intact	30			6.63		
	Intact	10			2.03		
Caltha palustris (marsh marigold)	Intact	20	Mano	1004			
72 (Canna indica (Indian shot)	Intact	22	Mano		14	0.72	
	Intact	28	Mano			0.97	
_					Į.		
74 Cassia fistula (pudding-pipe tree)	Intact	30			213		
	Intact	20			4.13		
	Intact	10			2.03		
78 Cassine maurocenia (Hottentot	Intact	19	Mano		33	96.0	
cherry)	Intact, red	19	Mano		43	0.89	
80 Castanea so (chestruit)		25	Mano			1.02-0.92	Growth, development, maturation
	Intact	14	Chem		18		
C. bignonioides koehnei	Intact	14	Chem		52		
			(0		
83 C. kaempferi (catalpa) 84 C. kaempferi atropurpurea (catalpa)	Intact Intact	18	Chem		30 43		
Cel	Intact	22			31	0.80	
	Blade	RT	Mano		6.3	99.0	
	Intact	20	Chem		34		
beauty)	Ç.		Chom		~		
00000	Intact	0	Chem		6.6		
06	Intact	20			13.43		
91	Intact	10			5,33		
_	Intact	0			2.73		
	Intact	20			119,	0.79	
	Intact	24	Chem		203		
	Intact	20	Chem		3.03		
96 Citrus aurantium (lime) 97 C. limonia (lemon, Eureka)	Intact	02	Mano	7.7-9.53	2.0		

166. RESPIRATION RATES: HIGHER PLANTS, LEAVES (Continued)

Values for rates of gaseous exchange are µ1/100 mg wet weight/hour, unless otherwise specified. Underlined number = control or endogenous value.

			İ						
	2 0 0 0 0 0 0	Condition	Temp1	Mothod2	Respiral	Respiration Rate	R.Q.	Experimental	Refer-
	להפרוכה	Part	ပ		000	QCO.	CO2/O2	Variable	ence
					70.	700.			
	(A)	(B)	(C)		(E)	(F)	(B)	(H)	E
98	98 Citrus sinensis (orange, Washington Navel)	Intact		Mano	9.6-12.93				31
66	Clematis cirrhosa (Clematis)	Blade	RT	Mano		17.8			2
100	_	Petiole	RT	Mano		8.9			2
101	Coffea arabica (coffee, Arabian)	Intact	20	Chem		1.53			
102	Colutea arborescens (bladder senna)	Blade	17	Mano		74-19	0.87-0.70	Growth, development, maturation	13
103	Convallaria majalis (lily-of-the-valley)	Intact	17			193			33
104	Corylus avellana (hazel)	Intact	15			0.4-1.23		Light or photoperiod	7
105		Intact		Chem		62			ro.
106	C. avellana atropurpurea (hazel)	Intact		Chem		24			2
107	Corynocarpus laevigata (New Zealand laurel)	Intact	97	Mano			1.13		3.4
108	Cotyledon ramosissima (cotyledon)	Intact	25	Mano			1.05		20
109	Crassula arborescens (crassula)	Bud			7.2				35
110		Intact			3.9-1.1			Growth, development, maturation	35
111	C. portulacea (crassula)	Intact	25	Mano			0.94		02
112	_	Intact, white	35	Chem		233-1444		Storage or starvation	36
113	Dentaria bulbifera (toothwort)	Intact	18			23-343		Light or photoperiod	7
114	Dioscorea cayennensis (yam)	Intact	19	Chem		703			23
115	D. divaricata (yam)	Intact		Chem		10			52
116	ല്	Intact	2.5	Chem		5,			37
	_								
117	Elodea canadensis (waterweed)	Intact		Mano, Chem			4.8		38
118	Eragrostis curvula (love-grass)	Intact	34	Mano		143			19
119		Intact	24	Chem		53			18
120	_	Intact	52	Chem		9.33			39
121	Erodium moschatum (filaree)	Blade	RT	Mano		17.2	0.64		2
771	-	Fetiole	KI	Mano		0.0			7
123	Eucalyptus globulus (eucalyptus)	Intact Intact	19	Mano		8.5	0.80		8 27
125	Eugenia michelii (pitanga)	Intact	16	Mano			0.81		9
126		Intact, red	16	Mano		11	0.79		9
127		Intact	25	Mano			1.01		20
128	Evonymus japonica (spindle tree)	Intact	82	Mano			1.02		27
129		Intact	31	Mano			0.94		x 0
130		Intact	1.5	Mano			0.97		80
131	_	Intact	0	Mano			0.97		œ
132	Fagus silvatica (European beech)	Intact	20	Chem		1-5-			40 م
7	_	Tillact.	-	Chean					,

2	1	41	40	2	7	2 2	7	3	16	42	80	∞	43	22	44	37	23	23	2	- -	•	2	7	45	46	47	ç F	37	6 I	49	42	30	50	51	52	52	75	30
		Growth, development, maturation	Light or photoperiod				Light or photoperiod			Growth, development, maturation			Growth, development, maturation	or starvation	Growth development maturation	Storage or starvation)			right of photoperiod				Growth, development, maturation	Storage or starvation	Storage or starvation					Growth, development, maturation	Chong on other man thing	Storage or starvation	Storage or starvation	Storage or starvation		Storage or starvation	right of propertion
				0.89	1.00	0.91		0.64	0.64		1.00	1.00	1 20 1 00									0.85	0.83		,	1.2-0.8	0.1-1.0								1.12-0.99	1.09-0.93	0.84-0.98	
3.5	1.63	10-53	1-63	21.3	10.4	13.9	7-133	18	1.8	224-944	40	1.8		13,6-5.1	66-1474	9-33	5.83	16.63	24.33	1 3 3	1	56.6	21.6	500-2504	58-23	76-15		4.53	133	1.2	312-1204	13 13 6 6	1.6-1.3.0-3	390-1204	3.3-2.6	1.3-0.73	0.8-0.35	
													50-80														32-17				4000	.077	4-9-2			_		1204
Chem	Chem	Chem	Chem	Mano	Mano	Mano		Mano	Mano	Chem	Mano	Mano	Mano	Chem	Cond	Chem	Chem	Chem	Chem	Chorn		Mano	Mano	Chem	Chem	Chem	Mano, Cond	Chem	Mano	Mano	Chem	Mano	Cuem	Chem	Chem	Chem	Chem	3.6
07	20	24.5	20	RT	H H	RT	10	24	24	80	32	18	25	22.5		2.5	20	31	77	20	3	23	53	2.5	52	25	* 2	25	27	2.1	38	207	25	30	24	70	0.5	F (C
Intact	Intact	Intact	Intact	Blade	Petiole	Blade	Intact	Intact	Intact	Intact	Intact	Intact	Intact	Intact	Intact	Intact	Intact	Intact	Intact	Intact	1110011	Intact	Intact,	Intact	Intact	Intact	Intact	Intact	Intact	Intact	Intact	Intact	Infact	Intact	Intact	Intact	Intact	ייייייייייייייייייייייייייייייייייייייי
(beech)	Ficus benjamina (fig)	Fragaria sp (strawberry)	Fraxinus excelsior (ash)	Fumaria capreolata (fumitory)		Geranium robertianum (geranium)	G. sanguineum (geranium)			Gossypium herbaceum (cotton, Roseum)	Hedera helix (English ivy)			H. helix var. rotundifolia (English	Helianthis annins (sinflower)					Heracieum sibiricum (cow-par snip)	hibiscus)	ulgare (barley)						Hydrangea hortensis (hydrangea)	Hypoxis rooperi (stargrass)	Ilex aquifolium (holly)	Impatiens sp (balsam)	Ipomoea grandillora (morning glory)	Iris germanica (Iris) Kleinia radicans (candle plant)	Lactuca sativa (lettuce)	erial 44)		o accountitional position () account out of	rasei pilimii ialiioliuiii (iasei woi i)

166. RESPIRATION RATES: HIGHER PLANTS, LEAVES (Continued)

Values for rates of gaseous exchange are \$\mu 1/100 mg wet weight/hour, unless otherwise specified. Underlined number = control or endogenous value.

		Condition	Temp1	21-17-14	Respira	Respiration Rate	R.Q.	Experimental	Refer-
	Species	Done	ာ၀	Method=	11/100 10/11/100	pitton mg/nr	CO2/O2	Variable	ence
		1 411			² 0≥	&CO ₂			
	(A)	(B)	(C)	(D)	(E)	(F)	(C)	(H)	(1)
178	Laurus nobilis (laurel)	Intact Intact	22.5	Chem		8.5-3.42 10 ³		Storage or starvation	22
180	Lavatera olbia (tree mallow)	Blade	RT	Mano		10.5			2
181		Petiole	RT	Mano		5.7			2
182		Intact	21	Mano		76-21	69.0-08.0	Growth, development, maturation	13
183		Intact	22			39			3
184	Lemna minor (duckweed)	Intact	2.5	Mano		3004			53
185	Ligustrum japonicum (privet)		97	Mano		89	0.84		2
186		Intact, white	97	Mano		53	08.0		7
187	L. lucidulum	Intact	2.5	Mano	120-50			Growth, development, maturation	43
188	Lolium italicum (darnel)	Intact	19-50		1044				54
189	Lonicera xylosteum (honeysuckle)	Intact	17			8-173		Light or photoperiod	7
190	Lycopersicum esculentum (tomato)	Intact	22			3.2-8.53		•	57
191		Intact	28						95
192	L. esculentum (tomato, Bonny Best)	Segment	28		1304	0.96-0.91		Inorganic nutrition, salts	55
193	L. esculentum (tomato, Gem)	Intact	28		2604				99
194	ij	Intact	28	Mano	1904				95
					,				
195	L. esculentum (tomato, John Baer)	Intact	82		2307				99
196		Segment	30		42-46		1.28-1.13	Inorganic nutrition, salts	69
197	ij	Intact	28		2104		!		5 b
198	ij	Intact	27	Mano	260-3204			Light or photoperiod	58
					*				
199	L. esculentum (tomato, Rutgers)	Intact	28	ŀ	2107				99
200	Mahonia sp (mahonia)	Intact	25	Mano			0.95		20
201	Malva parviflora (mallow)	Blade	RT	Mano		31.9	0.84		2
707		Petiole	RT	Mano		8.1	0.97		7
203		Blade	RT	Mano		12.3	0.71		7
204	Melandrium rubrum	Intact	1.8	Chem		3.03			09
205	Melianthus major (honey flower)	Intact	16	Mano		26	99.0		3
206	Mercurialis annua (mercury)	Blade	RT	Mano		10.2	0.73		7
207		Petiole	RT	Mano		8.6	0.97		2
208		Blade	17	Mano		69-18	0.97-0.90	Growth, development, maturation	13
509	Σ_	Blade	RT	Mano		3.1	98.0		7
	_								
210	_	Intact	1.5	Chem		25			LET
117		Intact	15	Chem		19			2
212		Intact	6			2-63		Light or photoperiod	7
213		Intact	20	Chem		103			18
214	Narcissus poeticus (poets'	Bulb					0.96-2.36	Oxygen	49
	indi Cissus)								

216 N. tabacum (tobacco)	Segment	25	Mano	220-1504		6	Growth, development, maturation	
	Segment	25	Mano	43.0-41.5		86.0-86.0	Healthy vs diseased	32
	Blade	18	Mano		24-12	0.83-0.70	Growth, development, maturation	13
219 Olea europaea (olive)	Intact	22	Mano		32-13	0.78-0.75	Growth, development, maturation	13
_	maci	7 7	Circuit		200			2
221 Opuntia versicolor (prickly pear)	Intact	3.5	Chem		14-50 15	0 2 0		62
	12000	1 4	Chem		22	2		70
	Intact	. r.	Chem		2.7			70
	Intact	65	Chem		. 4			62
Ornithogalum arabicum (Star-of-Bethlehem)	Intact	20			9	0.89		m
Oxalis acetosella (wood laurel)	Intact	20	Chem		<u>1</u> 3			6
	Intact	18	Chem		3.15			9
	Intact	20			1.23			26
O. cernua (Bermuda buttercup)	Blade	RT	Mano		8.5	96.0		2
	Petiole	RT	Mano		7.5	1.6		2
O. corniculata (creeping laurel)	Blade	RT	Mano		20.7	0.84		2
	Petiole	RT	Mano		14.6	0.93		2
O. stricta (wood sorrel)	Blade	RT	Mano		18.9	98.0		2
	Petiole	RT	Mano		14.4	1.03		2
Oxyria digyna (mountain sorrel)	Intact	07	Chem		92			_
	Intact	10	Chem		16			15
	Intact	0	Chem		5,			1
Panicum maximum (guinea grass)	Intact	31	Mano		2.7			19
Papaver rhoeas (corn poppy)	Intact	21	Mano		33			16
Paris quadrifolia (herb-paris)	Intact	18			5-93		Light or photoperiod	7
Passiflora caerulea (passion-flower)	Blade	22	Mano		73-21	0.94-0.86	Growth, development, maturation	13
Pelargonium hortorum (common	Intact	36	Mano		32,	0.85		24
bedaing getamam)	Intact	5	Mano		0.73			24
P. zonale (horseshoe geranium)	Intact	22.5	Chem		29-13.6-29		Storage or starvation	22
	Intact	20	Chem		2.33			~
	Intact	82	Mano			1.01		27
Pennisetum clandestinum (Kikuyu grass)	Intact	25			43-13-38		Storage or starvation	63
Penstemon gentianoides (beard-tongue)	Intact	24	Mano		30	0.76		16
Petasites albus (sweet coltsfoot)	Intact	97	Chem		5.83			23
Phaseolus vulgaris (kidney bean)	Intact	97	Mano	26-57				64
	Intact	26	Mano	6-64	,		pH; substrate; poisons-fumigants, insecticides	64
Phillyrea angustifolia (phillyrea)	Intact	82	Chem		103			18
P. media (phillyrea)	Intact	28	Chem	4	103			18
Phleum pratense (timothy)	Intact	21-26		124	,			54
Phoenix dactylifera (date palm)	Intact	20	Chem		4.53			-
	1 . 4	211	A A CAL		2	00 0		9

166. RESPIRATION RATES: HIGHER PLANTS, LEAVES (Continued)

Values for rates of gaseous exchange are #1/100 mg wet weight/hour, unless otherwise specified. Underlined number = control or endogenous value.

(A) (See Photinia glabra (photinia) (concluded) (See Phragmites communis (common reed)	Part	ပ		ľ		-		Kefer-
				90 ₂	O ₂ QCO ₂	20/200	Variable	ence
	(B)	(C)	(D)	(E)	(F)	(S)	(H)	Ξ
	Intact, red	15	Mano		10	0.77		9
	Intact	22.5	Chem	544	31-12		Storage or starvation	22
	Intact	25	Mano			1.04		07
	Intact	56	Mano		42	06.0		00
	Intact	16			10	0.81		œ
264 P. maritama (cluster pine)	Intact	36	Mano		5	0.87		00
205	Intact	20	Mano		12	0.84		00
	Intact	0	Mano		2	0.83		00
267 P. pinea (stone pine)	Intact	24	Mano		12	0.83	_	00
	Intact	14	Mano		6.9	0.82		∞ ¦
2b9 P. silvestris (Scotch pine)	Intact	28	Mano		ļ	0.95-0.96	Growth, development, maturation	27
27.0	Intact	35	Mano		47	0.87		x 0
Distraction fame is a principle of the control	Intact	1.6	Olano Chom		163	0.00		o
Pristacia ientiscus (pistacino)	Intact	27	Mano	430 6804	1.3		Tight on photonomical	o d
	Intact	2000	Chom	700-000	E-73		Tigur or photoperion	00
275 Plumeria alba (olumeria)	Intact	202	Chem		143			
	Intact	20	Chem		253			23
	Intact	20	Chem		2.63			1
278 Polygonatum multiflorum	Intact	22.5	Chem		18.7-5.0-		Storage or starvation	22
					13.6			- 1
	Intact	22.3	Chem		25.5-11	1	Storage or starvation	27
280 F. persicaria (lady's-tnumb)	Blade	1.6	Mano		33-18	0.79-0.76	Growth, development, maturation	13
282 P. viviparum (knotweed)	Intact	20	Chem		53		•	15
283	Intact	10	Chem		27			15
	Intact	0	Chem		6			15
P. weyrichii (knotweed)	Intact	25	Chem		7.93			23
	Intact		Chem		19			n u
288 Potentilla rentane (cinquefoil)	Blade	ът	Mano		31.0	0 67		2
	Petiole	RT	Mano		10.7	0.83		7
290 Primula auricula (primrose)	Intact	36			173	62.0		24
	Intact	5			0.93			54
P. obconica (primrose)	Intact	20	Chem		1.62			-
293 Prunus cerasifera (cherry-plum)		16	Mano		56	0.80		9
	Intact, red	16	Mano		17	0.70		۵ ,
295 P. Jaurocerasus (cherry Jaurel)	Intact	5.22	Chem		4.6		č	62
967	Intact	5.22	Chem		20-3.4-		Storage or starvation	00
7 P. lusitanicus (Portugal laurel)	Intact	22.5	Chem		15.3-6.8-		Storage or starvation	77
297 P. lusitanicus (Portugal laurel)	Intact	22.5	Chem		13.6 15.3-6.8- 10		Storage or sta	arvation

299 Psoralea bituminosa (scurf-pea)	. 10	-		20			
	Blade	24	Mano	77-97	0.81	Growth, development, maturation	13
	Blade	Fa	Mono	- 1 3			2
200	Datiolo	1 1 1	Mano	5.7			۱ ر
	retione	111	Mano	7.0	0 62		۱ ر
302 Ptelea trifoliata (nop-tree)	Blade	K.I	Mano	9.0	0.0		7 1
303	Fetiole	17.	Mano	0.7	0.12		7
304	Blade	15	Mano	35-9.6	0.87-0.67	Growth, development, maturation	13
305	Intact	16	Chem	97			2
306 P. trifoliata aurea (hop-tree)	Intact	15	Chem	22			2
307 Pyrus malus (apple, McIntosh)	Intact	33	Chem	8.6-43.03		Moisture	29
308 P. malus (apple, Stayman's Winesap)	Intact	33	Chem	7.6-36.03		Moisture	29
309 Quercus coccifera (oak)	Intact	21:	Mano	44-13	0.87-0.79	Growth, development, maturation	13
310 Q. ilex (holly oak)	Intact	24	Chem	203			8
	Intact	20	Chem	28			15
	Intact	10	Chem	19			15
7	Intact	0	Chem	5.1			1.5
21.7 D minmon (durant buttoning)	1000	30	Cham	03			1 4
_	1-4-4	2 2	Chem	1,6			1 4 **
515	Intact	2 (Cnem	0 "			0 1
_	Intact	0	Chem	8.6			61
317 Raphanus raphanistrum (wild	Blade	RT	Mano	13.3	0.73		7
radish)							
318	Petiole	RT	Mano	6.2	0.86		2
319 Raphiolepis ovata	Intact	14	Mano	7	10.1		9
320	Intact, red	14	Mano	2	0.81		9
321 Reseda alba (white mignonette	Intact	20	Mano	30	0.70		91
322 Rhamnus alaternus (buckthorn)	Intact	59	Chem	313			1.8
_	Segment	30	Mano	29	1.17		68
-	Intact	22.5	Chem	13.6-5.1		Storage or starvation	22
325 Robinia mendacacia (false acacia)	Intact	28	Mano		96.0		27
_	12 to 0.00	14	Mano	23	0.93		9
_		7 7	Out PA	3.7	100		2 د
	Intact, 1ed	1.1	Mailo	10 7	26.7		,
_	Blade	M.	Mano	12.0			7 [
329 Rubus idaeus (European raspberry)	Intact	13	į	2-107		Light or photoperiod	٠ ,
0	Intact	2 5	Cnem	1 2 3		100000000000000000000000000000000000000	* ^
_	Intact	21		27.		Tigur or photoperion	-
332 Rumex acetosa (garden sorrel)	Blade	1.1	Mano	21.6	0.76		7 1
ſ	Petiole	n i	Mano	11.0	0.08		V (
넊_	Intact	07	Chem				۲ (
335 R. lunaria (sorrel)	Blade	RT	Mano	13.6			7
	Petiole	RT	Mano	8.5			7
337 R. pulcher (fiddle-dock)	Blade	RT	Mano	14.7	0.76		7
	Petiole	RT	Mano	3.3	0.80		7
339 Ruscus hypophyllum (butcher's	Intact, cladode	15	Mano	4-2		Growth, development, maturation	13
proom)	:	£		,	i.		r
340	Tendril, phyllode,	H.I.	Mano	9.7	0.55		7
	or cladode			0.4	1		0
341 Ruta angustifolia (rue)	Intact	8 6	Mano	1 60	0.73		0 0
2.4.2	Intact) T	Mano	٥	200		27
	Illiact	01	Malio	1,23	20:1		26
344 Salix glauca (Willow)	Intact	07	ter fil her	-) 1			2

166. RESPIRATION RATES: HIGHER PLANTS, LEAVES (Continued)

Values for rates of gaseous exchange are µ1/100 mg wet weight/hour, unless otherwise specified. Underlined number = control or endogenous value.

Refer-	ence	(1)	97	15	15	15	9	Q.	7	6	23	ო :	10	15	15	13	m •	10	69	69	_	35 35	20	2	19	_ :	57	- 0	15	15	6	18	7	-	n 13	1 6	71	7	7
Experimental	Variable	(H)						The second secon														Growth, development, maturation		Storage of Starvation											Growth, development, maturation			Light or photoperiod	
R.Q.	CO2/02	(G)					0.88	0.84				0.82	0.72				0.78	0.78			1.07		2 0 7 0	2.1											0.78-0.67				
Respiration Rate	QCO ₂	(F)	9.43	-, 3- 7-8	- 44 - 70	13	19	25	16	33	-06	45	56	17.8	5.6	4.7	4	4	4.4	56			7 7 7	0 - ‡ - 1 1	223	2.23	512	7.3	09	19	83	53	14.6	12.1	34-10	137	41	3-113	+3
Respir µ1/10	9O ₂	(E)																				9.3-4.3	21.9														9	10	
Method ²		(D)		Chem	Chem	Chem	Mano	Mano	Mano	Chem	Chem		Mano	Chem	Chem	Chem		Mano	Mano	Mano	Mano	Mano	Mano		Mano	Chem	Chem	Chem	Chem	Chem	Chem	Chem	Mano	Mano	Mano	Chem	Chem	Cuem	
Templ	ာ	(C)	10	0 0 0	0	0	14	14	RT	20	19	12	21	07	0 (0	02	20	25	15	52				36	20	52	02	20	10	20	20	RT	RT	16	48	30	15	
Condition	Part	(B)	Intact	Intact	Intact	Intact	Intact	Intact, red	Blade	Intact	Intact	Intact	Intact	Intact	Intact	Intact	Intact	Intact	Intact	Intact	Intact	Intact	Bud	Intact	Intact	Intact	Intact	Intact	Intact	Intact	Intact	Intact	Blade	Petiole	Blade	Intact	Intact	Intact	
Species)))))	(A)	Salix glauca (willo	346	. 000	349	350 Salvia grahamii (sage)	351	352 Sambucus nigra (European elder)	353	354 Sapium bolinense	355 Saponaria officinalis (bouncing-bet)		357 Saxifraga cernua (saxifrage)	358		360 Scilla hemisphoerica (squill)	S. peruviana (Cuban lily)	Secale cereale (rye)		364 Sedum acre (stonecrop)	S. dendroideum (stonecrop)		S. praealtum (stonecrop)	368 Senecio bupleuroides (groundsel)	S. cruentus (groundsel)	S. grandifolius (groundsel)	S. petasites (velvet groundsel)	373 Sibbaldia programbens		375 Sinapis alba (white mustard)	376 Smilax aspera (greenbrier)	Smyrnium olusatrum		379 Solanum nigrum (black nightshade)	S. tuberosum (potato)		383 Solidago virgaurea (goldenrod)	-

Sor Briefly a contract of the								ĺ
Sparganium ramosum (bur-reed)	Intact	22.5	Chem		32-12		Storage or starvation	22
Sparmannia africana (African hemp)	Intact	20	Chem		1.8			
Spartium junceum (Spanish broom)	Blade	RT	Mano		17	0.71		2
Spinacia oleracea (spinach)	Intact	20	Chem		93			10
	Intact	20	Chem		4.7-7.2	0,87-0.82	Oxygen	73
	Segment	30		62-41		1.0-0.74	Storage or starvation	74
		000		42 41		0 0 0 0 2 2		1
	manifac	20		12-01		0.73-0.13	ud	
S. oleracea (spinach, Longstanding	Intact	24	Chem		16.2-12.8	0.94-0.83	Storage or starvation	55
Bloomsdale)								
	Intact	10	Chem		4.2-2.0	98.0-06.0	Storage or starvation	
	Intact	0.5	Chem		1.5-5.8	0.85-0.73	Storage or starvation	52
Spirage opplifolia (spirage)	Riado	RT	Mano		16.0	0 65	0	2
the state of the s	Datiolo	£	Mono		11.6	0 2 1		٠ ١
	arona	14	Mallo		11.7	1.0		
	Blade	1.	Mano		49-19	0.88-0.74	Growth, development, maturation	1.5
S. ulmaria (spiraea)	Intact				9-103		Light or photoperiod	7
Spironema fragrans	Intact	20	Chem		3.03			
observation and services are services and services and services and services are services and services and services are services and services and services are services and services and services are services and services are services and services and services are services and services are services and services are services and services are services and services are services and services are services and services are services and services are services and services are services and services are services and services are services are services and services are services are services and services are se	Di a	E						
Stacnys hirta (woundwort)	Blade	H.I.	Mano		15.5	0.80		7
	Petiole	RT	Mano		5.0	0.91		7
Statice limonium (sea-lavender)	Intact	20	Chem		11124			21
	Intoct	20	Chom		4			2.1
	, , ,			-23				
Stelechocarpus burahol	Intact	0.4		105				67
	Intact	30		5.67				67
	Intact	20		52				59
	Intact	10		0.83				29
Stellaria nemorum (chickweed)	Intact	00	Chem		3.33			09
Cumings unidonic (lilos)	Tatoot	28	Mono			00 1		27
J. mga vagatta (mac)	1-1-1	2	Mano		00	00.0		
	ווושכו	3.4	Mallo		07 1			o c
	Intact	47	Mano		6.7	0.74		_
	Intact	18	Mano		3.7	86.0		~
Taraxacum officinale (dandellon)	Intact	19	Mano		48.5	0.95		75
Taxus baccata (vew)	Intact	46	Mano		55	0.89		_
	Intact	3.4	Mano		23	0 80		
	1-1-1	7 -	NI DIO			70) a
	Intact	01	Mano		0	0.00		_
	Intact	28	Mano			0.98-0.89	Growth, development, maturation	27
Teucrium scorodonia (wood-sage)	Intact	20	Mano		06			76
Thea sinensis (tea)	Segment	36	Mano	80-46		1.27-0.74	Storage or starvation	77
	Seament	3.6	Chem		16.4		,	77
Th	0				- 3			
memeda trandra var. glauca	Intact	17	Mano		,			13
T. triandra var. trachyspathea	Intact	38	Mano		5.63			19
Thrincia tuberosa	Blade	RT	Mano		8.8	0.74		2
Tilia plat ph lla (linden)	Intact	20	Chem		1.63			
Tradescantia viridis (wandering iew)	Intact	29	Mano			- 01		27
Tricholaena rosea (natal-rass)	Intact	10	Mano		8 7 3			10
Trifelium profession (mail all most)	1000	-	OH BIN	-	7.00	0000	11 - 12 - 12 - 12	100
Timonami pratense (red clover)	intact	4			80-616	0.00-0.09	Healthy vs diseased	
Iriticum compactum (wheat,	Intact	20	Chem		15-10-18-14		Storage or starvation	8
Little Club)		L C				1		(
1. Salivum (wheat)	Intact	2.5	Man		140.2	26 01		

166. RESPIRATION RATES: HIGHER PLANTS, LEAVES (Concluded)

Values for rates of gaseous exchange are µ1/100 mg wet weight/hour, unless otherwise specified. Underlined number = control or endogenous value.

) , , , , , L ,	or	200	Method 6		µ1/100 mg/hr	zi (Weermental	Keter
	Part			QO ₂	QCO ₂	CO2/02	Variable	ence
(A)	(B)	(C)	(a)	(E)	(F)	(9)	(H)	Ξ)
431 Triticum sativum (wheat) (concluded)	Intact,	25	Mano		37.5	0.98		2
432 T. vulgare (wheat, Maronis)	Intact	20	Mano	4.2-8.63				α.
	Intact	22		2-143			Healthy vs diseased	78
434	Intact	22		20-00		1.3-1.05	Healthy vs diseased	82
435 T. vulgare (wheat, Minhardi)	Intact	28	Mano			0.93	٠	27
436 Tulipa sp (tulip, Le Notre)	Bulb	20			4.0-2.8-	1.2-1.1-	Storage or starvation	83
T. (2.1.1.1)	1	1.3			20.0	0.7		
: _[Intact	1.5	Mano	0.6				200
	grng	67		1.4-1.9			Carbon dioxide	
439 Typha latifolia (cat-tail)	Intact	22.5	Chem		26-15-19		Storage or starvation	22
440 Ulmus montana (elm)	Intact	16	Chem		54			5
441 U. montana atropurpurea (elm)	Intact	16	Chem		23			
442 Urtica membranacea (nettle)	Blade	RT	Mano		10.8	69.0		2
443	Petiole	RT	Niano		6.9	0.85		2
444 Valeriana officinalis (garden-	Intact	20	Mano	1804				30
heliotrope)								
445 Verbascum thapsus (common	Intact	23	Mano		38	0.84		16
mullein)								
Veronica beccabunga (speedwell)	Intact	16-17		1044	3			54
European	Intact	13			2-7-		Light or photoperiod	7
cranberry busn)	1		į		, L			
v. tillus (laurestillus)	Intact	16	Mana		, C	0 03		70
	Intact, red	16	Mano) LC	0.66		2 0
451 Vicia faba (broad bean)		RT	Mano		11.1			
	Petiole	RT	Mano		4.1			2
453 V. sativa (common vetch)	Blade	RT	Mano		30.1	0.75		
454	Petiole	RT	Mano		16.7	0.88		
455	Tendril, phyllode,	RT	Mano		25.7	06.0		, 4
	or cladode							
456 Viscaria alpina (alpine campion)	Intact		Chem		58			
	Intact	20	Chem		23			15
	Intact		Chem		ব			
459 Vitis vinifera (wine grape)	Blade		Chem		814			4
460 Yucca gloriosa (yucca)	Intact	22.5	Chem		8.5-3.3		Storage or starvation	22
461 Lea mais (corn)	Intact	56	Mano		68.3	66.0		2
462	Intact,	92	Mano		54.1	76.0		7
463	enolated		Chem		4.3-0.14		Growth development maturation	7.2
	1771						CIT CIT COLOR OF THE COLOR OF T	

Contributors: (a) Mandels, G. R., and Darby, R. T., (b) Forward, D. F., (c) Klein, R. M., (d) Henderson, J. H., and Henderson, L. L., (e) Chapman, H. W., (f) Lyon, C. J., (g) Vallance, K. B.

82] Allen, P. J., Am. J. Bot. 29:425, 1942. [83] Algera, L., Proc. Akad. wet. Amsterdam 39:846, 971, 1106, 1936. [84] Thornton, N. C., Contr. Boyce "Plant Respiration," Philadelphia: Blakiston, 1927. [55] Klein, R. M., Arch. Biochem., N. Y. 30:207, 1951. [56] Klinker, J. E., Plant Physiol. 25:354, 1950. [57] Hamner, K. C., Botan, Gaz. 97:744, 1936. [58] Elliott, B. B., and Leopold, A. C., Plant Physiol. 27:787, 1952. [59] Tsui, C., Nature, Lond. Johansson, N., Sven. Botan, tskr., 20:107, 1926. [72] Hover, J. M., and Gustafson, F. G., J. Gen. Physiol. 10:33, 1926. [73] Platenius, H., Plant Physiol. 18:671, 1943. [74] Bonner, J., and Wildman, S. G., Arch. Biochem., N. Y. 10:497, 1946. [75] Kylin, H., Ārkiv, fur Bot. 11:1, 1911. [76] Rosé, E., Rev. gen. botan. 22:385, 1910. [77] Deb, S. B., and Roberts, E. A., Biochem. J., Lond. 34:1507, 1940. [78] Allen, P. J., and Goddard, D. R., Am. J. Bot. and Escombe, F., Proc. Roy. Soc., Lond., B 76:40, 1905. [24] Miller, E. S., and Burr, G. O., Plant Physiol. 10:93, 1935. [25] Meyer, A., and Deleano, N. T., Zschr. Bot. 3:657, 1911. [26] Müller, D., Planta 6:22, 1928. [27] Pringsheim, E. G., Jahrb. wiss. Botan. 81:579, 1935. [28] Wolf, J., Planta Brooks, S. C., Science 95:231, 1942. [39] Kurssanow, A. L., Planta 20:535, 1933. [40] Boysen-Jensen, P., and Müller, D., Jahrb. wiss. Botan. 70:503, 1929b. [41] Arney, S. E., New Phytologist 46:68, 1947. [42] Inamdar, R. S., Singh, S. B., and Pande, T. D., Ann. Botany, Lond., 39:281, 1925. [43] Beatty, A. V., Am. J. Bot. 33:145, 1946. [44] Glenister, P. R., Botan, Gaz. 106:33, 1944. [45] Pope, M. N., J. Agr. Res. 46:35, 1933. [46] Yemm, E. W., Proc. Roy. Soc., Lond., B 123:243, 1937. [47] Yemm, E. W., ibid 117:504, 1935. [48] Phillips, J. W., Am. J. Bot. 34:62, 1947. [49] Stich, C., Flora 74:1, 1891. [50] Thoday, D., and Richards, K. M., Ann. Botany, Lond., N. S. 8:189, 1944. [51] Benoy, M. P., J. Agr. Res. 39:75, 1929. [52] 1913. [21] Gabrielsen, E. K., and Larsen, P., Biologiske Medd. 11, No. 8, 1935. [22] Audus, L. J., New Phytologist 38:284, 1939. [23] Brown, H. T., Biol. 22:37, 1944. [64] Johnson, C. M., and Hoskins, W. M., Plant Physiol. 27:507, 1952. [65] Audus, L. J., New Phytologist 39:65, 1940. [66] Audus, 29:450, 1939. [29] Stocker, D., ibid 24:402, 1935. [30] Genevois, L., Biochem, Zschr. 191:147, 1927. [31] Wedding, R. T., Riehl, L. A., and Rhoads, W. A., Plant Physiol. 27:269, 1952. [32] Takahashi, W. N., Am. J. Bot. 34:49b, 1947. [33] Van Herk, A. W., and Badenhuizen, N. P., Proc. Akad. wet. Amsterdam 37:99, 1934. [34] Ruhland, W., and Ramshorn, K., Planta 28:471, 1938. [35] Aubert, E., Rev. gén. botan. 4:203, 273, 321, 337, 373, 421, 164:970, 1949. [60] Lundegardh, H., Sven. Botan. tskr. 15:4b, 1921. [61] Newcomb, E. H., Am. J. Bot. 37:254, 1950. [62] Richards, H. M., "Acidity L. J., Ann. Botany, Lond., N. S. 11:165, 1947, [67] Schneider, G. W., and Childers, N. F., Plant Physiol. 16:565, 1941. [68] Morrison, J. F., Austral. J. Exp. Biol. 27:581, 1949. [69] Blanc, L., Rev. gén. botan. 28:65, 1916. [70] Bennet-Clark, T. A., Sc. Proc. R. Dublin Soc., N. S. 20:293, 1932. [71] References: [1] Gabrielsen, E. K., Planta 14:217, 1931. [2] Nicolas, G., Ann. sc. nat. Botan. et biol. végétale, Series 9. 10:1, 1909. [3] Maige, G., Rev. gén. botan. 21:32, 1909. [4] Meyer, A., and Deleano, N. T., Zschr. Bot. 5:209, 1913. [5] Plester, W., Beitr. Biol. Pflanz. 11:249, 1912. [6] Nicolas, G., Rev. gén. botan. 31:161, 1919. [7] Hesselman, H., Beih. Botan. Centr. 17:311, 1904. [8] Bonnier, G., and Mangin. L., Ann. sc. nat. Zool., Maige, G., Ann. sc. nat. Botan. et biol. végétale, Series 9, 14:1, 1911. [17] Saran. A. B., J. Ind. Botan. Soc. 17:287, 1938. [18] Von Guttenberg, H., and Buhr, H., Planta 24:163, 1935. [19] Brett, P. G., S. Afr. J. Sc. 38:158, 1942. [20] Maquenne, L., and Demoussey, E., C. rend. Acad. sc. 156:278, Series 6, 19:217, 1884. [9] Boysen-Jensen, P., Bot. Tidskr. (Dansk Bot. Foren.) 36:219, 1918. [10] Boysen-Jensen, P., and Müller, D., Jahrb. wiss. Botan. 70:493, 1929a. [11] Appleman, C. O., and Brown, R. G., Am. J. Bot. 33:170, 1946. [12] Smith, C. L., J. Agr. Res. 53:557, 1936. [13] Nicolas. G., Rev. gén. botan. 30:209, 1918. [14] Saran, A. B., J. Ind. Botan. Soc. 17:1, 1938. [15] Wager, H. G., New Phytologist 40:1, 1941. [16] and Gas Interchange in Cacti," Carnegie Institution of Washington, Pub. 209, 1915. [63] Wood, J. G., Mercer, H. V., and Pedlow, C., Austral. J. Exp. 25:613, 1938. [79] Yarwood, C. E., J. Agr. Res. 49:549, 1934. [80] Krotkov, G., Plant Physiol. 14:203, 1939. [81] Pratt, R., Science 88:62, 1938. Platenius, H., Plant Physiol. 17:179, 1942. [53] White, H. L., and Templeman, W. G., Ann. Botany, Lond., N. S. 1:191, 1937. [54] Kostytschev, S., 1892. [36] Ranjan, S., J. Ind. Botan. Soc. 19:19, 1940. [37] Spoehr, H. A., and McGee, J. M., Am. J. Bot. 11:493, 1924. [38] Ronkin, R. R., and

167. RESPIRATION RATES: HIGHER PLANTS, FLOWERS

ne.	Refer-		(1)	-	-	4	-	7
umber = control or endogenous val	Experimental		(H)	1.06-1.03- Growth, development, maturation		./90594 Growth, development, maturation	.979171 Growth, development, maturation	.898790 Growth, development, maturation
Underlined n	R.Q.	701700	(2)	1.06-1.03-	88.	1190394	.979171	.898790
se specified.	Respiration Rate µ1/100 mg/hr	QCO ₂	(F)	63-41-28		26-31-35	33-52-30	31-27-25
s otherwis	Respira µ1/100	Q02	(E)					
our, unles	Semp Method		(a)	Mano		Mano	Mano	Mano
eight/hc	Temp	ر 	(C)	54	Č	97	21	21
'е µ1/100 mg wet w	Condition	Part	(B)	Sepal		Petal	Stamen	Pistil
Values for rates of gaseous exchange are \$\mu 1/100 mg wet weight/hour, unless otherwise specified. Underlined number = control or endogenous value.	Species		(4)	1 Acanthus mollis (bear's breech)		2	23	-dr

/1/ Mano = manometric, Chem = chemical.

167. RESPIRATION RATES: HIGHER PLANTS, FLOWERS (Continued)

Values for rates of gaseous exchange are µ1/100 mg wet weight/hour, unless otherwise specified. Underlined number = control or endogenous value.

	Č	Condition	Temp	The street	Respira	Respiration Rate	R.Q.	Experimental	Refer-
	Species	or		nounain	h1/10	mg/iii	CO2/02	Variable	ence
		Fart			4O ₂	4CO ₂			
	(A)	(B)	(C)	(D)	(E)	(F)	(G)	(H)	(1)
ທ	Agave attenuata (century plant)	Stamen	15	Mano		24-21	0.78-0.74	Growth, development, maturation	
0		Fishi	1.4	Mano		34-13-11	-9024.	development,	-
r- 00	Aloe arborescens (aloe)	Stamen Pistil	17 17	Mano Mano		36-21-11 26-23-25	0.93-0.94	Growth, development, maturation Growth, development, maturation	
6	Anemone japonica (anemone)	Bud	19	Chem		37			2
01	Antirrhinum majus (snapdragon)	Petal	23	Mano		82-70-34	1.15-1.13-	Growth, development, maturation	m-4
11		Stamen	24	Mano		81-106-76	200	Growth, development, maturation	1
12		Stamen	02	Mano		31	0.95		
13		Pistil Infact	28	Mano		61	1.0 0.98		m
15	Aquilegia vulgaris (columbine)	Sepal	20	Mano	1502				4
16		Petal	20	Mano	2002				77"
17		Stamen	20	Mano	1902				4 4
19	Arisaema sp (jack-in-the-pulpit)	Pollen	25		4802				5
20	Arum italicum (wild ginger)	Spadix	18		2800				9
21	A. maculatum	Spadix	30	Mano	1560-3180- 780 ²		1.09-0.87	Growth, development, maturation	7
22	Begonia rex (begonia)	Pistil	20	Mano		31			7
23		Stamen	50	Mano		43			_
24		Sepal	20	Mano		39	~**		
260		Tretat	20	Mono		7.6	1 02		3
27		Intact	25	Chom		102 1382	1.02	I jaht on photonomiod	α
200	Cacalia verbascifolia (Indian-plantain)	Intact	18	Chem		34		Light of photoperion	2
567		Petal	20	Mano	2102				4
30		Stamen	20	Mano	3302				7
31		Ovule	20	Mano	3602				4
32	Camellia japonica (camellia)	Pollen	02	Mano	7802		1.34	Carbohydrates	ro ro
34	-	Intact	35	Chem	200	41-412		Light or photoperiod	000
35		Petal	22	Mano		27	0.79		7
36		Stamen	22	Mano		65	0.72		7
37		Pistil	22	Mano		45	0.78		-
20 00	Celsia cretica (figwort)	Petal	24	Mano		127-54	1.04-0.97	development,	- -
40		Sepai	47	Mano		113-78	1.03-1.00	Orowin, development, maturation	۰ ۵
41		Stamen	22			54	0.86		0
45		Intact	28	Mano			66.0		3
43	(wallflower)	Pistil	20			76	1.01		o o
4.5	Coeloguno mooreans (orchid)	Jutact	25	Mono		*0	0.71	Pollination: hormones	10
46		Distil	22	Mano		48-43-29	0.7-0.73	Growth development maturation	-
		4 4544	3	DIRBING		12 22			

				.,					
48 Cymbidium lowianum (cymbidium)	Intact	52	П	04-127 ₋		0.9-1.0	Pollination; hormones	es	10
	Petal	28	Mano			0.94			3
50 Delphinium sinense (larkspur)	Intact	28	Mano			0.94			٣
Gladiolus sp (gladiola)	Stamen	24	Mano		72	0.77			6
	Pistil	24	Mano		7.1	06.0			6
53 G. gandavensis (gladiola)	Petal	24	Mano		15	0.72			~
	Stamen	24	Mano		27	0.77			7
	Pistil	24	Mano		71	06.0			-
56 Helianthus annuus (sunflower)	Inflorescence	10	Chem		57-432		Growth, development,	nt, maturation	11
Hibiscus rosa-smensis (Chinese	Petal	97	Mano		130-86-38	1.06-1.04	Growth, development,	nt, maturation	1
hibiscus)						96.0-			
	Sepal	24	Mano		75-44-29	0.81-0.90-	Growth, development,	nt, maturation	-
			П	~		0.94			
59 Hippeastrum sp (amaryllis)	Pollen	20		650 ²					5
Jasminum nudiflorum (jasmine)	Intact	28	ī			1.01			3
Lathyrus odoratus (sweet pea)	Petal	20		3302					4
	Filament	20	Mano 1	1602					4
	Ovary	20	Mano 3	3005					4
	Ovule	20	Mano 4	4202					4
Lavatera olbia (tree mallow)	Pistil	22			89				6
	Stamen	22			58				6
	Sepal	22	Mano		29				
	Petal	122	Mano		30				_
	Pistil	20	Mano		82-77	0.93-0.94	Growth, development, maturation	nt, maturation	_
	Petal	24	Mano		77-65	0 90-0 84			_
	Stamen	24			138-106	0.90-0.84			_
Lilium aratum (golden-banded lily)	Pollen	25		10002		1.01			5
L. elegans (lily)	Pollen	25		6102					5
	Pollen	25		3402					S
L. longiflorum (Easter lily)	Pollen	25		9304					S
	Anther	25			73-31		Growth, development, maturation	nt, maturation	12
	Pollen	25		1140		1.04			יט י
	Pollen	25		750-					ח ו
L. philippinensis (lily, Nahate)	Pollen	52	Mano	2070					2
L. croceum (orange 111y)	Stamen				58-19	1.14-0.98	Growth, development,	nt, maturation	13
Melianthus major (honey flower)	Stamon	20	Mano		62-50-57	0 94-0 89-		1	
metranimas major (none) mover)	oralicin oral	3				06.0			<u> </u>
	Pistil	20	Mano		52-75	0.89-0.97	Growth, development,	nt, maturation	
	Pistil	10	Mano		54	0.94			6
	Stamen	16	Mano		35	0.80			6
Narcissus tazetta (polyanthus	Stamen	17	Mano		56-51-26		Growth, development, maturation	nt, maturation	_
narcissus)		ţ			00000				
	Pistil	17	Mano		23-24-33		Growth, development,	nt, maturation	4 0
Nerium sp (oleander)	Intact	35	Chem		76-102-		Light or photoperiod	- 1	× -
Ornithogalum arabicum (star-of- Bethlehem)	Stamen	20	Mano		49-29-20	0.91-0.84-	Growth, development,	nt, maturation	_
De attention	Pistil	20	Mano		34-30-47	0.90-0.94-	Growth, development, maturation	nt, maturation	-
						1.00			
	Pistil	20			40	1.04			6 0
	Stamen	20			22	0.93			2 ,
Description of the following for a control	Dollow	20	Mano	2002					2

167, RESPIRATION RATES: HIGHER PLANTS, FLOWERS (Concluded)

00

0

102

03 04

105

07 0.8

Reference 16 4 8 Values for rates of gaseous exchange are µ1/100 mg wet weight/hour, unless otherwise specified. Underlined number = control or endogenous value. Growth, development, maturation Growth, development, maturation Growth, development, maturation Growth, development, maturation maturation Experimental Growth, development, Variable Ξ 1.00-1.04-R.Q. CO₂/O₂ 0.77-0.73 0.85-1.04 9 1.07 1.24 1.06 1.02 0.93 0.84 0.94 0.95 0.89 96.0 0.95 1.01 0.87 1.04 1.03 QC02 Respiration Rate 77-64-70 53-37-29 ul/100 mg/hr (F) 37-27 39 37 104 69 8.2 92 40 59 95 55 57 69 53 31 31 40 40 38 902 (E) 67-51 3005 2091 5069 Methodl Mano Mano Mano Mano Mano Mano Mano Mano Mano Mano Mano Chem Mano Mano Mano Chem Mano Mano Mano Mano <u>(a)</u> Mano Mano Mano Mano Mano Mano Mano Mano Mano Mano Mano Mano Mano Temp <u>(</u>) 28 28 28 21 21 16 25 21 21 21 21 21 21 24 24 24 28 25 25 18 25 24 24 15 28 20 24 Condition Part (B) Stamen Stamen Stamen Stamen Stamen Stamen Pollen Spadix Stamen Stamen Stamen Pistil Pistil Pollen Anther Pollen Pollen Pistil Intact Pistil Sepal Pistil Sepal Petal Pistil Intact Petal Intact Intact Intact Petal Intact Intact Intact Intact Pistil Sepal Sepal Bud Sparmannia africana (African hemp) Papaver orientale (oriental poppy) Vaccinium sp (cranberry, Howes) Sambucus nigra (European elder) Tecoma capensis (trumpet vine) Pelargonium zonale (horseshoe Trillium erectum (red trillium) Penstemon gentianoides (beard-Saponaria officinalis (bouncing-Pinus densiflora (Japanese red Reseda alba (white mignonette) Philadelphus sp (mock orange) P. somniferum (opium poppy) Primula obconica (primrose) Scilla hemisphoerica (squill) Stenactis annua (fleabane Tulipa gesneriana (tulip) peruviana (Cuban lily) Species P. rhoeas (corn poppy) Syringa vulgaris (lilac) Sauromatum guttatum (A) Thea sinensis (tea) Rosa sp (rose) geranium) tongue) bet) ŝ 95 94 66 90 10 20 26 60 18 24 62 30

112 13 114 15 116 17 611 21 22 23 28

32

100	Intact	2.0	20 Chem 30 ²	305				20
Vallisheria spiralis (eeigrass)								-
Verbaseum thansus (common	Pistil	23	Mano		28	26.0		7
marie in the contract of the c	Stamen	23	Mano		76	0.83		_
	Sonal	23	Mano		75	0.95		7
	Dotal	23	Mano		18	0.85		7
	1 clas						Casuata douglander maturation	-
Vices glonioes (viloss)	Pistil	16	Mano		77-67-47		Growth, developinent, matta atton	•
Incea gioriosa () acea	Dotal	24	Mano		67-41-44	0.91-0.97-	67-41-44 0.91-0.97- Growth, development, maturation	-

135 136 137 138 /1/ Mano = manometric, Chem = chemical. /2/ μ 1/100 mg dry weight/hour.

References: [1] Maige, G., Ann. sc. nat. Botan. et biol. végétale, Series 9, 14:1, 1911. [2] Stich, C., Flora 74:1, 1891. [3] Pringsheim, E. G., Jahrb. wiss. Botan. 81:579, 1935. [4] Genevois, L., Biochem, Zschr. 191:147, 1927. [5] Okunuki, K., Acta Phytochim., Japan, 9:267, 1937, ibid 11:27, 1939. [6] Garreau, M., Ann. sc. nat. Botan. et biol. végétale, Series 3, 16:250, 1851. [7] James, W. D., and Beevers, H., New Phytologist 49:353, 1950. [8] Ranjan, S., and Saksena, B. B., J. Ind. Botan. Soc. 19:99, 1940. [9] Maige, G., Rev. gén. botan. 21:32, 1909. [10] Hsiang, T. T., Plant Physiol. 26:708, 1951. [11] Kidd, F., West, C., and Briggs, C. E., Proc. Roy. Soc., Lond., B92:368, 1921. [12] Erickson, R. O., Nature 159:275, 1947. [13] Guilcher, J. M., Rev. gén. botan. 49:235, 1937. [14] Godlewski, E., Jahrb, wiss. Botan. 13:491, 1882. [18] Van Herk, A. W., and Badenhuizen, N. P., Proc. Akad, wet. Amsterdam 37:99, 1934. [16] Sherman, II., Botan. Gaz. 72:1, 1921. [17] Pratt, R., and Biale, J. B., Plant Physiol. 19:519, 1944. [18] Shern, H., and Kirk, P. L., J. Gen. Physiol. 31:243, 1948. [19] Bergman, H. F., Am. J. Bot. 12:641, 1925. [20] Gessner, F., Jahrb. wiss. Contributors: (a) Mandels, G. R., and Darby, R. T., (b) Klein, R. M., (c) Henderson, J. H., and Henderson, L. L., (d) Chapman, H. W.

168. RESPIRATION RATES: HIGHER PLANTS, FRUITS

Values for rates of gaseous exchange are µ1/100 mg wet weight/hour, unless otherwise specified. Underlined number = control or endogenous value. For data on resting and germinating cereal-grains see HIGHER PLANTS: SEEDS, beginning on Page 348.

					100	in Date				
		Condition	3		nespira	Respiration hate	R.O.	Experimental	Keler-	er-
	30,000	or	1 emp	1 emp Method 1	1/100	µ1/100 mg/hr	0/-02	Variable	ence	ce
	מהפוקה	Part	ပ		402	QCO ₂	201200			1
		10,	101	101	(E)	(E)	(D)	(H)	Ξ	<u>.</u>
	(A)	(B)	2	10		, ,	1 1 0 0	Growth development, maturation	tion 1	
-	Aleurites sp (tung)	Intact					0.9-1.1	Growth development maturation	ution 1	
2		Pericarp					0.0-1.1	מוסאוווי מבאבוסליוויבוויו וויייבוויו	,	
3 ~	Ananus sativus (pineapple)	Intact		Chem	3		1.2		٣ د	1
1 4	Borbonie unigarie (common barberry)	Intact	25	Mano			1.2		+	1
۲ ۱	Derugina Vulgaria (Common Carpora)	Intoct	25	Chem		64-8.5		Growth, development, maturation	+	
0	Bryonia dioica (bryony)	11000	2.4	Chom		4.0-1.4	1.12-0.88	Storage or starvation	<u>-</u>	
9	Capsicum frutescens (pepper,	Intact	r	CHEIN)	_	
	Windsor A)			į		0	1 27 0 00	Storage or starvation	- 5	
7		Intact	10	Chem		1.2-0.38	1.27-0.00	Startes of Startes	LC.	
- 00		Intact	0.5	Chem		0.44-0.29	0.96-0.96	Storage or starvation	7	1
0	Carica papaya (papaya, Solo)	Intact	4.4	Chem		0.24			_	
١ (Intact	7.2	Chem		0.28			- 4	
		Intact	10	Chem		0.46			-	
1 2		Intact	12.8	Chem		0.62				
3 -		Intact	15.6	Chem		0.83				
1 4	14 C papaya (papaya, Solo IV)	Intact	3.5	Chem		0.30	-	Storage or starvation	- 1	
, L		Intact	25	Chem		2.6-2.0-4.6		Storage or starvation	- 00	_
16	16 C. papaya (pawpaw)	Intact	8.2	Chem		5-7-6			3 (
17	17 Chelidonium majus (celandine)	Intact	88	Mano			0.99		6	
- 8	18 Citrus grandis (grapefruit, Duncan)	Intact	2.1			1.0			6	
19		Intact	10			4.0			6	
20		Intact	0			0.1			- 6	
21	21 C. grandis (grapefruit, Foster)	Intact	12			1.3			- 6	_
22	,	Intact	10			0.4			6	
23		Intact	0			0.1				

Botan. 89:1, 1940.

168, RESPIRATION RATES: HIGHER PLANTS, FRUITS (Continued)

Values for rates of gaseous exchange are $\mu l/100$ mg wet weight/hour, unless otherwise specified. Underlined number = control or endogenous value.

Species	or	Temp	Method		ul/100 mg/hr	R.Q.	Experimental
	Part	ာ -		3	QCO ₂	- co ₂ /o ₂	Variable
(A)	(B)	(C)	(g)	(E)	(F)	(D)	(H)
24 Citrus grandis (grapefruit, Marsh)	Intact	38			2.5	2.1	
	Intact	21			1.0	1.1	
	Intact	2 0			*.°°	1.4	
C. grandis (grapefruit, Thompson)	Intact	2]			1.3	7:1	
	Intact	10			0.4		
	Intact	0			0		
C. limonia (lemon)	Intact	14.5	Chem		0.5-0.9		
	Intact	15	Chem		0.4-0.2	0.75-0.80	Storage or starvation
	Intact	20	Chem		0.5-1.5		Hormones
C. limonia (lemon, Eureka)	Intact	38			4.1	1.4	
	Intact	21			1.1	1.0	
	Intact	10			0.5	1.1	
	Intact	0			0.15	1.2	
C. nobilis (orange, King)	Intact	28	Mano	4		1.07	
C. sinensis (orange, Parson Brown)	Intact	32	Chem	2.2-6.3	1		High frequency light; hormones
	Intact	17			1.5		
	Intact	2 0			0.1		
C. sinensis (orange, Valencia)	Intact	38			}	1.7	
	Intact	21			1.8	1.0	
	Intact	10			8.0	1.3	
	Intact	0			0.15	1.1	
C. sinensis (orange, Washington	Intact	38				2.3	
Navel	(2.1			0	-	
	Intact	10			8.0	: ::	
	Intact	0			0.15	1.2	
C. sinensis (sweet orange)	Intact	18			4.1	1.06	
Cocos nucifera (coconut)	Endocarp and	30	Mano	400-05			Growth, development, maturation
Cratagone punctara (hawthorn)	nucellus	28	Mono			1 26	
Cucumis sativus (cucumber, Davis	Intact	24	Chem		2.3-0.8	1.01-0.91	Storage or starvation
Perfect)	Intact	0.1	Chem		1.0-0.4	1.01-1.10	Storage or starvation
	Intact	0.5	Chem		0.2-0.08	0.97-0.88	
Cytisus laburnum (broom)	Intact	28	Mano			0.87	
Datura stramonium (thorn-apple)	Intact		Mano		41		
Diospyros kaki (Japanese persimmon, Fuyu)	Intact	20-27			1.4	1:1	
D. kaki (Japanese persimmon, Hachiya)	Intact	20-27			1.8	1.2	
Dun and min and lateral with a mount	4 4 4 4 1 2	000	ĉ		- 1 0 0	10000	

	Intact	40		28				19
ine)	Intact	87	Mano			1.27	- 1	1
66 Hedera helix (English 1vy)	Intact	07	Chem		13-50-19	ì	Growth, development, maturation	
Helianthus annuus (sunflower)	Intact	57	Mano		,	0.96	ji .	~
Hibiscus esculentus (okra)	Intact	30	Chem		306-104		Storage or starvation	21
69 Hippophae rhamnoides (sea buckthorn)	Intact	70	Chem		22			16
Jasminum fruticans (jasmine)	Intact	18	Chem		14			16
71 Kajanus indicus (pigeon pea)	Intact	21	Chem		30-0		Growth, development, maturation	n 8
Lycopersicum esculentum (tomato)	Intact	25	Chem		28.0-4.2			L
	Intact	15-18	Mano		10.0-1.2			
	Intact	27	Mano		1.7-2.9-0.7	1.07-1.01-	Storage or starvation	24
-						1.23		_
/ L. esculentum (tomato, John Baer)	Intact				6.1-0.62			
76 L. esculentum (tomato, Livingston	Intact				31.0-1.5		Growth, development, maturation	n 26
L. esculentum (tomato, Marglobe)	Intact	24	Chem		2.5-1.6	1.11-1.13	Storage or stanyation	
	Intact	10	Chem		0.77-0.58	1.39-1.06	Storage or starvation	
	Intact	0.5	Chem		0.36-0.15	1.11-0.9	Storage or starvation	
	Intact	28	Chem		2.6-1.8	1.8-1.4	Growth development, maturation	n 25
Malus prunifolia f. coccinea (apple)	Intact	28	Mano			1.17		-
Manaifera en (areen manao)	Intact	30	Chem		76-362		Storage or starvation	, ,
Mangifera so (mango [angra)	Intact	30	Chem		15 0-2 5		Storage or starvation	27
Musa saciontum (banana)	Intact	15			1.3			2 00
	Infact	31	Chem		3.1		conde or star value	29
	Intact	20	Chem		1.8			50
	Intact	12.5	Chem		6.0			
	Intact	0	Chem		0.4			
	Intact		Chem	9		1.02		2
	Intact	20	Mano		6.3-8.9-6.8	1.0-1.1	Storage or starvation	
M. sapientum (banana, Gros Michel)	Intact	12	Chem		0.7			
	Intact	16	Chem		1.2-7.6-4.4		Storage or starvation	
	Intact	1.2			3-9		Oxygen	
	Intact	62	Chem		2.3-14.0-4.4		Storage or starvation	33
	Intact	87	Mano			0.94		3
Papaver somniferum (opium poppy)	Intact	20	Mano	15		1.5		34
Persea gratissima (avocado, Fuerte)	Intact	2			-		Storage or starvation	35
	Intact	2			0.8-6.2		Storage or starvation	_
	Intact	25			7-15		Storage or starvation	_
	Intact	15	Chem		5.8-3.6-8.1		Storage or starvation	36
P. gratissima (avocado, Nabal)	Intact	15			0.6-7.0		Oxygen; storage or starvation;	35
		0,0	Ī				hormones	+
Phaseolus vulgaris (snap bean)	Intact	02	Chem		4.2-7.5	0.91-0.93	Oxygen	37
P. vulgaris (snap bean, Tender Green)	Infact	F7	Chem		10.4-6.6	1.14-1.00	Storage or starvation	
	Intact	10	Chem		4.6-2.0	1.08-0.98	Storage or starvation	
	Intact	0.5	Chem		0.95-0.65	0.94-0.96	Storage or starvation	
Physalis alkekengi (winter-cherry)	Intact	28	Mano			1.4		3
Pimenta officinalis (red nimiento)	Intact	30	Cham		42-32		Storage or starwation	

168. RESPIRATION RATES: HIGHER PLANTS, FRUITS (Continued)

Values for rates of gaseous exchange are µ1/100 mg wet weight/hour, unless otherwise specified. Underlined number = control or endogenous value.

Species	Condition	Temp	Method	Respir	Respiration Rate µ1/100 mg/hr	S. C.	Experimental	Refer-
	Part	ر		9O ₂	QCO ₂	20/200	vai labie	elice
(A)	(B)	(C)	(Q)	(E)	(F)	(0)	(H)	(I)
	Intact	28	Mano		20.13	1.00		2
109 F. sativum (pea, baxton Frogress)	Intact	10	Chem		7.9-3.1	1,13-1.00	Storage or starvation	טיט
111	Intact	0.5	Chem		2.2-1.4	1.07-0.96	Storage or starvation	5
112 Polygonum scandens (climbing false buckwheat)	Intact	30				0.87		38
113	Intact	9				0.74		38
114 Prunus sp (cherry)	Intact	4	Chem		9.0			39
115 P. armeniaca (apricot, Royal)	Intact	18	Chem		2.8-4.1		Storage or starvation	39
	Intact	4	Chem		1.1-1.0		Storage or starvation	39
117 P. avium (sweet cherry)	Intact	28	Mano		r 07	1.70		~ C
C	Intact	0.0	Chem		7-90		Growth, development, maturation	
119 F. domestica (plum)	Intact	70	Chem		۵.۲	2 5-4 4		- F
120 P domostics (plum Santa Rosa)	Intact	0 7 -	Chem		17-36	£.5-C.3	Storage or starvation	36
	Intact	2 4	Chem		0.5			39
123 P. persica (peach. Peregrine)	Intact	25	Chem		7-5		Growth, development, maturation	
	Intact	25	Chem		8-2		Storage or starvation	41
125 P. persica (peach, Primrose)	Intact	18	Chem		1.4-2.0		Storage or starvation	39
126	Intact	4	Chem		0.4-0.3		Storage or starvation	39
127 P. salicina (plum, Japanese)	Intact	18			13.7	1.3		
128 P. salicina (plum, Kelsey)	Intact	52	Chem		4.0-1.8		Growth, development, maturation	
	Intact	52	Chem		4.0-0.9		Storage or starvation	41
	Intact	82	Mano			1.5		3
131 Psidium sp (guava)	Intact	30	Chem		20.0-3.6		Storage or starvation	27
132 Pyrus communis (pear)	Intact	10	Chem		0.5-3.5		Storage or starvation	45
133 P. communis (pear, Anjou)	Intact	18	Chem		0.3-0.7		Hormones	43
134 P. communis (pear, Bartlett)	Intact				0.7-5.6		Storage or starvation; hormones	
135	Intact	18	Chem		6.3-1.0-1.2		Growth, development, maturation	
	Intact	18	Chem		1.0-0.8-2.2		Storage or starvation	45
	Intact	18			1	1.09		13
138 P. malus (apple, Bramley's Seedling)	Intact	22	Chem		2.0-3.5		Storage or starvation	
139	Intact	12	Chem		11-0.25		Growth, development, maturation	
140	Intact	18	Chem		16-0.6			47
141	Intact	22.5	Chem		1.1-1.6-0.6		Storage or starvation	48
142	Intact	01	Chem		0.4-0.5-0.3		Storage or starvation	84
143	Intact	2.5	Chem		0.2-0.3-0.2		Storage or starvation	84
144	Intact	12	Chem		1.9-0.9		Storage or starvation	49
145	Intact	12	Chem		0.8-0.4-0.8		or starvation	
	Intact	12	Chem		1.9-0.8		development,	
P. malus (apple,	Intact	20	Chem		1.7-0.4-0.4			25
148 P. malus (apple, Golden Delicious)	Intact	20	Chem		1.8-0.5-1.3		Growth, development, maturation	75
	-							

50	52	54.	54	53	5.4	4.6	5.4	. 45	52	55	55	55	55	55	7.7	55	55	3	m	3	3	3	16	99	3	3	57	57	3	16	22	99	58	30	, w	25	52	25
Growth, development maturation	development,	or starvation	Storage or starvation	Storage or starvation; growth,	Storage or starvation	Storage or starvation	Storage or starvation	Storage or starvation	Growth, development, maturation									No. of the latest and						Growth, development, maturation			Growth, development, maturation	Growth, development, maturation			Growth, development, maturation		Growth, development, maturation			Growth, development, maturation		
0.43-0.91	0.10									0.16	0.30	0.47	0.71	80.0	0 13	0.29	0.46	1.6	1.4	1.07	0.86	1.20			1.9	0.94	0.93-0.84-	1.0-1.4-	0.97				1 26	1,53	1.6			
0.18	1.7-0.8-0.8	4.2-20.0	1.4-2.4	25-1	2.6-1.6	9.2-1.6	1.9-0.9	1.8-0.6	1.4-0.4-0.9														12							33	42.0-8.5		32-14	0 0		21-13	17-11	3,5
										172	162	182	212	207	232	112	142							245-12			3.6-2.5	6.3-1.3				340-87						
Chem	Chem	Chem	Chem	Chem	Chem	Chem	Chem	Chem	Chem	Mano	Mano	Mano	Mano	Mano	Mano	Mano	Mano	Mano	Mano	Mano	Mano	Mano	Chem	Mano	Mano	Mano	Mano	Mano	Mano	Chem	Chem	Mano	Chem	Chom	Mano	Chem	Chem	Chem
-1	50	25	0	22	25	0	25	0	20	2.5	10	20	30	5.5	10	20	30	82	82	28	28	25	18	28	82	28	22	3.2	25	17	25	82	24	0 00	28	30	82	4.5
Intact Intact	Intact	Intact	Intact	Intact	Intact	Intact	Intact	Intact	Intact	Intact	Intact	Intact	Intact	Intact	Intact	Intact	Intact	Intact	Intact	Intact	Intact	Intact	Intact	Intact	Intact	Intact	Intact	Intact	Intact	Intact	Intact	Intact	Intact	Intact	Intact	Intact	Intact	Intact
149 P. malus (apple, Grimes Golden)		P. malus (apple, Maiden Blush)		P. malus (apple, McInfosh)	P. malus (apple, Oldenburg)		P. malus (apple, Winesap)		P. malus (apple, Yellow Newtown)					Q. borealls var. maxima (Northern				ıria (European	gooseberry) R. rubrum (Northern red currant)		Rosa sp (rose)	a (European elder)			(nightshade)		Sorbus hybrida (chokeberry)	S. scandica (chokeberry)	Symphoricarpus racemosa (snowberry) Intact			d)	Vaccinium sp (cranberry, Howes)	Soodlegel		nd Sweet)	Z. mais (corn, Stowell's Evergreen	

Contributors: (a) Mandels, G. R., and Darby, R. T., (b) Forward, D. F., (c) Klein, R. M., (d) Henderson, J. H., and Henderson, L. L., (e) Chapman, H. W., (f) Lyon, C. J., (g) Vallance, K. B.

References: [1] Sell, H. M., Best, A. H., Reuther, W., and Drosdoff, M., Plant Physiol. 23:359, 1948. [2] Langworthy, C. F., Milner, R. D., and

168. RESPIRATION RATES: HIGHER PLANTS, FRUITS (Concluded)

Davis, W. B., and Church, C. G., J. Agr. Res. 42:165, 1931. [18] Overholser, E. L., Hardy, M. B., and Locklin, H. D., Plant Physiol. 6:549, 1931. Gerhart, A. R., Botan. Gaz. 89:40, 1930. [20] Ulrich, R., Bull. Soc. botan. France 92:131, 1945. [21] Benoy, M. P., J. Agr. Res. 39:75, 1929. Gerhardt, F., J. Agr. Res. 56:365, 1938. [46] Blackman, F. F., and Parija, P., Proc. Roy. Soc., Lond., B 103:412, 1928. [47] Kidd, F., and West, C., Proc. Roy. Soc., Lond. B 106:93, 1929. [49] Hulme, A. C., Biochem. J., Lond., 43:343, and Gerhardt, F., J. Agr. Res. 65:453, 1942. [53] Krotkov, G., Plant Physiol. 16:799, 1941. [54] Drain, B. D., Botan. Gaz. 82:183, 1926. [55] Brown, J. W., Plant Physiol. 14:621, 1939. [56] Shirk, H. G., Am. J. Bot. 29:105, 1942. [57] Wolf, J., Planta 28:716, 1938. [58] Bergman, H. F., Am. J. Barott, H. G., J. Biol. Chem. 41:lxix, 1920. [3] Pringsheim, E. G., Jahrb. wiss. Botan. 81:579, 1935. [4] Ulrich, R., Bull. Soc. botan. France 91:210, 1944. [5] Platenius, H., Plant Physiol. 17:179, 1942. [6] Jones, W. W., ibid 17:481, 1942. [7] Jones, W. W., and Kubota, H., ibid 15:711, 1940. [8] Wardlaw, C. W., and Leonard, E. R., Ann. Botany, Lond., N. S. 50:621, 1936. [9] Haller, M. H., Rose, D. H., Lutz, J. M., and Harding, P. L., J. Agr. Res. 71:327, 1945. [10] Biale, J. B., and Shepherd, A. D., Am. J. Bott. 28:263, 1941. [11] Biale, J. B., and Young, R. E., ibid 34:301, 1947. [12] 1943. [38] Ransom, E. R., Am. J. Bot. 22:815, 1935. [39] Claypool, L. L., and Allen, F. W., Froc. Am. Soc. Hort. Sc. 51:103, 1948. [40] Ulrich, R., Bull. Soc. botan. France 93:248, 1946. [41] Roux, E. R., Ann. Botany, Lond., N. S. 4:317, 1940. [42] Kidd, F., West, C., Griffiths, D. G., and Potter, N. A., ibid 4:1, 1940. [43] Hansen, E., and Hartman, H., Plant Physiol. 12:441, 1937. [44] Hansen, E., ibid 21:588, 1946. [45] Ezell, B. D., and [22] Ulrich, R., Buil. Soc. botan. France 94:387, 1947. [23] Gustafson, F. G., Am. J. Bot. 23:441, 1936. [24] Singh, B. N., and Mathur, P. B., New Phytologist 35:418, 1936. [25] Appleman, C. O., and Brown, R. G., Am. J. Bot. 33:170, 1946. [26] Gustafson, F. G., Plant Physiol. 4:349, 1929. [27] Singh, B. N., Seshagiri, P. V., and Gupta, S. S., Ann. Botany, Lond., N. S. 1:311, 1937. [28] Gane, R., New Phytologist 36:170, 1937. [29] Gane, R., ibid 35:383, 1936. [30] Olney, A. J., Botan. Gaz. 82:415, 1926. [31] Leonard, E. R., and Wardlaw, C. W., Ann. Botany, Lond., N. S. 5:379, 1941. [32] Denny, F. E., Botan. Gaz. 77:322, 1924. [13] Gerber, C., Ann. sc. nat. Botan. et biol. végétale, Series 8, 4:1, 1896. [14] Roper, B. E., and Miller, E. V., Plant Physiol. 26:244, 1951. [15] Cutter, V. M., Jr., Wilson, K. S., and Dubé, J. F., Am. J. Bot. 39:51, 1952. [16] Stich, C., Flora 74:1, 1891 Leonard, E. R., ibid 11:299, 1947. [33] Wardlaw, C. W., and Leonard, E. R., ibid 4:269, 1940. [34] Godlewski, E., Jahrb. wiss. Botan, 13:491, 1882. [35] Pratt, R., and Biale, J. B., Plant Physiol. 19:519, 1944. [36] Biale, J. B., Am. J. Bot. 33:363, 1946. [37] Platenius, H., Plant Physiol. 18:671, 1948. [50] Harding, P. L., Maney, T. J., and Plagge, H. H., Science 70:125, 1929. [51] Shaw, S. T., Plant Physiol. 17:80, 1942. [52] Ezell, B. D.,

169. RESPIRATION RATES: HIGHER PLANTS, WHOLE ORGANISMS

Values for rates of gaseous exchange are \$1/100 mg wet weight/hour, unless otherwise specified. Underlined number = control or endogenous value.

Refer-	בווכע	3	-	2	3	3	4.		5		4	9		7		7
Experimental	V 01 1001C	(H)		Storage or starvation		Storage or starvation	Growth, development, maturation		Growth, development, maturation		Growth, development, maturation	Wounding	,	0.79-0.00 Light or photoperiod		_
R. Q.	70 /700	(g)	0.93											00.0-67.0		_
Respiration Rate µ1/100 mg/hr	QCO ₂	(F)	7.02	34.0-8.53	2-1	1.4-0.5	198-653		148-133	,	390-913	1-2		2.7-2.5		2.7
Respira µ1/100	40 ₂	(E)														
Temp Method1		(Q)	Mano	Chem			Chem		Chem		Chem	Mano		Mano		Mano
Temp)	(C)	16	2	25	52	38		10		38	21		23 &	31	31
Condition	Part	(B)	Intact	Intact	Intact	Intact	Intact		Intact		Intact	Intact		Intact		Intact
Species		(A)	1 Betula nana (birch)	2 Brassica oleracea (cabbage)	3 Echinocereus fendleri (spiney cereus)	4 Ferocactus wislizeni (wild cactus)	5 Gossypium herbaceum (cotton,	(macon	6 Helianthus annuus (sunflower,	Sutton's Giant Yellow)	7 Impatiens sp (balsam)	8 Ipomoea batatas (sweet potato,	Big Stem Jersey)	9 Mamillaria newmanniana (cactus)	1	

	Intact	10	Mano		1.0			7
12 Neomammillarea microcarba (haw)	Intact	25			1.2-0.8		Storage or starvation	3
13 Nicotiana tahacum (tobacco, Samsun)	Intact		Chem		7.7-10.0		Healthy vs diseased	80
14 Onuntia engelmannii (prickly pear)	Intact	25			1.0-1.5		Storage or starvation	3
15 O. versicolor (prickly pear)	Intact	25			3		Storage or starvation	3
16 Pelargonium zonale (horseshoe	Intact	13				0.54		6
geranium)					,			
17 Pistea sp (water lettuce)	Shoot	35	Chem		204-853		Storage or starvation	14
18 Ricinus communis (castor bean)	Intact	30	Mano	180		0.78		10
19 Sedum hybridum (stonecrop)	Intact	92				0.37		6
20 Solanum tuberosum (potato, Arran	Intact	19	Chem		10.7-14.3		Healthy vs diseased	11
Comrade)								
2) Trianea sn (false asphodel)	Intact	17	Chem		56			12
72 Triticum vulgare (wheat, Minhardi)	Intact	2	Chem		38-135		Storage or starvation	2
23 Veronica anagallis (speedwell)	Intact	1.8			31-17		Growth, development, maturation	13

/1/ Mano = manometric, Chem = chemical. /2/ µl/sq cm/hour. /3/ µl/100 mg dry weight/hour.

Contributors: (a) Mandels, G. R., and Darby, R. T., (b) Klein, R. M., (c) Henderson, J. H., and Henderson, L. L., (d) Chapman, H. W., (e) Vallance, K. B.

References: [1] Krascheninnikoff, T., C. rend. Acad. sc. 182:939, 1926. [2] Dexter, S. T., Plant Physiol. 9:831, 1934. [3] Gustafson, F. G., Am. J. Bot. 19:823, 1932. [4] Inamdar, R. S., Singh, S. B., and Pande, T. D., Ann. Botany, Lond., 39:281, 1925. [5] Kidd, F., West, C., and Briggs, G. E., Proc. Roy. Soc., Lond., B 92:368, 1921. [6] Whiteman, T. M., and Schomer, H. A., Plant Physiol. 20:171, 1945. [7] Aubert, E., Rev. gén. botan. 4:203, 273, 321, 337, 373, 421, 1892. [8] Glasstone, V. F., Plant Physiol. 17:267, 1942. [9] Sherman, H., Botan. Gaz. 72:1, 1921. [10] Murlin, J. R., J. Gen. Physiol. 17:283, 1933. [11] Whitehead, R., Ann. Appl. Biol. 21:48, 1934. [12] Stich, C., Flora 74:1, 1891. [13] Gertrude, M., Rev. gén. botan. 49:161, 243, 328, 375, 396, 449, 1937. [14] Ranjan, S., J. Ind. Botan. Soc. 19:19, 1940.

APPENDIXES

APPENDIX I. CONSTANTS FOR USE IN BODY SURFACE AREA FORMULA: MAMMALS

K-values are derived from surface area values taken from extensive literature sources, using the formula $K = A(sqcm)W^2/3(g)$. Weights are given in grams for convenient use in the formula and do not imply significance corresponding to number of digits. Method of determining surface area: C = paper cover, I = surface integrator, M = mold, P = perimeter, S = skinning, T = triangulation. Values in parentheses are ranges, estimates "c" (body weight) and "d" (K-value) of the 95% range (cf Introduction).

Animal	Subjects,	no.	Method	Body Weight, g	K-value (Constant)	Refe enc
(A)	(B)		(C)	(D)	(E)	(F)
Antelope	1 3		T S	6300 21.5(12.7-36.4)	14.1 57.5(54.0-59.8)	1
Bat Bat	2		S	8.3(5.0-11.6)	44.5(44.0-45.0)	2
Cat	2		T	1550(1500-1600)	8.7(8.6-8.9)	1
Cat ¹	2		s	100(84-116)	10.0(9.9-10.0)	4
Cat1	3		S	708(219-1389)	10.7(9.5-11.9)	4
Cattle, Hereford-Shorthorn	15		S	375,000(163,000-641,000)	11.0(9.0-13.8)	5
Cattle, Hereford-Shorthorn	15		S	476,000(208,000-762,000)	9.3(8.1-10.8)	5
Cattle, Hereford-Shorthorn (thin)1	10		S	241,000(89,000-407,000)	9.9(9.3-10.5)	6
Cattle, Hereford-Shorthorn (med.)	11		S	315,000(78,000-493,000)	9.4(8.8-10.0)	6
Cattle, Hereford-Shorthorn (fat)1	7		S	695,000(476,000-815,000)	7.6(7.3-7.9)	6
Dog	6		S	1070(130-3650)	10.1(9.3-11.0)	4
Dog	1		S	1080	11.0	7
Dog	2		Т	9,500(8,900-10,100)	9.9(9.85-9.9)	1
Dog	8		S and P	12,700(3,200-29,800)	11.6(10.2-12.5)	8
Dog	7		M	14,310(3,390-32,640)	11.2(10.3-12.1)	9
Dog	1		C	27,000	12.3	10
Fox	2		T	6200(6100-6300)	13.0(12.9-13.2)	1
Goat	1		T	15,100	10.5	1
Guinea pig	3		S	157(123-191)	10.4(10.1-10.8)	11
Guinea pig	6		S	206(123-269)	9.5(8.4-10.8)	11
Guinea pig	3		S	256(235-269)	8.6(8.4-8.9)	11
Guinea pig ²	13		S	323(160-810)	8.9(7.9-9.6)	12
Guinea pig	3		S	373(148-650)	9.6(9.0-9.9)	13
Guinea pig	2		T	400(380-420)	7.1	1
Hedgehog	1		S	200	7.5	7
Horse	8		S	(47,000-555,000)	10.5	14
Horse	11		1	(70,000-750,000)	(8.2-10.3)	15
Lion	1		T	64,200	12.3	1 1
Marten, pine	1		T	1400	8.8	16
Monkey, rhesus	6		M	2670(800-6600)	11.8(10.8-13.2)	
Mouse, white ²	64		S	13	6.9	11,
Mouse, white	11		S S	15(6-27)	7.9	13
Mouse, white	12		S	16(11-20)	10.5(10.4-10.5)	11
Mouse, white	13		M	16(10-22)	9.0(8.4-9.4)	19
Mouse, white	2		S	(16-25) 29(26-31)	6.9(6.5-7.2)	3
Mouse, field Opossum	4		S	1200(1000-1300)	11.3(10.5-11.8)	20
Rabbit ³	3		S	32(26-40)	8.5	18
Rabbit ³	3		s	560(70-925)	9.7	18
Rabbit	2		T	1130(1120-1140)	10.0(9.0-11.0)	1
Rat, white	5		s	42(35-53)	10.5(10.1-10.8)	16
Rat, white	5		S	80(50-129)	9.9(9.6-10.4)	21
Rat, white	14		м	95(22-164)	7.6(7.3-8.8)	22
Rat, white	56		M	125(24-366)	7.5(6.6-8.3)	22
Rat, white	14		S	133(70-310)	11.6(10.9-12.1)	16
Rat, white	2		T	170(164-177)	7.15	1
Rat, white	62		S	176(25-461)	11.4(9.6-13.0)	23
Rat, white	72		M	(19-418)	9.0	24
Rat, white	22		S	197(65-335)	10.5(9.0-12.7)	25
Sheep	8		S	(21,800-29,100)	10.7	26
Sheep	115		I	(2,200-68,000)	8.3	27
Sheep	14		S	(23,600-37,700)	8.5	28
Sheep	15		S	(3,780-50,400)	9.1	26
Shrew, long-tailed	1		S	3.5	8.0	3
Shrew, short-tailed	1		S	20	7.0	3
Swine	1		Т	40,110	15.3	1
Swine	16		I	(25,000-330,000)	9.0	15
Swine	7		S	48,300(1,100-123,000)	9.9(8.6-12.4)	5
Whale, fin	3		P	160,000(115,000-220,000)	8.3(7.5-8.9)	29
Whale, fin	1		P	43,000,000	11.1	29
Woodchuck	1		M	1236	9.3	16

/1/ "Empty" weight. /2/ Starved animals. /3/ With surface area of one side of ear only. Contributors: Morrison, P. R., and Meyer, M. P.

APPENDIX I: CONSTANTS FOR USE IN BODY SURFACE AREA FORMULA: MAMMALS (Concluded)

References: [1] Custor, J., Arch. Anat. Physiol., Lpz. 7:503, 1873. [2] De Almeida, A. O., Fialko, B. de A., and Silva, O. B., C. rend. Soc. biol. 95:956, 1926. [3] Pearson, O. P., Ecology 28:127, 1947. [4] Thomas, K., Arch. Anat. Physiol., Lpz. 7:36, 1911. [5] Seuffert, R. W., Giese, R., and Meyer, R., Beitr. Physiol. 3:203, 1926. [6] Trowbridge, P., Moulton, C., and Haigh, L., Missouri Agr. Exp. Sta. Res. Bull. 18:1, 1915. [7] Giaja, J., and Males, B., Ann. Physiol., Par. 4:884, 1928. [8] Rubner, M., Zschr. Biol. 19:553, 1883. [9] Cowgill, G. R., and Drabkin, D. L., Am. J. Physiol. 81:36, 1927. [10] Hecker, C., Zschr. Veterinärk. 6:97, 1894. [11] Pfaundler, M., Zschr. Kinderk. 14:69, 1916. [12] Kettner, H., Arch. Anat. Physiol. Lpz., p447, 1909. [13] Dreyer, G., and Ray, W., Philos. Trans. Roy. Soc., London, 202:191, 1912. [14] Seuffert, R. W., and Hertel, F., Zschr. Biol. 82:7, 1925. [15] Brody, S., Comfort, J. E., and Matthews, J. S., Univ. Missouri Agr. Exp. Sta. Bull. 115:1, 1928. [16] Benedict, F. G., Erg. Physiol. 36:300, 1934. [17] Rubner, M., "Die Gesetze des Energieverbranches bei der Ernährung," Leipzig and Vienna, 1902. [18] Giaja, J., Ann. physiol., Par. 1:597, 1925. [19] Benedict, F. G., Yale J. Biol. 4:385, 1932. [20] Gley, E., and De Almeida, A. O., C. rend. Soc. biol. 90:467, 1924. [21] Hill, A. V., and Hill, A. M., J. Physiol. 46:81, 1913. [22] Diack, S. L., J. Nutrit. 3:289, 1930. [23] Carman, G. G., and Mitchell, H. H., Am. J. Physiol. 76:380, 1926. [24] Lee, M. O., and Clark, E., ibid 89:24, 1929. [25] Mardones, G., C. rend. Soc. biol. 108:118, 1931. [26] Lines, E. W., and Pierce, A. W., Bull. Counc. Sc. and Ind. Res., Melbourne 55:21(f), 1931. [27] Ritzman, E. G., and Colovos, N. F., Agr. Exp. Sta. Circ., Univ. New Hampshire 32:1, 1930. [28] Mitchell, H. H., Ann. Rept. Illinois Agr. Exp. Sta. 317:155, 1928. [29] Parry, D. A., Quart. J. Micr. Sc., Lond. 90:13, 1949.

APPENDIX II. BODY SURFACE AREA: INFANTS AND YOUNG CHILDREN

Nomogram is based on formula appearing in DuBois, D., and DuBois, E. F., Proc. Soc. Exp. Biol. 13:77, 1916.

Hei	ight	Surface Area	Weight
ft	cm	sq m	lb kg
3' — 34" - 32" - 30" - 28" - 26" - 2' — 20" - 18" - 16" - 14" - 10" - 9" -	95 		65 — 30 60 — 25 50 — 25 50 — 3 45 — 20 40 — 3 35 — 15 30 — 3 25 — 10 20 — 3 110 — 5 110 — 5

Reference: Talbot, N. B., Sobel, E. H., McArthur, J. W., and Crawford, J. D., "Functional Endocrinology from Birth through Adolescence," Cambridge, Mass.: The Commonwealth Fund, Harvard University Press, 1952 (as quoted in "Fluid and Electrolytes," Abbott Laboratories, North Chicago, 111.).

Nomogram is based on formula appearing in DuBois, D., and DuBois, E. F., Proc. Soc. Exp. Biol. 13:77, 1916.

He	eight	Surface Area	Wei	ght
ft	cm	sq m	lb	kg
7' 10" 8" 4" 2" 6" 10" 8" 4" 2" 4" 2" 4" 2" 4" 10" 4" 2" 4" 10" 8" 6" 4" 2" 6" 6" 6" 6" 6" 6" 6" 6" 6" 6" 6" 6" 6"	220 215 210 205 205 205 205 205 205 205 205 205 20	3.00 2.90 2.90 2.80 2.70 2.60 2.50 2.40 2.30 2.20 2.10 1.90 1.85 1.80 1.75 1.65 1.155 1.155 1.155 1.10 1.155 1.10 1.10	440	

Reference: Talbot, N. B., Sobel, E. H., McArthur, J. W., and Crawford, J. D., "Functional Endocrinology from Birth through Adolescence," Cambridge, Mass.: The Commonwealth Fund, Harvard University Press, 1952 (as quoted in "Fluid and Electrolytes," Abbott Laboratories, North Chicago, Ill.).

APPENDIX IV. STANDARD SYMBOLS IN RESPIRATORY PHYSIOLOGY

The following symbols conform to standards adopted by pulmonary physiologists, as published in Federation Proceedings 9:602, 1950. Use of these symbols throughout the HANDBOOK OF RESPIRATION was not feasible because of mechanical limitations in the preparation of copy.

Primary Symbols (Large capital letters) Secondary Symbols (Small capital letters)

 $V = gas \ volume$ $\dot{V} = gas \ volume/unit \ time$ $P = gas \ pressure \ in \ mm \ Hg$ $F = fractional \ concentration \ in \ dry \ gas \ phase$ $f = respiratory \ frequency, \ breaths/unit \ time$ $R = respiratory \ exchange \ ratio, \ \dot{V} co_2/\dot{V}o_2$

I = inspired gas
E = expired gas
A = alveolar gas
T = tidal gas
D = dead space gas
B = barometric

STPD = standard temperature and pressure, dry (0°C, 760 mm Hg)

BTPS = body temperature and pressure, saturated with water vapor

ATPD ambient temperature and pressure, dry or saturated

 \dot{V}_A (alveolar ventilation) is in L/min (BTPS). \dot{V}_{O_2} and \dot{V}_{CO_2} are in ml/min (STPD). Dash (-) above any symbol indicates a meao value. Dot (') above any symbol indicates a time derivative.

The following conventions for symbols denote location and molecular species:

- Localization in the gas phase is represented by a small capital letter immediately following the principal variable.
- Molecular species is denoted by the full chemical symbol, printed in small capital letters immediately following the principal variable.
- 3. When specification of both location and molecular species is required, the first modifying letter is used for localization and the second for species. In the latter case, the chemical symbol appears as a subscript.

Contributor: Swann, H. G.

Reference: Comroe, J. H., Jr., et al, Fed. Proc. 9:602, 1950.

APPENDIX V. RESPIRATORY EQUATIONS

I. O2 consumption and CO2 production:

(1)
$$Vo_2 = \dot{V}E \frac{[Fi_{O_2}(1-FE_{CO_2})-FE_{O_2}(1-Fi_{CO_2})]}{(1-Fi_{O_2}-Fi_{CO_2})}$$
. [I]

(2)
$$\dot{V}_{CO_2} = \dot{V}_E \frac{[F_{E_{CO_2}}(1 - F_{I_{O_2}}) - F_{I_{CO_2}}(1 - F_{E_{O_2}})]}{(1 - F_{I_{O_2}} - F_{I_{CO_2}})}$$
. [1]

II. Alveolar gas equations:

If
$$VI_{CO_2} = 0$$
,

(3)
$$P_{A_{O_2}} = F_{I_{O_2}}(P_B - P_{A_{H_2O}}) - P_{A_{CO_2}} \left[F_{I_{O_2}} + \frac{(1 - F_{I_{O_2}})}{R_A} \right].$$
 [1]

(4)
$$PA_{O_2} = PI_{O_2} - \frac{.863 \dot{V}_{O_2} (1 - FI_{O_2})}{\dot{V}_A} - FI_{O_2} \times PA_{CO_2}.$$
 [2]

1f V1_{CO2}> 0,

(5)
$$PA_{O_2} = \frac{PI_{O_2}R + PA_{CO_2}FI_{O_2}(1-R) + PI_{CO_2} - PA_{CO_2}}{FI_{CO_2}(1-R) + R}$$
 [2]

III. Alveolar ventilation equations (VICO2 = 0):

(6)
$$\dot{V}_A = (V_T - V_D)f$$
. [1]

$$(7) \dot{V}_{A} = \frac{\dot{V}_{CO_2}}{F_{A_{CO_2}}}.$$

$$\dot{V}_{A} = \frac{R_{A}}{F_{A_{CO_{2}}}} \cdot \dot{V}_{O_{2}}.$$
 [1]

(9)
$$\dot{V}_{A} = (P_{B} - P_{A_{H_{2}O}}) \cdot \frac{R_{A}}{P_{A_{CO_{2}}}} \cdot \dot{V}_{O_{2}}.$$
 [1]

In equations (6)-(9), $\dot{V}A$ and $\dot{V}CO_2$ are under the same conditions and in the same units. However, the general condition for $\dot{V}CO_2$ is at STPD and for $\dot{V}A$ at BTPS. If, furthermore, we express the former in ml/min and the latter in L/min and change FA_{CO_2} to PA_{CO_2} , we have customary units for all parameters at any barometric pressure. After these changes, equation (7) becomes

(10)
$$\dot{V}_{A}$$
 (L/min, BTPS) = $\frac{\dot{V}_{CO_{2}}(ml/min, STPD) \times .863}{P_{A_{CO_{2}}}}$, and [2]

(11)
$$\hat{V}_A = \frac{\hat{V}_{O_2} \times R \times .863}{P_{A_{CO_2}}}$$
 [2]

IV. Respiratory dead space equations:

(12)
$$V_A = (V_T - \frac{\dot{V}_A}{f}).$$
 [1]

Bohr Equation using any gas x (at BTPS):

(13)
$$V_{D_x} = \frac{(F_{E_x} - F_{A_x})}{(F_{I_x} - F_{A_x})} \cdot V_T.$$
 [1]

Contributors: (a) Swann, H. G., (b) Cassin, S. W.

References: [1] Comroe, J. H., Jr., et al, Fed. Proc. 9:602, 1950. [2] Rahn, H., and Fenn, W. O., "A Graphical Analysis of the Respiratory Gas Exchange: The O₂ - CO₂ Diagram," Washington, D. C.: The American Physiological Society, 1955.

APPENDIX VI. SUMMARY: VALUES USEFUL IN PULMONARY PHYSIOLOGY

Values for a healthy, resting, recumbent young man (1.7 sq m surface area) breathing air, unless other conditions are specified. These values may change with position, age, size, sex and altitude; there is variability among members of a homogenous group under standard conditions.

	Variable	Value	Variable	Value
	Lung Volumes (BTPS)		Diffusion and Gas Exchange	
-	Inspiratory capacity			250 ml/min
2	Expiratory reserve volume	1200 ml	26 CO ₂ output (STPD)	200 ml/min
3	Vital capacity	4800 ml	27 Respiratory exchange ratio, (CO2 output/O2	
4	Residual volume	1200 ml	uptake)	0.8
5	Functional residual capacity	2400 ml	28 Diffusing capacity, O ₂ (STPD)	20 ml O ₂ /min/mm Hg
9	Total lung capacity	6000 ml	29 Diffusing capacity, CO (steady state) (STPD)	17 ml CO/min/mm IIg
7	Residual volume/total lung capacity x 100	20%	30 Diffusing capacity, CO (single breath) (STPD)	17 ml CO/min/mm Hg
	Ventilation (BTPS)		31 Fractional CO uptake	53%
00	Tidal volume	500 ml	32 Maximal diffusing capacity (exercise) (STPD)	60 ml/min/mm Hg
6	Frequency	12 respirations/min	Arterial Blood	
10	Minute volume	6000 m1/min	33 O2 saturation (% saturation of Hb with O2)	97.1%
11	Respiratory dead space	150 ml	34 O2 tension	95 mm Hg
12	Alveolar ventilation	4200 ml/min	35 CO, tension	40 mm Hg
	Distribution of Inspired Gas		36 Alveolar-arterial pO2 difference	9 mm Hg
13	Single-breath test (% increase N2 for 500 ml		37 Alveolar-arterial pO2 difference (12-14% O2)	10 mm Hg
	expired alveolar gas)		38 Alveolar-arterial pO ₂ difference (100% O ₂)	35 mm Hg
14	Pulmonary nitrogen emptying rate (7 min test)	<2.5% N ₂	39 O ₂ saturation (100% O ₂)	100% (+1.91-2.00 ml dis-
15	Helium closed circuit (mixing efficiency related	1		solved O ₂ /100 ml blood)
	to perfect mixing)	76%	40 pH	7.40
	Alveolar Ventilation/Pulmonary Capillary Blood Flow	y Blood Flow	Mechanics of Breathing	
16	Alveolar ventilation (L/min)/blood flow (L/min)	0.8	41 Maximal breathing capacity (BTPS)	125-170 L/min
17	Physiological shunt/cardiac output x 100	<7%	42 Timed vital capacity (% of total vital capacity)	83% in 1 sec, 97% in 3 sec
18	Physiological dead space/tidal volume x 100	<30%	43 Maximal expiratory flow rate (for 1 L) (ATPS)	400 L/min
	Pulmonary Circulation		44 Maximal inspiratory flow rate (for 1 L) (ATPS)	300 L/min
19	Pulmonary artery pressure	25/8 mm Hg		0.1 L/cm H ₂ O
20	_	8 mm Hg	46 Compliance of lungs	0.2 L/cm H ₂ O
21	Pulmonary capillary blood flow	5400 ml/min	47 Airway resistance	1.6 cm H ₂ O/L/sec
22	Pulmonary capillary blood volume	60-100 ml	48 Work of quiet breathing	0.5 kg-m/min
	Alveolar Gas		_	10 kg-m/breath
23	O ₂ partial pressure	104 mm Hg	50 Maximal inspiratory and expiratory	
24	CO ₂ partial pressure	40 mm Hg	pressures	60-100 mm Hg

Reference: Comroe, J. H., Jr., et al, p 171, "The Lung," Chicago: The Year Book Publishers, 1956.

INDEX

INDEX

Asterisk (*) indicates graph or diagram.

ABBREVIATIONS in respiratory physiology, 390	ALTITUDE(S) (concluded)
ACAPNIA, effect on cerebral respiration (dog), 313	erythrocyte values at (vertebrates), 106, 107
ACCLIMATIZATION to altitude (See ALTITUDE(S))	hemoglobin values at (vertebrates), 106, 107
ACETONE	respiratory characteristics of air at, 3
effect on pulmonary function (mammals), 178, 179	temperature at various, 2
partition coefficients, 5	ALVEOLAR-CAPILLARY DIFFUSION, 53*
ACETYLENE	ALVEOLAR DUCTS AND SACS, 13, 14*, 17
diffusion coefficients, 11	ALVEOLAR GAS(ES) (See also specific gases)
partition coefficients, 5	in acidosis and alkalosis, 267
solubility coefficients, 8	added dead space, 266
ACID, definition, 95	added resistance, 266
ACID-BASE BALANCE OF BLOOD (man), 86-92;	at altitude, 151-156
(vertebrates), 93, 94	before and after apnea, 263
arterial blood, 88, 90, 91, 93, 94, 96*, 97	in basal respiration, 44, 45
ionic patterns, 96*	CO _Z (See CARBON DIOXIDE)
constants, factors, formulas, 86-87	composition and partial pressures, 4
cutaneous blood, 90-92, 97	effect of combined anoxia and hypercapnia, 158,
definitions, 95	159*
physiological variability, 91, 92	effect of exercise, 155
venous blood, 89, 90, 92-94	equations, 390, 391
ACID-BASE IMBALANCE OF BLOOD, 94-98	factors affecting, 263-267
classification, 97	during hyperventilation, 263
definitions, 95	N ₂ (See NITROGEN)
ionic patterns, 96*	O ₂ (See OXYGEN)
pathways, 98*	physiological variability, 91, 92
ACIDOSIS	during pulmonary fibrosis, 268
in acid-base imbalance, 98*	summary of values, 392
alveolar CO ₂ in, 267	ALVEOLAR VENTILATION (See also VENTILATION)
as defined in acid base, 95	effect of drugs (mammals), 178-199
effect on acid-base variables, 97	equations, 391
respiratory dead space during, 51	vs pulmonary capillary blood flow, 392
AGE	ALVEOLI, RESPIRATORY, 13, 14*, 17
vs basal respiratory functions, 44, 45	ANATOMIC DEAD SPACE (See DEAD SPACE,
effect on acid-base balance, 91, 92	RESPIRATORY)
vs lung volumes, 38, 39	ANATOMY, BASIC RESPIRATORY, 12-26
vs maximal breathing capacity, 130, 132	ANESTHESIA
and sitting height vs vital capacity, 37	A-V differences during (mammals), 58
and standing height vs vital capacity, 36	cerebral blood flow and O ₂ consumption during
vs tidal and minute volumes, 43	(mammals), 312
vs vital capacity, 30	ANESTHETICS (See also DRUGS, effects of, 178-252)
AIR (See also specific air)	as antagonists of drugs acting on the bronchi
density at altitude, 2	(vertebrates), 226-230, 252
inhalation during decompression (dog), 175	respiratory response to (mammals), 200, 201 ANTHRACOSIS, 270
as respiratory medium, 3 AIR FLOW	ANTICHOLINESTERASES (See also DRUGS, effects of,
rate, 137, 138	178-252)
respiratory characteristics, 138	as antagonists and potentiators of drugs acting on the
AIR VELOCITY INDEX, prediction formula and normal	bronchi (vertebrates), 230
values, 29	respiratory response to (mammals), 200
ALKALOSIS	ANTIHISTAMINES (See also DRUGS, effects of, 178-252
in acid-base imbalance, 98*	as antagonists of drugs acting on the bronchi
alveolar CO ₂ in, 267	(mammals), 231-238
as defined in acid base, 95	ANOXIA (See also ALTITUDE(S))
effect on acid-base variables, 97	cerebral metabolism during (dog), 314
ALTITUDE(S)	effect on alveolar CO ₂ and O ₂ pressures, 158, 159*
atmospheric pressure, Oz partial pressure, and air	effect on pulmonary function (dog), 157
density at, 2	survival and revival times of animal tissues, 311
blood gases at, 151-156	AORTIC-BODY AND CAROTID-BODY RESPIRATORY
diffusion capacity of lungs at, 52	REFLEX, 139
effect on pulmonary function, 151-156	APNEA
after acclimatization, 151, 156	alveolar air, before and after, 263
with exercise, 155, 156	artificial respiration for, 141
effect on venous blood lactate, 60	ARGON, partition coefficients, 5

ARM-LIFT METHOD, artificial respiration, 141, 142 BLOOD GAS(ES) (concluded) ARTERIAL BLOOD (See ACID BASE; BLOOD; BLOOD in relation to cerebral respiration (dog), 313, 314 GAS(ES); specific blood gases) saturation (See OXYGEN) ARTERIO-VENOUS DIFFERENCES and temperature changes (mammals), 62*, 63*, 72, 73*, 75* effect of decompression (dog), 175 for gases (mammals), 56, 58, 314 in umbilical blood, 82, 83 for glucose, 59, 61 for lactate, 59, 60 variables, factors, and constants, 56 BLOOD pH, 88-94, 96*, 97, 98* for pyruvate, 59 in acid-base balance and imbalance (See ACID BASE) ARTIFICIAL RESPIRATION, 141, 142 breathing CO2 concentrations, 163, 164 ASBESTOSIS, 268, 270 in calculating serum pK' (mammals), 63* **ASTHMA** effect of anoxia (dog), 157 effect of hyperventilation, 157 and pulmonary compliance, 137 and respiratory dead space, 51 at increased atmospheric pressures (mammals), ATMOSPHERIC PRESSURE, at altitude, 2 172, 173 ATPS, definition, I, 2 O2 dissociation curves at various levels of, 74* values for constructing Oz dissociation curves (invertebrates), 70, 71; (vertebrates), 66-70 BLOOD PRESSURE BASAL RESPIRATORY FUNCTIONS breathing O2 at increased atmospheric pressures, 174 vs age, 44, 45 during decompression (dog), 175-177 prediction formulas and normal values, 28, 29 under various conditions (mammals), 54, 55 BODY SURFACE AREA (See SURFACE AREA) BASE, definition, 95 BAUXITE FUME PNEUMOCONIOSIS, 270 BODY TEMPERATURE (See TEMPERATURE) BODY WEIGHT (See WEIGHT) BERYLLIOSIS, chronic, 270 BERYLLIUM GRANULOMATOSIS, 268 BOHR EQUATION, 391 BICARBONATE, in acid-base imbalance, 96*, 97 BREATHHOLDING BILADIENES, 120, 121 effect on alveolar air, 263 BILADIENONES, 122 effect on respiratory dead space, 48, 49 BREATHING (See also RESPIRATORY RATE; BILANES, 119 BILATRIENES, 122 VENTILATION) BILENEDIONES, 122 depth of (See TIDAL VOLUME) BILENES, 120 mechanics of, 130-139 BILIRUBINOIDS, 118-123 BRONCHI, 12, 14*, 17, 18 drugs acting on, 202-252 (See also DRUGS, effects of, BLOOD acid-base balance and imbalance (See ACID BASE) 178-252) A-V differences (See ARTERIO-VENOUS BRONCHIOLES, 14*, 17 BRONCHIOLO-RESPIRATORY REFLEX, 139 DIFFERENCES) CO2 (See BLOOD GAS(ES); CARBON DIOXIDE) BRONCHOPULMONARY SEGMENTS, 15* erythrocyte values, 99-107 (See also BTPS, definition, 1, 2 ERYTHROCYTE(S) BUFFER BASE, in acid-base balance and imbalance, 86, 88, 90-92, 95, 96*-98* (See also ACID BASE) fetal (See OXYGEN DISSOCIATION) glucose, 59, 61 definition, 95 H2CO3 dissociation formula, 86 constants (mammals), 63 formula, 86 lactate, 59, 60 CAPILLARIES, PULMONARY, Oz diffusion, 53* hemoglobin values, 99-107 (See also HEMOGLOBIN) maternal (See OXYGEN DISSOCIATION) CAPILLARY BLOOD Oz (See BLOOD GAS(ES); OXYGEN) composition of transported gases in, 4 summary of values, 392 O2 dissociation (See OXYGEN DISSOCIATION) pyruvate, 59 CARBON DIOXIDE in relation to cerebral respiration (dog), 313, 314 composition and partial pressure in respiratory umbilical, 82, 83 gases, 4 BLOOD GAS(ES) (See also specific gases) consumption (plants), 316-383 (See also RESPIRATION In acid-base balance and imbalance (See ACID BASE; RATES) specific gases) depression of solubility by various salts, 5 at altitude, 151-156 diffusion coefficients, 10, 11 comparisons, 57 effect of breathing various concentrations on respired composition of transported gases, 4 air, 265 during decompression (dog), 175, 176 in expired air, 44 effect of anoxia, 152-157 molecule, respiratory: characteristics, 3 permeation coefficients, 10, 11 effect of drugs (mammals), 178-199 effect of exercise, 155 production equation, 390 at increased atmospheric pressures (mammals), production at increased ambient pressure, 174 172, 174 in respiratory media, 3 solubility coefficients, 6-9, 56 in newborn and adult man, 57 in pulmonary capillaries, 53* survival time, breathing concentrations of (mouse), 165, 166 during pulmonary fibrosis, 268

pressure (See specific gases)

CARBON DIOXIDE (ALVEOLAR)	CYCLOPROPANE
in acidosis and alkalosis, 267	partition coefficients, 5
added dead space values, 266	respiratory action, 201
in basal respiration, 44, 45	CYTOCHROMES
breathing various CO ₂ concentrations, 163, 164	animals and higher plants, 124, 125
effect of exercise, 155, 263-265	bacterial, 128, 129
during hyperventilation, 263	iron-porphyrin pigments, 115-117
pressure, 392	
at altitude, 151-155	
in basal state, 45	
breathing various CO2 concentrations, 163, 164	DALTON'S LAW, 4
breathing O2 concentrations, 170, 174	DEAD SPACE, RESPIRATORY
effect of combined anoxia and hypercapnia, 158, 159*	added, effect on respired air, 266
physiological variability, 91, 92	anatomic (mammals), 46-48*, 49, 50*, 51
respiratory dead space for, 49	during CO ₂ hyperpnea, 47
threshhold, 163, 164	effect of breathholding, 48, 49
CARBON DIOXIDE (BLOOD), 56, 57 (See also ACID	effect of exercise, 47
BASE)	equations, 391
absorption as function of pCO ₂ (animals), 64, 65	
A-V differences (mammals), 56, 58, 314	and functional residual capacity (dog), 48*
	in pathological conditions, 51
equations for calculating absorption, 64, 65	physiologic (mammals), 28, 46-48*, 49, 50*, 51, 392
pressure, 56, 57, 392	and tidal volume (mammals), 47, 48*, 50*, 51
at altitude, 151, 156	for various gases, 49
effect of anoxia, 156, 157	DECOMPRESSION
breathing various CO ₂ concentrations (mammals),	effect on blood gases (dog), 175
163, 173	effect on blood pressure, respiratory rate and pulse
effect of decompression (dog), 175	rate (dog), 176*
effect of drugs (mammals), 178-199	effect on internal pressures (dog), 177
effect of temperature changes (mammals), 62*	DEFLATION RECEPTORS, PULMONARY: respiratory
in fetal and maternal blood, 83, 84	action of drugs influencing (mammals), 201
during pulmonary fibrosis, 268	DENSITY, AIR, 2,3
in relation to cerebral respiration (dog), 313	DIFFUSION, ALVEOLAR-CAPILLARY, 53*
values for constructing O ₂ dissociation curves,	DIFFUSION CAPACITY of lungs, 52
66-71 (See also OXYGEN DISSOCIATION)	DIFFUSION COEFFICIENTS of gases, 3, 10, 11
CARBONIC ACID	DIPYRROLIC COMPOUNDS, characteristics, 123
calculation of serum pK' (mammals), 63*	DISEASE (See also specific disease)
dissociation constants (mammals), 63	comparative pathology of the pneumoconioses, 270
dissociation formula, 86	effect on cerebral blood flow and O ₂ consumption
CARBON MONOXIDE	(mammals), 312
diffusion coefficients, 11	effect on lung compliance, 137
effect on pulmonary function (dog), 182, 183	effect on pulmonary circulation (mammals), 54, 55
permeation coefficients, 11	effect on pulmonary function, 268
solubility coefficients, 6	respiratory dead space during, 51
CAROTID-BODY CHEMORECEPTORS, respiratory	DISSOCIATION CONSTANTS, H ₂ CO ₃ (mammals), 63
action of drugs influencing (mammals), 200	DISSOCIATION, O2 (See OXYGEN DISSOCIATION)
CEREBRAL BLOOD FLOW, O2 consumption, and	DIVINYL ETHER
vascular resistance (mammals), 312	partition coefficients, 5
CEREBRAL RESPIRATION (dog), 313, 314	respiratory action, 200
CHEMORECEPTORS, CAROTID-BODY: respiratory	DRUGS
action of drugs influencing (mammals), 200	effects of, 178-252
CHLORIDE ION, plasma constituent (vertebrates), 93, 94	
CHLOROFORM	effect on cerebral blood flow and O ₂ consumption
partition coefficients, 5	(mammals), 312
respiratory action, 200, 204, 250	
CHLOROPLASTS, pigments of, 124, 125	effect on pulmonary circulation (mammals), 54
	effect on pulmonary function (mammals), 178-199
CIRCULATION, PULMONARY (mammals), 54, 55	influencing afferent end-organs, respiratory action
summary of values, 392	(mammals), 200, 201
COEFFICIENTS of various gases	DRUGS ACTING ON THE BRONCHI (vertebrates), 202-25
diffusion, 3, 10, 11	aerosols, gases and vapors, 250-252
partition, 5	antagonists and potentiators of, 226-248, 252
permeation, 10, 11	direct action of, 202-214, 250, 251
solubility, 6-9, 56	pA _x values for antagonists of, 249
COMPLIANCE, 392	sympathomimetic amines, 215-225, 251
lung-thorax system (mammals), 135	DYSPNEA, physiology of, 274
pulmonary (vertebrates), 135-137	
CORONARY REFLEX, 139	
COR PULMONALE (mammals), 54, 55	
CORPUSCLES (See ERYTHROCYTE(S); RBC)	EISENMENGER SYNDROME, effect on pulmonary
CUIRASS METHOD, artificial respiration, 142	circulation (mammals), 54, 55

GANGLIONIC STIMULANTS, respiratory response to EMERSON METHOD, artificial respiration, 141, 142 EMPHYSEMA (mammals), 51, 54, 270 (mammals), 200 (See also DRUGS, effects of, END-CAPILLARY O2 PRESSURE, 53* 178-252) ENDOPLASMIC RETICULUM, pigments of, 124 GAS(ES) (See also ALVEOLAR GAS(ES); BLOOD GAS(ES); END-ORGANS, AFFERENT: respiratory action of drugs specific gases) influencing (mammals), 200, 201 diffusion coefficients, 10, 11 inhaled, effect of various concentrations, 151-177, 250 **ENERGY EXPENDITURE** (See also DRUGS, effects of, 178-252) basal, 45 with exercise, 149 partition coefficients, 5 EPIGLOTTIS, 12, 14* permeation coefficients, 10, 11 respiratory equations, 390, 391 EQUATIONS in respiratory physiology, 28, 29, 390, 391 ERGOT DERIVATIVES in respiratory media, 3 solubility coefficients, 6-9 as antagonists and potentiators of drugs acting on the GAS VOLUMES, conversion factors, 1, 2 bronchi (mammals), 239, 240, 249 respiratory action, 188, 189 GLUCOSE (BLOOD) ERYTHROCYTE(S) (mammals), 100-102; (man), 99, 100, in cerebral respiration (dog), 313 102, 103, 107; (vertebrates), 103-106 effect of ingestion on A-V differences, 61 from birth to maturity, 102, 103 postabsorptive, A-V differences, 59 CO2 absorption at various pCO2, 64 in fetus, newborn and adult female, 100-102 gases, 56 H2CO3 dissociation constants (mammals), 63 HALDANE EFFECT, at various pCO2 (animals), 65 Oz consumption, 103, 286 2-HALOETHYLAMINES, as antagonists and potentiators during pregnancy and postpartum, 100-102 of drugs acting on the bronchi (mammals), at sea level and at altitude, 106, 107 ESTERS (See also DRUGS, effects of, 178-201) HAMMAN-RICH SYNDROME, effect on pulmonary as antagonists of drugs acting on the bronchi function, 268 (mammals), 244-246 HEART RATE ETHYLENE at altitude, 152-155 partition coefficients, 5 effect of decompression and recompression (dog), 176* solubility coefficients, 8, 9 effect of exercise, 144-146*, 155 ETHYL ETHER effect of O2 inhalation at increased ambient pressures, partition coefficients, 5 174 respiratory action, 200 HEAT, effect on respired air, 264 EVE ROCKING METHOD, artificial respiration, 141, 142 | HEAT PRODUCTION EXERCISE (See also WORK) in basal respiration, 45 effect on A-V lactate levels and differences, 60 during exercise, 147-150 effect on A-V O2 and CO2 differences (mammals), 58 prediction formula and normal values, 28 effect on heart rate, 144-146* HEIGHT effect on O2 diffusion, 52 vs maximal breathing capacity, 130, 132 effect on pulmonary circulation (mammals), 54, 55 and weight, in calculating body surface area, 388*, 389* effect on pulmonary compliance, 136 HEIGHT, SITTING, and age vs vital capacity, 37 effect on pulmonary fibrosis, 268 HEIGHT, STANDING effect on pulmonary function, 143-146*, 147-150* and age vs vital capacity, 36, 38 vs maximal breathing capacity, 130 at altitude, 155, 156 vs vital capacity, 31, 34*, 35*, 36, 38 effect on respired air, 263-265 respiratory dead space during, 47 HELIUM ventilation during, prediction formulas and normal dead space for, 49 values, 29 diffusion coefficients, 11 EXPIRATORY RESERVE VOLUME, 27*, 38, 392 partition coefficients, 5 definition, 27 permeation coefficients, 11 effect of posture, 40 solubility coefficients, 8, 9 effect of pregnancy, 40 EXPIRED AIR, 4, 44, 285 (See also ALVEOLAR HEMATIN ENZYMES, characteristics, 114-117 HEMATOCRIT values, 86, 90, 99-107 HEMOGLOBIN (mammals), 100-102; (man), 88, 89, 91, GAS(ES); RESPIRED AIR; specific gases) 92, 99, 100, 102, 103, 107; (vertebrates), 93, 94, 104-106 in pregnancy and postpartum, 100-102 FETAL TISSUES, O2 consumption, 299-307 saturation (See OXYGEN DISSOCIATION) FETUS, erythrocyte and hemoglobin values, 100-102 at sea level and at altitude, 106, 107 FIBROSIS, PULMONARY, 268 HEMOGLOBIN COMPOUNDS, characteristics, 111-114 effect on lung compliance, 137 HENDERSON-HASSELBALCII EQUATION, 86 incidence in the pneumonconioses, 270 HERING-BREUER REFLEX, 139 from radiation exposure, 253, 254, 257, 258 HIP-LIFT METHOD, artificial respiration, 141, 142 and respiratory dead space, 51 HIP-ROLL METHOD, artificial respiration, 141, 142 FUNCTIONAL RESIDUAL CAPACITY, 27*, 39, 40, 392 HYDROBILANES, characteristics, 119 definition, 27 HYDROBILENES, characteristics, 120 and pulmonary compliance, 136 HYDROGEN diffusion coefficients, 11 and respiratory dead space (dog), 48* partition coefficients, 5

HYDROGEN (concluded)	LUNG(S), 12-14*, 15*, 20*
permeation coefficients, 11	and airway resistance, 137
solubility coefficients, 6, 8, 9	compliance, 135-137
HYPERCAPNIA	development, 12, 13
effect on acid-base variables, 97, 98	diffusion capacity of, 52
effect on respiratory variables (mammals), 158, 159*,	lobes, 14*, 20*
160-166	bronchopulmonary segments, 15*
HYPERGLYCEMIA, alimentary: effect on A-V glucose	weight relationships, 21
differences, 61	O ₂ uptake and ventilation, right vs left, 45 tissues
HYPERPNEA, CO ₂ : dead space during, 47 HYPERTENSION, primary pulmonary (mammals),	CO ₂ capacity (dog), 165
54, 55	O ₂ consumption (vertebrates), 291
HYPERVENTILATION	volume, right vs left, 29
alveolar CO ₂ during, 263	weight (amphibians), 26; (birds), 25; (mammals), 16*,
and cerebral respiration (mammals), 312, 313	17*, 21-24; (reptiles), 26
effect on A-V lactate levels and differences, 60	increments during first year, 16*
effect on blood CO ₂ carriage, 157	relationships, 20*, 21-26
HYPOCAPNIA, effect on acid-base variables, 97, 98	and volume increments during first year, 17*
HYPOXIA(S) (See also ANOXIA)	LUNG CAPACITIES (See TOTAL, VITAL, INSPIRATORY
effect on pulmonary circulation (mammals), 54	and FUNCTIONAL RESIDUAL CAPACITIES)
physiologic classification, 272, 273	LUNG-THORAX SYSTEM, compliance of (mammals), 13
	LUNG VOLUME(S), 28, 38, 39 (See also VITAL CAPACITY; TIDAL, INSPIRATORY RESERVE,
	EXPIRATORY RESERVE, and RESIDUAL
INFANT(S)	VOLUMES)
apneic, artificial respiration, 141	and barometric pressure, 1*
A-V blood gas comparisons, 56, 57	conversions, 1*, 2
bronchi, 18	definitions, 1, 2, 27
erythrocyte and hemoglobin values, 100-103	effect of posture, 40
lung and airway resistance, 137	effect of pregnancy, 40
lung weight, 16	intrapulmonary pressures at various, 133, 134
increments during first year, 16*	prediction formulas, 28
and volume Increments, 17*	and pulmonary function, 27-54
minute volume, 42, 43	and pulmonary pressures (mammals), 133-135 subdivisions of, 27*
nomogram for calculating body surface area, 388 pulmonary compliance, 137	summary of values, 392
respiratory alveoli, 17	Summary of variety, 372
respiratory rate, 42	
sinuses, 19	
tidal volume, 42, 43	MANUAL ROCKING, artificial respiration, 141, 142
trachea, 18, 19	MAXIMAL BREATHING CAPACITY, 29, 132, 392
INSPIRATORY CAPACITY, 27*, 38, 392	vs age, 130, 132
definition, 27	vs body surface area, 131, 132
effect of posture, 40	effect of pregnancy, 40
effect of pregnancy, 40	effect of pulmonary fibrosis, 268
INSPIRATORY RESERVE VOLUME, 27*	prediction formula, 29
definition, 27	vs standing height, 130, 132
INSPIRED AIR, 4, 285 (See specific gases) IONIC PATTERNS, acid-base balance and imbalance, 96*	vs weight, 131, 132 MEDIA
IRON PORPHYRIÑS, characteristics, 110-118	diffusion coefficients of gases in various, 3, 10, 11
	effect of K ⁺ on tissue O ₂ consumption in various,
	309, 310
	permeation coefficients of gases in various, 10, 11
KRYPTON, partition coefficients, 5	respiratory, characteristics, 3
	solubility coefficients of gases in various, 6-9
	METABOLIC FACTOR in acidosis or alkalosis,
	definition, 95
LACTATE (BLOOD)	METABOLISM, CEREBRAL: during anoxia (dog), 314
A-V differences, 59, 60	MINUTE VOLUME (man), 42-45, 392; (vertebrates), 41, 46 at altitude, 151-156
effect of exercise and hyperventilation, 60	in basal state, 44
depression of O ₂ and CO ₂ solubility by, 5	breathing CO ₂ concentrations (mammals), 160-162
effect of exercise, 144, 145, 264	breathing N ₂ concentrations (mammals), 151, 174
in relation to cerebral respiration, 313, 314	breathing O ₂ concentrations (mammals), 167-169, 174
LARYNX, 12, 14*	effect of added dead space, 266
LINE CHARTS	effect of drugs (mammals), 178-199
blood O ₂ dissociation, 72, 73	effect of exercise, 155, 156, 263-265
temperature changes vs blood CO2 and O2 pressures	effect of heat, 264
(mammals), 62	effect of posture, 43

MINUTE VOLUME (concluded)	OXYGEN (ALVEOLAR) (concluded)
effect of pregnancy, 40	pressure, 44, 392
during hyperventilation, 157, 263	in pulmonary capillaries, 53*
in infants, 42	during pulmonary fibrosis, 268
MITOCHONDRIA	respiratory dead space for, 49
cytochrome system of, 126*-127* pigments of, 124	OXYGEN (BLOOD), 56, 57, 392
MOLECULES, RESPIRATORY: characteristics, 3	at altitude, 151-155
MOUTH-TO-MOUTH METHOD, artificial	A-V differences (mammals), 56, 58, 175, 314 breathing CO ₂ concentrations, 163, 164
respiration, 141, 142	breathing O ₂ concentrations, 169, 170
	capacity during pregnancy, 82, 83
	dissociation (See OXYGEN DISSOCIATION (BLOOD))
NARES, 12	effect of decompression (dog), 175
NASAL EPITHELIUM, 12	pressure, 56, 57, 392
NASAL-LACRIMAL DUCT, 12	at altitude, 156 vs blood O ₂ saturation (mammals), 66*, 72, 73*-75*
NEON, partition coefficients, 5	77*-81*, 85*
NEWBORN (See INFANT(S))	breathing various O2 concentrations, 169, 170
NITROGEN	in cerebral respiration (dog), 313
in alveolar air, 29	effect of exercise, 156
in blood, 56	fetal and maternal blood, 83
composition and partial pressure in respiratory air, 4 diffusion coefficients, 11	in pulmonary capillaries, 53*
in expired air, 266	during pulmonary fibrosis, 268 and temperature changes (mammals), 62*, 72, 73*,
exposure, effect on respiratory rate, tldal and minute	75*
volumes, 151	values for constructing O2 dissociation curves, 66
molecule, respiratory: characteristics, 3	saturation (See also ACID BASE)
partition coefficients, 5	at altitude, 151-155
permeation coefficients, 11	curves (mammals), 66*, 74*, 75*, 77*-81*, 85*
respiratory dead space for, 49 in respiratory media, 3	definition, 66, 76
solubility coefficients, 6, 8, 9, 56	effect of anoxia (mammals), 152-155, 157, 314 effect of decompression (dog), 175
washout, pulmonary, 171*	effect of exercise, 155
NITROUS OXIDE	in fetus (mammals), 82, 83, 85*
diffusion coefficients, 11	line charts, 72, 73
partition coefficients, 5	vs O ₂ pressure (mammals), 66*, 72, 73*-75*,
respiratory action, 201, 250	77*-81*, 85*
solubility coefficients, 8, 9	vs pH, 74*
for calculating body surface area, 388, 389	during pregnancy, 82, 83 in pulmonary fibrosis, 268
for estimating tidal volume in tank respirator	vs temperature, 72, 73*, 75*
settings, 140	OXYGEN CONSUMPTION, 28, 45, 392
serum pK' for given temperature and pH (mammals),63	
VOSE, 12, 14*	animal organisms (helminths, 276, 277); (inverte-
	brates), 278-280; (mammals), 283-285; (protozoa),
	275, 276; (vertebrates other than mammals), 281-283
DXYGEN	animal tissues
consumption (See OXYGEN CONSUMPTION)	blood-formed elements, 286, 287
depression of solubility by various salts, 5	blood vessels, 286, 287
diffusing capacity, lungs, during pulmonary fibrosis, 268	
diffusion coefficients, 10, 11 diffusion of lungs, 52	effect of K ⁺ , 308-310 epithelium, 287, 288
effect of breathing various concentrations (mammals),	fetal tissues (chick), 300-302; (frogs), 303, 304;
167-170	(guinea pig), 300; (killifish), 307; (newt), 305; (rat)
in expired air, 44, 285	299, 300; (salamanders), 305, 306; (salmon), 307;
inhalation during decompression (dog), 175, 176*	(sheep), 299; (snake), 302
molecule, respiratory: characteristics, 3	gland tissues, 288, 289
permeation coefficients, 10, 11 in respiratory gases, 3, 4, 285	liver, 290, 291
solubility coefficients, 6-9, 56	lung, 291 lymph nodes, 286, 287
uptake (See OXYGEN CONSUMPTION)	marrow, 286, 287
DXYGEN (ALVEOLAR)	muscle tissues, 291, 292
at altitude, 151-155	ncoplasms, 293
before and after apnea, 263	nerve tissues, 294-296
effect of added dead space, 266 effect of added resistance, 266	placental tissues, 298
effect of breathing various concentrations, 174	reproductive tissues, 297, 298
effect of combined anoxia and hypercapula, 158, 159*	spleen, 286, 287 thymus, 286, 287
effect of exercise, 155, 263-265	effect of drugs (mammals), 178-199

PRESSURE(S) (concluded) OXYGEN CONSUMPTION (concluded) equation, 390 intrapleural, 135 erythrocytes, 103, 286 intrapulmonary, at various lung volumes, 134 during exercise, 143-146*, 147-150*, 155, 263-265 pulmonary, vs vital capacity, 134*, 135* plants, 315-383 (See also RESPIRATION RATES) reduced barometric, effect on pulmonary function, OXYGEN DISSOCIATION (BLOOD), 66-85 151-156 curves (carnivores), 78; (cetacean), 81; (man), 74, 75, PRESSURE CURVE, RELAXATION, 135* PRESSURE-DEPTH GRADIENT in the sea, 4 77; (rodents), 79; (ungulates), 80 curves, fetal (mammals), 85 PRESSURE EQUIVALENTS in the sea, 4 PRESSURE-VOLUME CURVES (cat), 133* data for constructing curves (amphibians), 69; (birds), 68; (fish), 69, 70; (invertebrates), 70, 71; PRESSURE-VOLUME DIAGRAM, chest and lungs, 134* PROPRIOCEPTO-RESPIRATORY REFLEX, 139 (mammals), 66-68; (man), 66; (reptiles), 68, 69 PROTEIN, plasma constituent (vertebrates), 93, 94 line charts, 72, 73 PULMONARY CAPILLARIES, O2 diffusion, 53* relationship of fetal and maternal, 83 OXYGEN UPTAKE (See also OXYGEN CONSUMPTION) PULMONARY CIRCULATION (mammals), 54, 55 summary of values, 392 comparison of right and left lung, 45 effect of exercise, 144-146* PULMONARY COMPLIANCE (vertebrates), 135-137 methods for measuring, 136 vs vital capacity, 136
PULMONARY DEFLATION RECEPTORS, respiratory PARASYMPATHOLYTICS (See also DRUGS, effects of, action of drugs influencing (mammals), 201 PULMONARY FIBROSIS, 268, 269 178-2521 incidence in the pneumoconioses, 270 as antagonists of drugs acting on the bronchi (vertebrates), 226-230 and pulmonary compliance, 137 from radiation exposure, 253, 254, 257, 258 PARTIAL PRESSURE (See PRESSURE(S); specific gases) PARTITION COEFFICIENTS of gases, 5 and respiratory dead space, 51 PATENT DUCTUS ARTERIOSUS (mammals), 54, 55 PULMONARY PHYSIOLOGY, equations and formulas, pAx VALUES FOR ANTAGONISTS OF DRUGS ACTING 28, 29, 390, 391 summary of values, 28, 29, 392 ON THE BRONCHI (mammals), 249 PERICARDITIS (mammals), 54, 55 PULMONARY STENOSIS (mammals), 54, 55 PULMONARY STRETCH RECEPTORS, respiratory PERMEATION COEFFICIENTS of gases, 10, 11 action of drugs influencing (mammals), 200, 201 pH (See BLOOD) PHOSGENE, retention in respired air, 267 PULMONARY VEIN REFLEX, 139 PHOSPHORUS, in cerebral respiration (dog), 313, 314 PULSE RATE PHYSIOLOGIC DEAD SPACE (See DEAD SPACE, at altitude, 152-155 RESPIRATORY) effect of decompression and recompression (dog), 176* PIGMENTS, RESPIRATORY, 108-129 effect of exercise, 144-146*, 155 cytochrome, characteristics, 124~129 effect of O2 inhalation at increased ambient pressures, pyrrole, characteristics, 108-123 174 PLANTS, respiration rates, 315-383 PYRROLE PIGMENTS, characteristics, 108-123 PLASMA (See BLOOD) PYRUVATE (BLOOD), A-V differences, 59 PLEURITIS, tuberculous, 268 PNEUMOCONIOSES, 270, 271 PNEUMONECTOMY and pulmonary compliance, 137 RADIATION external ionizing, effect on respiratory system and respiratory dead space, 51 (mammals), 253-259 PNEUMOTHORAX, and respiratory dead space, 51 PORPHYRINS, characteristics, 108-118 internal emitters, effect on respiratory system (mammals), 259-262 POSTPARTUM RADON erythrocyte and hemoglobin values, 100-103 effect on respiratory system (mammals), 259-262 ventilatory variables, 40 POSTURE partition coefficients, 5 RBC (mammals), 100-102; (man), 99, 100, 102, 103, 107; effect on acid-base balance, 91, 92 effect on lung volumes, 40 (vertebrates), 103-106 from birth to maturity, 102, 103 effect on minute volume, 43 CO2 absorption at various pCO2, 64 effect on tidal volume, 43 effect on ventilation and O2 uptake, 45 in fetus, newborn and adult female, 100-102 effect on vital capacity, 36, 37 gases, 56 H₂CO₃ dissociation constants (mammals), 63 POTASSIUM ION O2 consumption, 103, 286 depression of O2 and CO2 solubility by, 5 during pregnancy and postpartum, 100-102 effect on tissue O2 consumption, 308-310 PREGNANCY at sea level and at altitude, 106-107 RECEPTORS, PULMONARY: respiratory action of drugs effect on ventilatory variables, 40 erythrocyte and hemoglobin values, 100-102 influencing (mammals), 200, 201 Oz capacity and saturation of umbilical blood during, RECOMPRESSION 82, 83 effect on blood gases (dog), 175, 176* PRESSURE(S) (See also BLOOD; CARBON DIOXIDE; effect on blood pressure, respiratory rate, and pulse OXYGEN) rate (dog), 176* REFLEXES, RESPIRATORY, 139 increased ambient, effect on pulmonary function (mammals), 172-175 RELAXATION PRESSURE CURVE, 134*, 135* RESIDUAL VOLUME, 27*, 39 internal, effect of decompression (dog), 177 definition, 27

RESIDUAL VOLUME (concluded) SCHAFER-EMERSON-IVY METHOD, artificial effect of posture, 40 respiration, 141 effect of pregnancy, 40 SCHAFER METHOD, artificial respiration, 141, 142 effect of pulmonary fibrosis, 268 SEA prediction formula, 28 pressure equivalents, 4 summary of values, 28, 392 pressure-depth gradient in the, 4 RESISTANCE, ADDED: effect on respired air, 266 SEA WATER, as respiratory medium, 3 RESISTANCE OF LUNGS AND AIRWAY, 137 SEPTAL DEFECT, 54, 55 RESPIRATION, ARTIFICIAL, 140*-142 SERUM (See BLOOD) RESPIRATION RATES (algae), 316-319; (bacteria), 315; SHAVER'S DISEASE, 270 (ferns), 347; (fungi), 322-345; (higher plants), SILICOSIS, 268, 270 348-383; (horsetails), 347; (lichens), 320, 321; SILVESTER METHOD, artificial respiration, 141, 142 (liverworts), 346; (mosses), 346 SINUSES, 12, 19 RESPIRATORS, MECHANICAL, 140*, 142 SODIUM ION RESPIRATORY AIR FLOW, characteristics, 138 depression of O2 and CO2 solubility by, 5 RESPIRATORY ALVEOLI, 13, 14*, 17 plasma constituent (vertebrates), 93, 94 RESPIRATORY DEAD SPACE (See DEAD SPACE, SOLUBILITY COEFFICIENTS, gases, 6-9, 56 RESPIRATORY) SOLUBILITY OF RESPIRATORY MOLECULES, 3 SPEED, effect on O2 requirement, 148-150* RESPIRATORY EXCHANGE, characteristics (vertebrates), 285 RESPIRATORY FACTOR in acidosis or alkalosis, STANDARD WALKING VENTILATION, 29 STPD, definition, 1, 2 STREETER'S HORIZONS, 12, 13 definition, 95 STRETCH RECEPTORS, PULMONARY: respiratory RESPIRATORY FUNCTIONS, BASAL, 44, 45 action of drugs influencing (mammals), 200, 201 equations and prediction formulas, 28, 29, 390, 391 SUBCUTANEOUS TISSUE, O2 and CO2 pressures, 44 summary of values, 28, 29, 392 RESPIRATORY GASES, composition and partial SURFACE AREA, BODY pressure, 4 (See also specific gases) constants for use in formula (mammals), 387 RESPIRATORY MOLECULES, characteristics, 3 RESPIRATORY PHYSIOLOGY, standard symbols, 390 vs lung volumes, 38, 39 vs maximal breathing capacity, 131, 132 RESPIRATORY PIGMENTS, 108-129 nomograms for calculating, 388, 389 RESPIRATORY QUOTIENT (plants), 315-383; (vertevs vital capacity, 33, 39 brates), 285; (animal tissues), 299-301, 303, 304, 307 SYMBOLS IN RESPIRATORY PHYSIOLOGY, 390 at altitude, 151, 156 SYMPATHOMIMETIC AMINES (See also DRUGS, effects effect of exercise, 156 of, 178-252) RESPIRATORY RATE (vertebrates), 41, 42, 44, 45 acting on the bronchi (vertebrates), 215-225, 251 at altitude, 151, 156 breathing CO₂ concentrations (mammals), 160-162 breathing N2, 151 breathing O2 concentrations (mammals), 157, 167-169, 174 TEMPERATURE(S) during decompression (dog), 175, 176* acid-base balance of blood at various, 92 effect of anoxia, 156, 157 blood O2 dissociation at various (invertebrates), effect of drugs (mammals), 178-199 70, 71; (vertebrates), 66-70, 72, 73*, 75* effect of exercise, 144, 145, 156 and CO2 and O2 pressures in blood (mammals), 62* effect of pregnancy, 40 coefficients for various blood factors, 72, 73*, 86 infants, 42 corrections for pH measurements, 87 RESPIRATORY REFLEXES, 139 diffusion coefficients of gases in water at various, 11 RESPIRATORY SYSTEM, 12-14* effect on respired air, 264 RESPIRED AIR, 4, 44, 285 (See also ALVEOLAR and K^+ , effect on tissue O_2 consumption, 308 GAS(ES); specific gases) and serum pK' (mammals), 63* factors affecting composition, 263-267 solubility coefficients of gases at various, 6-9 acidosis and alkalosis, 267 at various altitudes, 2 added dead space, 266 TEMPERATURE MULTIPLIER, for adjusting oxyhemoadded resistance, 266 globin dissociation data, 72, 73* CO₂ inhalation, 265 TENSION (See CARBON DIOXIDE and OXYGEN pressures) exercise, 263-265 TETRALOGY OF FALLOT, 54, 55 heat, 264 THORACOPLASTY, and respiratory dead space, 51 O2 inhalation, 265, 266 TIDAL POSITION, END-: effect of breathing CO2 phosgene retention, 267 concentrations (mammals), 165 voluntary control, 263 TIDAL VOLUME, 27*, 392; (vertebrates), 41-44 with artificial respiration, 140*-142 breathing CO2 concentrations (mammals), 160-162 breathing N2, 151, 174 SAGITTAL SINUS BLOOD, A-V differences (dog), 314 breathing O2 concentrations (mammals), 167-169, 174 SALTS definition, 27 depression of CO2 and O2 solubility by, 5 effect of drugs (mammals), 178-199 in respiratory media, 3 effect of pregnancy, 40 SARCOIDOSIS infants, 42 effect on pulmonary function, 268 nomogram for estimating, 140 and pulmonary compllance, 137 relation to dead space (mammals), 44, 50*, 51

TIMED VITAL CAPACITY, 28, 392

and respiratory dead space, 51

TISSUES animal effect of K+ on O2 consumption, 308-310 O₂ consumption, 286-310 survival and revival times under conditions of anoxia, 311 diffusion coefficients of gases in, 10, 11 permeation coefficients of gases in, 10, 11 solubility coefficients of gases in, 8, 9 subcutaneous, O2 and CO2 pressures in, 44 TISSUE FLUID, composition of transported gases in, 4 TOTAL LUNG CAPACITY, 27*, 39 definition, 27 effect of posture, 40 effect of pregnancy, 40 prediction formulas, 28 summary of values, 28, 392 TRACHEA, 12, 14*, 17-19 TRACHEOBRONCHIAL TREE, 15*, 17 TRIAZINES, as antagonists of drugs acting on the bronchi (guinea pig), 242, 243 TUBERCULOSIS, effect on pulmonary function, 268, 270 TURBINALS, 12-14*

VAPORS (See also DRUGS, effects of, 178-252) acting on the bronchi (mammals), 250 VENA CAVO-RESPIRATORY REFLEX, 139 VENOUS BLOOD (See ACID BASE; BLOOD GAS(ES); specific gases) VENTILATION (See also RESPIRATORY RATE; MINUTE VOLUME; TIDAL VOLUME; RESPIRED AIR) at altitude, 151-156 basal, 44 breathing concentrations of CO2 (mammals), 160-162 breathing N2 (mammals), 151 breathing concentrations of O2 (mammals), 167-169 comparison of right and left lung, 45 effect of anoxia (mammals), 152-157 effect of drugs (mammals), 178-199 effect of various work loads, 145 equations, 391 vs exercise, 143-146*, 155, 156 nomogram for estimating accuracy of tank respirator settings, 140 standard walking, 29 summary of values, 28, 392 volume (See MINUTE VOLUME) VENTILATORY EQUIVALENT effect of pregnancy, 40 effect of various work loads, 145 normal value, 28 VENTILATORY RATE, during artificial respiration, 142 VENTURI METHOD, artificial respiration, 142 VERATRUM ALKALOIDS, respiratory response to (mammals), 200 (See also DRUGS, effects of, 178 - 252)VITAL CAPACITY, 27*, 39 vs age, 30, 38 vs body surface area, 33, 38 vs body weight, 32, 38 breathing CO2 concentrations, 165 breathing O2 concentrations, 170 definition, 27 effect of exercise, 143-146*

effect of posture, 36, 37, 40 effect of pregnancy, 40

effect of pulmonary fibrosis, 268

VITAL CAPACITY (concluded)
prediction formulas, 28
vs pulmonary compliance, 136
vs pulmonary pressure, 134*, 135*
vs sitting height and age, 37
vs standing height, 31, 34*, 35*
and age, 36
summary of values, 28, 392
VOMERO-NASAL ORGAN, 12, 13

WALKING DYSPNEA INDEX, prediction formula and normal value, 29 WALKING VENTILATION, STANDARD, 29 WATER diffusion coefficients of gases in, 10, 11 permeation coefficients of gases in, 10, 11 in respiratory gases, 1*, 2, 4 as respiratory medium, 3 solubility coefficients of gases in, 6, 8 WEIGHT, BODY and breathing frequency in calculating tidal volume, 140* and height, in calculating body surface area, 388*, 389* vs lung weight (amphibians), 26; (birds), 25; (mammals), 21-24; (reptiles), 26 vs maximal breathing capacity, 131, 132 vs vital capacity, 32, 38 WEIGHT, LUNG (amphibians), 26; (birds), 25; (mammals), 16*, 17*, 20*-24; (reptiles) 26 WHOLE BLOOD (See ACID BASE; BLOOD) WORK (See also EXERCISE) effect on heart rate, 144-146* effect on lung O2 diffusion, 52 effect on pulmonary function, 144-146*, 147-150 effect on respiratory dead space, 47

XENON, partition coefficients, 5

